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Abstract

Knowledge management systems share information from
multiple sources over the network and may have problems
in maintaining the consistency due to node failures and
data fragmentation in different locations. In this paper we
present an architecture for a load balanced and reliable
RDF storage system for semantic information distributed
over a peer-to-peer network.

Peers are self organized in a ring topology, based on a
Distributed Hash Table (DHT), where each node is assigned
a segment of the key space that can dynamically change in
order to maintain a uniform distribution of the data among
the participating peers. Data redundancy is then used to
replicate each RDF triple in multiple locations so that, in
case of peer failures, neighbour nodes can act on their be-
half and return consistent results. Additionally, each node
provides an entry point able to resolve atomic, disjunctive
and conjunctive SPARQL queries on the network semantic
knowledge.

The performance of this approach is evaluated by mon-
itoring the effectiveness of the load balancing and redun-
dancy algorithm and the overhead introduced on the net-
work load in both a static (only join events) and dynamic
scenario.

1. Introduction

A key focus of Semantic Web is the possibility to create
new knowledge by sharing semantic information originated
by multiple sources using a common framework based on
standard data formats and network protocols. In such a sce-
nario information is frequently distributed on a very large
number of nodes over the whole Internet.

When the information is distributed, multiple peers are
involved in a single query and results may change over time,
i.e., if a network node is not available, the retrieved data set

will not include the related information. Also, if the infor-
mation is randomly distributed over the whole network the
query response time will increase proportionally with the
number of nodes. In interactive services, when knowledge
is meant to be used by a human being, these problems are
critical because the user will expect coherent results in a
reasonable response time. Our work will address these data
consistency and availability issues introducing a RAID-like
and load balancing policy.

In our proposal, nodes are self-organized in a P2P net-
work and, in addition to their own data, they also store a
redundant subset of the information originated by the other
peers. Taking as a basic unit of information the RDF triple,
that represents a statement where a predicate denotes a re-
lationship between a subject and an object, the problem is
to find a distribution algorithm to efficiently store multiple
copies of each triple and to retrieve it in predictable time in-
dependently of the temporary unavailability of the original
source. The main focus of this paper is to discuss a solution
that involves a triple distribution algorithm, a triple validity
management policy and a peer-to-peer (P2P) routing infras-
tructure.

This paper is organized as follows. In the next Section,
we analyze the state of art in this research area. In Sec-
tion 3 we describe the proposed architecture and the major
issues related to node insertion/removal and information re-
dundancy. In Section 4 and 5 we discuss the results and
present our conclusions and future works.

2. Related Work

Many efforts have been made to build an infrastructure
composed by several centralized peers aimed at sharing
knowledge and support consistency and availability of re-
trieved data. Jena [6] and Sesame [3] are examples of cen-
tralized storage systems which enable external applications
to retrieve data using the SPARQL protocol [1], a graph-
matching query language used to retrieve semantic knowl-
edge. A set of this storage servers can cooperate together



to share knowledge, but the major issue related to this ap-
proach is that the results may change over time, as a func-
tion on the availability of network nodes. That is, if a node
becomes unavailable it is not backed up by any other node
of the network. Thus any node may be a single point of
failure for the system [15].

To overcome these centralized constraints, many ap-
proaches in literature consider a distributed scenario, based
on a P2P network. A P2P approach is proposed in Edutella
[13] using the Gnutella protocol. The overlay is composed
of a set of Super Peers (SP) [14], each of them connected
to a large number of simple peers. The SPs are nodes
with high network bandwidth and sustainable computation
power. These SPs form the backbone, manage a local set
of RDF data and are responsible for routing and querying.
Although this approach is developed for a distributed sce-
nario, it also presents the single point of failure issue forthe
SPs, because when a SP is not available, the consistency of
the retrieved knowledge is compromised.

Another approach that considers a distributed scenario
is RDFPeers [4], based on a DHT, which is developed on
top of Multi Attribute Addressable Network (MAAN) [5],
an application layer based on Chord [16]. Each peer in
this network is responsible for a segment of the whole key
space, thus satisfying the “node equality” principle in terms
of required network bandwidth, storage and query depen-
dent computational load. Each RDF field is hashed and a
copy of the triple is stored in the nodes responsible for the
segments where the hashes fall. Any query can then be re-
solved by hashing one of the constraints and contacting the
node responsible for that hash ID. This approach provides
load balancing based on the hash function, which assigns
an ID to each input data, but it does not enforce the unifor-
mity of such resulting values, so we may end up having a
very loaded sector in the network, while others are lightly
loaded. On the long run, in fact, the non-uniform distribu-
tion of the semantic statements, e.g. the high frequency of
rdf:type or dc:title statements, will concentrate a lot of data
in the particular sectors matching those hash ID. To over-
come this issue, RDFPeers uses a successor probing algo-
rithm which randomly analyzes a sub-set of all ranges and
chooses the heaviest to be divided. In addition no active
redundancy system ensures the consistency of the retrieved
RDF data.

3. System architecture

The typical scenario considered in this article is a sev-
eral hundred peers each with its own RDF store. Each peer
is authoritative for the information stored into its own RDF
database and, according to a specific distribution algorithm,
it sends multiple copies of each RDF triple to other nodes in
the network. At the same time each server provides storage

Figure 1. System architecture.

space for RDF triples originated by other peers in the net-
work. At any time any server may decide to join or leave the
network, thus adding or marking as invalid some of the dis-
tributed information. Although the accessibility of a given
node in the network can’t be guaranteed at all times, to sat-
isfy the data consistency and availability requirements, the
information owned by the node should be available at least
within a specific time interval (RDF triple’s time-to-live).
This scenario suggests the use of a structured P2P network
where the peers self-organize in a ring topology and use a
DHT to build a distributed and highly reliable RDF triple
repository.

RDF triples are indexed by multiple hash values calcu-
lated on the subject, predicate and object. Literal and typed
literal values are excluded and each triple can yield from
one to three hash values. Hash values are then used to lo-
cate a bucket node in a single ring according to the Mercury
protocol [2]. We assign to each node a segment of the key
space which can grow or reduce in order to provide uniform
triple distribution, even if data is concentrated in a short
key range, so every node in the network is responsible for
nearly the same amount of data. Using periodical routing
messages, peers exchange information on the local triple
distribution in order to monitor the range with the highest
load. Then, when a new node joins the network, the system
uses that node to split the most loaded range so that the two
nodes become authoritative for half of the triples previously
contained. As can be seen in Fig. 1, each server is orga-
nized in a stack composed by a network layer and an ap-
plication layer. The underlying network layer manages the
routing information in the P2P network and also manages
the join/leave events and the load balancing. The applica-
tion layer is composed of the RDF triple loader, used to read
the RDF documents and store the information into the local
RDF triple database, a distributed RDF triple database used
to store information shared with the other nodes and a query
block used to interpret the SPARQL queries.

In the next subsections we focus on the RDF network
layer. We explain the algorithms used to estimate the node
load, to manage the node join and leave events and the



Figure 2. Load estimate packet format.

model used for message routing.

3.1. Load estimation algorithm

In order to compute a realistic load histogram of the net-
work, nodes periodically contact other nodes, which are
chosen according to our DHT, using “load estimate” pack-
ets. The packet format is shown in Fig. 2 and is composed
of: (1) TimeToLeave (TTL), (2) timestamp, which identifies
when estimate has been calculated, (3) macro-range-start
and (4) macro-range-stop, which describe the leftmost and
rightmost key of macro-range, (5) average-range and (6)
average-load, which identify the average range and the av-
erage load among the nodes and (7) most-load-node, which
describes the most loaded node in the macro-range.

Once a node receives this packet, it appends its load es-
timate, decrements the TTL field and forwards it again ac-
cording to the long-distance links, chosen from the DHT via
a random uniform probability distribution. When the TTL
value is equal to 0, the last node sends such estimates to the
source node. In order to reduce the bandwidth overhead we
propose to append the “load estimate” information to the
routing messages used to manage the network. Because of
the dynamic nature of the network old load estimates, there
is a slight risk to become counterproductive. Thus estimates
older than a given threshold must be deleted or updated. In
order to perform this, we use the timestamp reference: when
it becomes older than a threshold then we send a new load
estimate. These estimates can be analyzed in order to cal-
culate the distribution of the load among the nodes and the
number of nodes in the network.

3.2. Join and leave events

When a new node A wants to join the P2P network, it
contacts a known node B that, as a function of the estimated
load information, redirects A to the most loaded peer it is
aware of, C. The joining node A is then inserted in the ring
as the predecessor of C. As a consequence, the data range
previously managed only by C is evenly split between C
and A, i.e., A acquires half of the triples that have been on
C, according to the principle of consistent hashing [9]. Ob-
viously, groups of triples stored under the same hash could
not be split and therefore should be considered as grains
among the triples. Since the triples are stored according
to the alphabetic order, C flushes each data whose hash is
greater than the ID assigned to the new node.

Figure 3. Routing loop management.

The leave event can require two different actions since
we may want to preserve the consistency of the data or we
may want to remove portion of the knowledge from the net-
work. In the former case the event requires that the leaving
node transfers its triples to its successor (following the prin-
ciple of consistent hashing) that has to update its responsi-
bility range. In addition, the leaving node forwards through
its long-distance links [12] a leave message so that these
peers can update their DHT to match the new state of the
network. In the latter case, the leaving node may also want
to remove from the network the triples it is owner of, so
it requests the deletion of these triples and their redundant
copies. In the rest of the paper we consider as a leave event
only the case that can also be forced, for example, by a link
failure or a temporary node unavailability.

3.3. Routing messages

Following the idea proposed in [2] each node has a DHT
composed of two siblings links connected to the previous
and next node in a clockwise direction and k long distance
links chosen so that the distance from the source node to the
target node follows a harmonic law. This scheme provides
good efficiency so that we route a generic message between

two nodes inO( log2(n)
k

) [11], wherek is the number of long
distance links [10], that islog(n) as shown in [2].

A generic nodem buildsk long distance links with the
following procedure; let I denote the unit interval [0,1] (that
corresponds to the DHT ring with unit perimeter), for each
such link the node draws a numberx ∈ I from the har-
monic probability distribution functionpn(x) = 1

n∗log(x) ,

if x ∈ [ 1
n
, 1], wheren is the number of nodes in the net-

work. Then it establishes a long distance link with a node
that is distantpn(x) from itself on the DHT ring.
As shown in Fig. 3, if it happens that the procedure uses in-



Figure 4. Redundant copies of a given triple
(s,p,o) with t = 2.

consistent DHT information, the message routing algorithm
can incur in routing loops as described in [8]. This can be
avoided having each hopi checking the ID of the node from
which it has just received the message to be forwarded (the
source) so that, if the ID value of the target node is between
the ID of the source node and the ID of the previous (i)
node, then it forwards the packet via the backward link. In
this case the routing cost is bounded toO(n).

3.4. Redundancy

A redundancy algorithm is proposed to address the is-
sues related to temporary node unavailability (or node dis-
connection). Triples are in fact replicated in more than one
peer according to their hash function, using the following
equation:

i=t−1∑

i=0

hash(x) +
ω ∗ i

t
, (1)

where x is a URI field of a statement,ω is equal to
2hash length andt identifies the number of replicas. Fig. 4
illustrates an example of the redundancy mechanism, where
each triple has an additional copy in another peer of the net-
work which is chosen using Equation (1) with t = 2.
This algorithm does not group all triples replica of a node

in one peer. When the network must substitute a node that
has left, it uses the above formula to transfer the redundant
triples of the dead node to its successor. In this case the
node that receives the triples does not need to replicate them
again.

3.5. Query resolving

In the proposed system any client outside the P2P net-
work can use the SPARQL standard, a graph-matching

query language used to retrieve semantic knowledge, on any
P2P node to query the network knowledge base. The dis-
tributed RDF architecture can then return the same results in
the same time independently from the particular node used
to perform the query.

We identify three types of queries: atomic, disjunctive
and conjunctive queries. An atomic query pattern is a triple
in which the subject, predicate and object can each be a vari-
able or an exact value. In this case, the query block uses the
hash function on the query pattern exact values to identify
the node which manages the requested triple-set. The rout-
ing cost follows the trend described in Section 3.3.
A disjunctive query pattern is an atomic query with a list of
constraints. It is then evaluated as an atomic query but the
node responsible for such triple-set has to return only the
data that matches the specified constraints.
A conjunctive query pattern is the conjunction of a list of
query patterns. Consequently, we need to join two or more
sets of triples that are spread on different nodes. We adopt
the query chain algorithm, described in [7]. This schema
splits the whole query in sub-queries and solves them sepa-
rately as an atomic query. The result of the sub-queries are
then collected and joined to form the requested triple-set.

4. Experimental results

To asses the performance of the proposed architecture
we developed a specific simulator that reproduces the be-
haviour of a medium size network with three hundred nodes
and one million of triples in the data-set.

First, we focus on the analysis of the load balancing
technique; we study the distribution of the triples among
the peers and then the network bandwidth overhead intro-
duced by this feature. Two basic scenarios are considered,
a) static, where nodes sequentially join the network mono-
tonically increasing its size, b) dynamic, where nodes join
and leave the network. In each join event the new node in-
serts 3,334 new triples, which is the average value of triples
in each node of the existing network.

4.1. Load balancing

In Fig. 5 and Fig. 6 we represent the relative standard
deviation (RSD) of the number of triples managed by each
peer in two simulation scenarios.

In Fig. 5 300 nodes are sequentially inserted in the P2P
network and the RSD value is reported after each insertion.
When a node joins the network, 3,334 triples are added to
the system and the new node becomes the predecessor of the
most loaded one inheriting half of its triples. The plot shows
that, apart from the very beginning of the simulation when
few nodes are present, the relative standard deviation is kept
almost constant ensuring a good load balancing among the
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Figure 5. Load balancing in the static sce-
nario.
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Figure 6. Load balancing in the dynamic sce-
nario.

peers. Variations are mostly due to the uneven distribution
on the P2P network of the new 3,334 triples that come with
the joining nodes.

In Fig. 6, after the insertion of 300 nodes, the graph rep-
resents the effect on the RSD of ten series of ten join and ten
leave events. Peaks correspond to the leave events when the
leaving node triples must be moved to the successor node
drastically increasing its load with respect to the other peers.
Valleys are instead related to the join events when a new
peer joins the network and helps splitting the triple range
managed by the most loaded peer. Since each joining node
carries a relative large amount of new random triples the
RSD delta after a series can either be positive or negative
depending on the new triple hashes. For example series I,
II, III, IV (from event 300 to event 380) increase the RSD,
while series V decreases it. However series that increase the
RSD tends to occur more frequently, because, as previously
shown in Fig. 6, the bandwidth saving load balancing algo-
rithm applied to the insertion events can only slowly reduce
the RSD.

 120

 140

 160

 180

 200

 220

 240

 260

 0  50  100  150  200  250  300

E
xc

ha
ng

ed
 tr

ip
le

s 
[%

]

Inserted nodes

Figure 7. Network bandwidth usage in the
static scenario.
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Figure 8. Network bandwidth usage in the dy-
namic scenario.

4.2. Network bandwidth

For what concerns the network bandwidth used by the
proposed algorithm to guarantee load balancing and triple
redundancy, the effects of data exchange in the two previ-
ous scenarios (static and dynamic) are show in Fig. 7 and 8.
The number of triples exchanged are normalized with re-
spect to the number of triples each node inserts in the sys-
tem (e.g. 3,334). So, when a new node joins the network
most of its triples move into the ranges managed by other
peers and half of the triples of the most loaded peer moves
into the node hash range. When a node leaves the network
its triples move to the node successor.

5. Conclusions and future works

In this paper we proposed a distributed RDF triple stor-
age based on a P2P network. Triple distribution among the
network peers is optimized in order to have each node re-
sponsible for nearly the same amount of data. Each field of



the triples, excluded the literal, is hashed and distributed ac-
cording to the long distance links that are defined using the
estimated network load information. In addition we address
the problem of network failures and frequent node join and
leave events with a redundancy mechanism, i.e. a portion of
each peer storage is used to store copies of triples managed
by the other peers. Thus, we ensure, to a certain degree, that
if a link fails or a node abruptly disconnects from the net-
work, no triples are lost and a query is able to return consis-
tent results. The performance of this approach is measured
by monitoring the effectiveness of the load balancing algo-
rithm and the overhead introduced on the network load in
both a static (only join events) and dynamic scenario.

Future work will further investigate the problem using
a large training-set of real data, like a complete set of
Wikipedia triples, and a high dynamic scenario with het-
erogeneous peers and random leave/join events.
We also plan to optimize the query resolving algorithm with
respect to the network bandwidth and node computational
load using statistical information on attribute selectivity.
Since some URI, e.g. rdf:type or dc:title, occur more fre-
quently than others, they are also the least selective one.
Thus we are working on the implementation of query chains
that analyze query constraints depending on their selectivity
in order to reduce the set of triples to be evaluated with re-
spect to a query chain that uses a random evaluation order.
Besides we will also investigate how an highly dynamic P2P
network, where peers frequently join and leave, impacts the
efficiency of the RAID-like system we developed. First, we
will try to determine the optimal ratio between the number
of nodes and the total number of triples distributed over the
network: the performance of joint queries depends on the
balance between the number of nodes to be contacted and
the amount of data managed by each node. Finally we will
analyse the main issues related to query failures like too
many unreachable nodes and TTL expiration, and how to
mitigate them.
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