INTERPOLAZIONE DIRETTA DI DATI SPERIMENTALI DI CRESCITA DI CRICCA A FATICA

P. Matteis, D. Firrao

DISMIC,

Metodo usuale di riduzione dei dati sperimentali

Metodo proposto

Sommario

- Materiali e metodi sperimentali
- Dati sperimentali
- Modelli matematici
- Sequenze e metodi di calcolo e confronto
- Risultati
- Conclusioni

Materiali e metodi sperimentali

acciai	С	Mn	Cr	Ni	Mo	Si	Nb	V	В	Zr	S	Р
2738	0.42	1.5	2.0	1.1	0.21	0.37	_	0.08	_	_	0.002	0.006
2002	0.28	1.6	1.4	1.1	0.60	0.28	0.020	0.12	0.0013	0.03*	< 0.001	0.007

Blumi bonificati di dimensione 2970x1285x1190 mm³ (2738) e 2900x1020x1260 mm³ (2002)

acc.	Condizione metallurgica	R _{p02}	K	intervalli inte	erpolati	metodi sper.
-	_	MPa	MPa√m	MPa√m	n	-
	Perlite (850 °C / 600 °C / aria)	665*	n.d.	18-51	145	Provette SENB
	Bain. + Mart. (850 °C / 340 °C / aria)	1440^{*}	n.d.	20-33	74	(B 12,5 - W 25
38	Mart. Rinv. (850 °C / aria / 590 °C)	1051*	80*	17-72	191	cedevolezza;
27	come fabbr., prof. 645 mm	665	47	11-44	190	R=0,1
	come fabbr., prof. 310 mm	813	41	15-6 9-32	61 66	
	come fabbr., prof. 60 mm	910	34	11-41	35	Provette CT
	come fabbr., prof. 460 mm	996	44	13-6 16-36 [†]	17 27	(B6 - W50 mm) [.] misure
002	come fabbr., prof. 260 mm	969	44	7-6 7-29	8 74	ottiche; R=0,1
	come fabbr., prof. 80 mm	964	54	7-10 11-35	18 30	

Dati sperimentali

$$\{\underline{N}\} = \{\underline{N}_0 \dots \underline{N}_i \dots \} = \{0 \ 10000 \ 20000 \ \dots \}$$

numeri di cicli compiuti da inizio prova

 $\{\underline{a}\} = \{\underline{a}_0 \dots \underline{a}_i \dots \} = \{12,16 \ 12,35 \ 12,57 \dots [mm] \}$ lunghezze di cricca misurate dopo \underline{N}_i cicli

 $\{\underline{\Delta P}\} = \{\underline{\Delta P}_{0} \dots \underline{\Delta P}_{i} \dots \} = \{4,43 \ 4,43 \ 4,00 \dots [kN] \}$ $ampiezza \ di \ forza \ applicata \ tra \ N_{i}+1 \ ed \ N_{i+1} \ cicli$ $(perlopiù \ costante \ nelle \ prove \ a \ \Delta K \ crescente)$

Modelli matematici

Fattori di Intensificazione delle Tensioni

Leggi di Crescita di Cricca a Fatica

$\frac{da}{dN} = f(\Delta K, \{\theta\})$	$oldsymbol{f}\left(oldsymbol{\Delta K}$, $ig\{oldsymbol{ heta}ig\} ight)$	$\{oldsymbol{ heta}\}$
Paris	$C \cdot \Delta K^m$	{ C , m }
Forman ∮ ^{∆K} cresc.	$\frac{C \cdot \Delta K^m}{1 - \Delta K / ((1 - R) \cdot K_c)}$	{ C , m , K _c }
- Mettu ℓ ΔK decr.	$C \cdot (\Delta K - \Delta K_{th})^m$	$\{{m C}$, ${m m}$, ${m \Delta {m K}}_{th}\}$

Sequenza di calcolo

<u>A due passi</u>

* passo 1: calcolo dei punti $\log \left(\Delta K_{P1}^{(i)} \right) - \log \left(\left(\frac{da}{dN} \right)_{P1}^{(i)} \right)$

- → met. della secante, met. polinomiale di ordine 2 (solo ΔK crescente)
- * passo 2*: interpolazione dei punti $\log(\Delta K_{P1}^{(i)}) \log((da/dN)_{P1}^{(i)})$
 - [1] Paris, interp. lineare
 - [2]* Paris, interp. non lineare, 1° stima: $\{\theta\}_{11}$
 - [3]* Forman-Mettu, interp. non lin., 1° stima: { C_{11} , m_{11} , $K_c = 80 \text{ o} \Delta K_{th} = 5$ }

<u>A passo singolo:</u> interpolazione non lineare dei punti $N^{(i)}$ - $a^{(i)}$

• [4] Paris, 1° stima: $\{\theta\}_{[2]}$

• [5] Forman-Mettu, 1° stima: $\{\theta\}_{[3]}$

* punti interpolandi calcolati con il metodo della secante (ripetuto per quelli calcolati con il metodo polinomiale, dove applicabile)

Metodi di Calcolo per le interpolazione a passo singolo

Simulazione della crescita di cricca a fatica

- dati: a_0 , legge di CCF, $\{\theta\}, \Delta P^{(i)}, N^{(i)}$
- integrazione con passo $da = 0,0001 W \rightarrow \text{curva } a\text{-}N$
- interpolazione della curva *a*-*N* in $N^{(i)} \rightarrow a^{(i)}_{calc}$

Metodo dei minimi quadrati:

- incognite: a_0 , $\{\theta\}$
- minimizzazione del residuo quadratico medio tra $a^{(i)}_{calc}$ e $a^{(i)}_{sper}$
- algoritmo di minimizzazione di Nelder Mead
- $\rightarrow a_0, \{\theta\}$
- \rightarrow *residuo* quadratico medio, coefficiente di determinazione \mathbb{R}^2

Uso di a₀ come incognita accessoria:

• altrimenti $a^{(0)}$ influisce più di ogni altra $a^{(i)}$

Confronti tra metodi a due passi ed a passo singolo

Per equita di confronto, per ciascun metodo a due passi [x=1,2,3] si calcola anche il valore di $a_{0[x]}$ che minimizza il residuo quadratico medio tra $a^{(i)}_{sper}$ ed $a^{(i)}$ calcolato con $\{\theta\}_{[x]}$

Per ogni sequenza di dati sperimentali, sono stati confrontati: * residuo

 $st R^2$

* grafico a - N (punti sperimentali e curva interpolante)

calcolati usando ciascun metodo [x] (cioè con $\{\theta\}_{x}$ e a_{0x} e la legge di CCF)

Risultati: campione 2738 - BM, ∆K: 20-33 MPa√m

Risultati: campione 2738 - 310, ΔK: 15-6 MPa√m

Risultati: parametro **m**

campioni provati		K _{Ic}	intervalli di prova esaminati		Paris 2P sec	Paris 2P pol	Forman- Mettu 2P sec	Forman- Mettu 2P Pol	Paris 1P	Forman- Mettu 1P
		MPa√m	MPa√m	n	[1]	[2p]	[3]	[3 p]	[4]	[5]
	P	n.d.	18-51	145	3.45	3.45	3.45	3.45	3.42	3.42
	BM	n.d.	20-33	74	9.88	9.65	6.75	6.99	9.42	6.8
∞	MR	80^{*}	17-72	191	2.9	2.75	2.31	2.06	2.74	2.69
73	645	47	11-44	190	2.97	2.99	2.97	2.99	2.99	2.99
2	310	41	15-6	61	3.78		2.85		3.65	2.83
			9-32	66	3.08	3.16	3.08	3.16	3.05	3.05
	60	34	11-41	35	2.35	2.44	2.35	2.44	2.26	2.26
		44	13-6	17	4.77		2.21		4.49	1.81
			9-7	7	5.56		12.4		6.52	14.3
	460		8-9	20	7.03	5.73	7.03	2.17	5.94	5.94
\sim			9-15	31	3.12	2.88	3.12	2.88	2.8	2.8
000			16-36	27	4.11	4.64	4.11	4.64	4.47	4.47
7	260	11	7-6	8	4.66		0.04		1.75	0.05
	200	44	7-29	74	4.63	4.5	4.63	4.5	4.38	4.20
	00	51	7-10	18	5.26	6.74	3.31	6.74	5.66	5.2
	00	54	11-35	30	3.65	3.93	3.65	3.93	3.45	3.45

Risultati: R²

campioni provati		K _{Ic}	intervalli di prova esaminati		Paris 2P sec	Paris 2P pol	Forman- Mettu 2P sec	Forman- Mettu 2P Pol	Paris 1P	Forman- Mettu 1P
		MPa√m	MPa√m	n	[1]	[2p]	[3]	[3 p]	[4]	[5]
	P	n.d.	18-51	145	0.94	0.97	0.94	0.97	0.98	0.98
	BM	n.d.	20-33	74	0.96	0.97	0.95	0.98	0.97	0.98
8	MR	80^*	17-72	191	0.96	0.97	0.95	0.97	0.98	0.98
73	645	47	11-44	190	0.98	0.99	0.98	0.99	0.99	0.99
	310	41	15-6	61	0.92		0.93		0.98	0.99
			9-32	66	0.98	0.98	0.98	0.98	0.98	0.98
	60	34	11-41	35	0.97	0.96	0.97	0.96	0.97	0.97
		44	13-6	17	0.86		0.89		0.93	0.96
			9-7	7	0.93		0.93		0.95	0.95
	460		8-9	20	0.95	0.96	0.95	0.96	0.96	0.96
\sim			9-15	31	0.97	0.98	0.97	0.98	0.98	0.98
2002			16-36	27	0.92	0.96	0.92	0.96	0.96	0.96
	260	11	7-6	8	0.92		0.79		0.95	0.96
	200	44	7-29	74	0.95	0.96	0.95	0.96	0.96	0.83
	80	51	7-10	18	0.94	0.93	0.93	0.93	0.96	0.96
	80	54	11-35	30	0.94	0.9	0.94	0.9	0.95	0.95

Risultati: Residuo [mm]

campioni provati		K _{Ic}	intervalli di prova esaminati		Paris 2P sec	Paris 2P pol	Forman- Mettu 2P sec	Forman- Mettu 2P Pol	Paris 1P	Forman- Mettu 1P
		MPa√m	MPa√m	n	[1]	[2p]	[3]	[3 p]	[4]	[5]
	P	n.d.	18-51	145	0.14	0.08	0.14	0.08	0.06	0.06
	BM	n.d.	20-33	74	0.05	0.04	0.07	0.03	0.04	0.03
8	MR	80^{*}	17-72	191	0.13	0.09	0.18	0.11	0.07	0.07
73	645	47	11-44	190	0.06	0.04	0.06	0.04	0.03	0.03
2	310	41	15-6	61	0.22		0.19		0.05	0.04
			9-32	66	0.09	0.12	0.09	0.12	0.09	0.09
	60	34	11-41	35	0.16	0.22	0.16	0.22	0.13	0.13
	460	44	13-6	17	0.08		0.06		0.05	0.02
			9-7	7	0.03		0.03		0.02	0.02
			8-9	20	0.06	0.04	0.06	0.04	0.04	0.04
\sim			9-15	31	0.06	0.04	0.06	0.04	0.04	0.04
000			16-36	27	0.19	0.11	0.19	0.11	0.09	0.09
0	260	11	7-6	8	0.01		0.04		0.01	0.01
	200	44	7-29	74	0.37	0.27	0.37	0.27	0.25	1.13
	00	51	7-10	18	0.12	0.14	0.13	0.14	0.08	0.08
	80	54	11-35	30	0.24	0.44	0.24	0.44	0.21	0.21

Risultati: $\Delta K_{th} \circ K_c$ [MPa \sqrt{m}]

campioni provati		K _{Ic}	interva prova esa	lli di minati	Forman- Mettu 2P sec	Forman- Mettu 2P Pol	Forman- Mettu 1P
		MPa√m	MPa√m	n	[3]	[3 p]	[5]
	P	n.d.	18-51	145	6.E+13	3.E+14	6.E+14
	BM	n.d.	20-33	74	38.8	39.9	39.9
∞	MR	80^{*}	17-72	191	112.6	102.6	847.7
73	645	47	11-44	190	3.E+13	5.E+13	4.E+13
2	310	<i>I</i> 1	15-6	61	2.3		2.2
		41	9-32	66	7.E+13	1.E+13	4.E+17
	60	34	11-41	35	6.E+14	3.E+14	5.E+14
			13-6	17	4.3		4.7
	460		9-7	7	-9.5		-10.2
		44	8-9	20	5.E+10	11.9	1.E+13
\sim			9-15	31	1.E+12	1.E+11	1.E+13
000			16-36	27	6.E+13	6.E+12	2.E+18
7	260	11	7-6	8	6.2		6.2
	200	44	7-29	74	3.E+13	2.E+13	38.21
	80	51	7-10	18	14.2	1.E+11	32.7
	80	54	11-35	30	6.E+13	1.E+14	2.E+14

Conclusioni

- In generale, il metodo di interpolazione diretta qui proposto permette di interpolare i dati sperimentali (curve N - a) in modo lievemente più preciso (minori residui e maggiori coefficienti R²) rispetto ai metodi di interpolazione usali a due passi;
- in particolare, il metodo proposto è relativamente più vantaggioso nelle prove a ΔK decrescente, forse a causa della maggior dispersione dei punti ΔK – da/dN che si verifica alle basse velocità di CCF;
- nei casi esaminati, l'uso delle leggi di CCF di Forman-Mettu perlopiù non è stato vantaggioso, rispetto all'uso della legge di Paris (residui e coefficienti R² peggiori o solo poco migliori, pur con 1 parametro in più; difficolta di convergenza; valori di K_c spesso ininfluenti; valori di K_c o di ΔK_{th} talvolta fisicamente inaccettabili);
- Metodi simili potrebbero essere applicati ad esperimenti di CCF con effetti di storia dei carichi (p.e. ritardi dopo sovraccarichi isolati).