
22 December 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Exploring Design Dimensions in Flash-based Mass-memory Devices / Caramia, M.; DI CARLO, Stefano; Fabiano,
Michele; Prinetto, Paolo Ernesto. - STAMPA. - (2009), pp. 43-48. (Intervento presentato al convegno ACM 4th
International Workshop on Software Support for Portable Storage (IWSSPS) tenutosi a Grenoble, F nel 15 Oct. 2009).

Original

Exploring Design Dimensions in Flash-based Mass-memory Devices

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2296447 since:

ACM

Exploring Design Dimensions in
Flash-based Mass-memory De-
vices
Authors: Caramia M., Di Carlo S., Fabiano M., Prinetto P.,

© ACM, 2009. This is the author's version of the work. It is posted here by permission of ACM for
your personal use. Not for redistribution. The definitive version was published in ACM 4th International
Workshop on Software Support for Portable Storage (IWSSPS), 15 Oct., 2009, Grenoble, FR and is
available at:

URL: http://140.118.127.40/iwssps2009/iwssps09-design.pdf

!Politecnico di Torino

http://140.118.127.40/iwssps2009/iwssps09-design.pdf
http://140.118.127.40/iwssps2009/iwssps09-design.pdf

Exploring Design Dimensions in Flash-based
Mass-memory Devices

Maurizio CARAMIA

Thales Alenia Space
Command Control and Data Handling

Strada Antica di Collegno 253
10146, Torino, Italy

Maurizio.Caramia
@thalesaleniaspace.com

Stefano DI CARLO, Michele FABIANO,
Paolo PRINETTO
Politecnico di Torino

Dipartimento di Automatica e Informatica
Corso Duca degli Abruzzi, 24

10129, Torino, Italy

{Stefano.Dicarlo, Michele.Fabiano,
Paolo.Prinetto}@polito.it

ABSTRACT
Mission-critical space system applications present several issues:
a typical one is the design of a mass-memory device (i.e., a solid-
state recorder). This goal could be accomplished by using flash-
memories: the exploration of a huge number of parameters and
trade-offs is needed. On the one hand flash-memories are
nonvolatile, shock-resistant and power-economic, but on the other
hand their cost is higher than normal hard disk, the number of
erasure cycles is bounded and other different drawbacks have to
be considered. In addition space environment presents various
issues especially because of radiations: the design of a flash-
memory based solid-state recorder implies the exploration of
different and quite often contrasting dimensions. No systematic
approach has so far been proposed to consider them all as a
whole: as a consequence the design of flash-based mass-memory
device for space applications is intended to be supported by a
novel design environment currently under development and
refinement.

Categories and Subject Descriptors
B.8.1 [Reliability, Testing, and Fault-Tolerance]

Keywords
Flash-memory, Space applications, Design environment

1. INTRODUCTION
Flash-memory based systems are gaining acceptance and usage

not only in the consumer market but in space applications, as well,
where they could play the role of high-capacity storage devices: in
fact flash-memory guarantees both the non-volatility in case of
power loss and a highest storage density, being at the same time
shock-resistant and power-economic [1].

Mission-critical space applications require proper mass-memory
device (i.e. solid state recorder). Designing a solid state recorder
for space is basically different from developing a typical mass-
memory device for common use, mainly due to the peculiar
operational environments [1].

This goal could be accomplished by using flash-memories: the
exploration of a huge number of design dimensions and
evaluating a vast amount of trade-offs among all such dimensions.
The most relevant dimensions include flash-memory technology,
flash-memory architecture, file management system,
dependability enhancement strategies, power consumption,
weight, physical size.

Unfortunately in the literature each paper is typically tackling
just one specific issue in just one design dimensions, without
proposing any systematic approach in order to consider them all
as a whole. Such a concurrent exploration capability is mandatory
to provide the designers a powerful design environment, capable
of supporting them through all the steps of the design cycle,
including Architectural Exploration, Design Validation &
Verification, (Automatic) Test insertion, Dependability evaluation
and so on.

A complex and powerful design environment is thus needed to
properly evaluate the impact of the choices in each dimension and
the related trade-offs. A novel design environment currently under
development and refinement is aimed to support the design of
flash-based mass memories, especially for space applications, and
is exploited to highlight the effectiveness of the concurrent
exploration discussed above.

The paper is organized as follows: Section 2 is a brief overview
of the main issue related to the space environment, Section 3
resume the major characteristics and issues associated to flash-
memories, while Section 4 addresses a possible architecture for a
design environment to support the design of flash-based hard
disks for space applications.

2. THE SPACE ENVIRONMENT: AN
OVERVIEW

The processing power available for embedded technology and
boards just a few years ago is absolutely not comparable to the
present one. However in space applications the design choices

have often driven toward older and/or lower-performing radiation-
tolerant electronics because of the very strict requirements.

Although each new space application has its own story and
increasing requirements [2], a typical mission-critical space
system application includes, among the several aspects, the design
of a solid state recorder(s). No loss of mass memory data and the
guaranteed availability of storage capability at End-Of-Life (EOL)
are only some of the many different constraints a solid state
recorder for critical space missions needs to satisfy. The
requirements of interplanetary missions have to be met and a well-
designed flash-based memory system can do it. However its
design has to compensate for flash’s shortcomings in speed,
radiation tolerance, noise, and read/write cycle life: this
compensation obviously leverage the costs.

On the one hand vendors should absolutely provide flash-
memories physically qualified to survive in the space environment
with the help of proper strategies [3] – [6], while on the other
hand data integrity, reliability, simplicity, modularity, and
autonomy are just some of the key features to fulfill (e.g., reliable
storage of context data, also during spacecraft power outage).

Moreover ECC algorithms for error checking and correction of
NAND flash-memory should be evaluated by designers in order to
accomplish the level of dependability requested by their design. A
more detailed survey about the most peculiar flash-memory
design dimensions and trade-offs to tackle during the design of
flash-based hard disks for space applications could be found in
[7].

3. FLASH-MEMORY:
CHARACTERISTICS AND ISSUES

Several interesting features of flash-memories properly fit with
the requirements of mass-memories for space applications,
whereas feasible alternatives need to be evaluated. A relative high
capacity would characterize our solid-state recorder: a suitable
solution could be DRAMs. On the one hand DRAMs are very
fast, reliable and provide a very high data rate, but on the other
hand they need a battery pack-up to not lose data and this issue
generate an intricate balance between battery mass and data
retention time: data retention over years is not feasible and count
of battery charge cycles are limited. DRAMs are not discussed
anymore in this paper.

3.1 Characteristics
A more attractive solution is the use of flash-memories. There

are two major types of flash-memory in the current market: NOR
and NAND flash-memory. NOR flash-memory is for EEPROM
replacement and is more suitable for program execution, while
NAND flash-memory is more suitable for storage systems [8],[9]:
[7] briefly sums up the main characteristic of these types of flash-
memory.

This paper addresses only NAND flash-memories: in fact they
are the most suitable choice for HD replacement. On the one
hand, flash-memories are nonvolatile, shock-resistant, and power-
economic: a pure flash-memory based solution could guarantee
unlimited data retention time and no need of battery backup. On
the other hand flash-memories are still much more expensive than
hard disk drive memory. Only rather large data structures could be
accessed and, in addition, DDR2 SDRAMs provide higher

write/read rate (e.g., 6 Gbit/s) compared to the moderate one
accomplished by flash-memories (e.g., up to 80/200 Mbit/s) [1].

Moreover one of the main challenging aspects of flash-
memories is that the space already written (i.e., programmed) with
data usually cannot be overwritten unless it is erased from the
flash-memory device. A NAND flash-memory is usually
partitioned into blocks: each block has a fixed number of pages
and each page has a fixed size. A block is the smallest unit for
erase operations, while read and write operations are done in
terms of pages, i.e., a page can be erased only if its whole
corresponding block is erased, whereas a page can be read/written
independently.

In addition flash-memory wears out after a certain number of
erasure cycles (i.e., actually 106 for NAND flash-memory): if the
erasure cycles of a block exceed this number, it becomes a “bad
block” and is not reliable for storing data anymore.

Finally another peculiar aspect of flash-memories is that
technology provides the possibility of storing more than one bit of
information per cell: in fact newer devices (Multi-Level Cell or
MLC) are able to store typically two bits per cell, while traditional
flash-memory devices (Single-Level Cell or SLC) store only one
bit per cell.

3.2 Main Issues
The investigation of a vast quantity of design parameters needs

to be defined during the design of a flash-based system for space
application. A possible partial taxonomy could involve Flash-
memory Technology, Flash-memory Architecture, Flash-memory
Testing, Dependability and Wearing and, finally, Using flash-
memory as Hard-Disk.

Designer should discriminate among which technology to
choose (Flash-memory Technology) and they may also have to
select the most appropriate flash-memory chipset (Flash-memory
Architecture). [7]

Flash-memory Testing is quite different from testing other kinds
of memory: disturbances or faults not conforming to any of the
traditionally known fault models used in testing RAMs could be
experienced and specific fault models are needed to properly
represent the most frequent physical defects are needed. Then
efficient test algorithms are needed and Built-In Self Test (BIST)
and Built-In Self Diagnosis (BISD) circuits have to been taken in
consideration. [7]

In the problem of Wearing, a significant role is played by the so
called wear leveling techniques, which are aiming at distributing
data evenly across each memory block of the entire flash-memory
to avoid single block to wear out. Several interesting wear
leveling techniques have been proposed [10] – [13] and could be
considered or higher capacity flash-memory devices could be
used, then especially taking care of the resulting drawbacks in
terms of weight and volume [1]. An effective comparative
analysis of some wear leveling algorithms could be found in [11].

However wearing, testing and dependability are strictly linked
among each other: designers should work hard on exploring all
their possible alternatives and combinations, discriminating
among the most suitable ones and evaluating the right trade-off
among them.

Several challenging aspects need to be addressed when using a
flash-memory as a mass-memory device. A possible incomplete
taxonomy of these aspects could involve:

a. implementing an efficient logical to physical address
translation process for fast operations (i.e., Address
Translation) [7]

b. looking for proper solutions in order to let OS successfully
communicate with NAND flash-memory devices (i.e.,
Operating System Management) [14] – [19]

c. proper strategies for reclaiming invalidated space to be
erased in order to free some space (i.e., Garbage Collection)
[7]

d. proper techniques to handle blocks exceeding the maximum
number of erase cycles (i.e., Bad Bock Management) [20]

Finally designers should address Error Detection And
Correction (EDAC) techniques, evaluating the most proper choice
for their design. [7]

[7] is a more detailed investigation about these main flash-
memory issues discussed above.

4. FLASH-BASED HARD-DISKS DESIGN
SUPPORT FOR SPACE ENVIRONMENT

Several steps are needed in order to provide an efficient support
for designing flash-based mass-memory devices that have to
survive into a mission-critical space environment. First of all a
preliminary study is needed in order to better understand how to
decompose a flash-based hard-disk into its composing functional
blocks. Then a design environment is fundamental to support the
design of flash-based hard disks for space applications, following
the functional decomposition discussed before.

These two steps are briefly discussed in the sequel of this
section and are actually in continuous refinement.

4.1 The Design of Flash-based Hard-disks
A first possible high view of a flash-based mass-memory device

is shown in Figure 1. There are three main functional blocks: a
Non-Volatile Memory is needed to provide integrity of data, a
Volatile Memory is used for performance reasons, while a
Memory Controller is managing and controlling the overall
system, providing several features. The mass-memory device is
interacting with the requests of the external world, e.g., the
operations of the OS in use.

It is possible to refine this first architectural view: in fact, during
the design of a flash-based HD, the OS and the applications want
to successfully communicate with the bare flash-memory chip. On
the one hand OS usually would like to exploit its typical system
calls (e.g., open, read, write) to work with the mass-memory
device, without taking care of anything else. On the other hand,
the flash-memory chip would like to receive the most proper
commands to accomplish the operations previously requested
from the OS. E.g., [13] briefly presents a typical layered system
architecture of popular flash-memory-based file systems.

So designers should develop a sort of managing part to tackle
all the typical issues of flash-memories, presented also in the
previous paragraphs and in [7]. This is the most important and
challenging part of designing a flash-based HD: many often

contrasting issues, parameters and dimensions are involved in this
part, which has to address them in the best way as possible.

This managing part could be named “flash-memory manager”
and could be split into its composing functional blocks as Figure 2
shows: these blocks represent the main issues a flash-memory
based system has to tackle and to solve in the more possible
efficient way. Designers have to manage how the logical to
physical Address Translation is accomplished: reliability and
efficiency are only two of the parameters of quality of this aspect.
They need also to focus on Wear Leveling and Garbage
Collection techniques and strategies. At the same time, designers
need to distinguish among several EDAC strategies: a trade-off
between needed reliability and related costs leads their choice
over a particular code rather than another one. In addition
designers have to manage Bad Blocks.

4.2 The Evaluation Design Environment
Actually the development of a flash-based hard disk qualified

for space applications is provided with no systematic support.
Designers have always to think about the most suitable choice for
the specific space applications they are dealing with: the huge
number of variables and parameters could easily lead to
unverified scenarios and to delayed product release.

In fact the level of confidence with these parameters is directly
linked with the designers’ skill, cleverness and experience. As a
result, a systematic tool to support the design of flash-based hard
disks for space applications is needed.

4.2.1 Assessment Criteria
Several aspects of the design of a flash-based system are

intended to be evaluated with the help of FLARE tool. Designers
have to tackle many critical issues: FLARE could help them to
distinguish and identify the peculiar features of these aspects and
to evaluate the most suitable solution for them.

Designing a flash-based HD means dealing with NAND flash-
memories, which are always partitioned in blocks and in turn each
block is divided in pages: once capacity is set, designers have to
address the dimension of each block and of each block or, in the
same way, the number of blocks and pages for each block.
Obviously, designers could decide the capacity from the
dimension and the number of blocks and pages, but the issue is
practically the same.

Figure 1 – A Flash-based Hard Disk Architecture

FLARE could help the designers to do this decision, in order to
understand which level of granularity would more properly fit
with the current design and to decide the most suitable flash-
memory chipset.

The capacity of the flash-memory is the other fundamental
parameter to set: designers should discuss about the physical
quantity of flash-memory required by the design. This is a typical
issue of space applications: in fact space critical missions require
minimizing all the costs as much as possible and the dimension of
the flash-memory is the first significant parameter that designers
and their companies have to face.

Designers could have to discriminate among different flash-
memories of different capacities during the design of their system:
FLARE could provide them with an overall evaluation of which
capacity is more suitable for their specific design.

Designers have to provide a well-defined level of dependability
according to their specific design. A fundamental role could be
played by the so called Out-Of-Bound (OOB) data [16]: they can
be exploited also to store some kind of ECC/EDAC codes, in
order to accomplish the required dependability. The smart reader
could get the unavoidable trade-off between spare data and user
data: in fact it is true that a bigger OOB area could provide higher
level of dependability, but at the same time would provide poor
service in term of user data storage. Designers have to tackle this
issue and find the most suitable solution for their particular
design. Moreover, designers have to evaluate among the Built-In
Self Test (BIST) functionalities, evaluating at the same time the
percentage of errors detected/corrected.

An essential parameter to evaluate is the percentage of wearing
of each block: especially in mission-critical space applications,
resources are always a key-point of the mission and it is desirable
or, usually, mandatory that the percentage of wasted resources is
as low as possible. E.g., on the one hand it could be enough
2GByte NAND flash-memory with some kind of wear-leveling
techniques or on the other hand a bigger NAND flash-memory
device could be requested in order to accomplish mission
requirements. At the same time, designers could need to explore
several kinds of solutions, in order to find that one with the most
fitting percentage of wearing. As a consequence, this parameter is
strictly linked to the adopted wear-leveling strategies: with the
help of FLARE, designers could evaluate how this percentage
varies as the wear-leveling techniques change.

As a consequence designers need to calculate the percentage of
flash-memory which is not “dead”, i.e., the percentage of blocks
which did not become bad blocks at the End-Of-Life (EOL).
Mission-critical space applications sometimes could explicitly
require a fixed amount of flash-memory still alive at the EOL:
designers have to evaluate the possible alternatives and to find the
most affordable solution at the minimum possible cost for their
design.

This is only a possible incomplete taxonomy of what is needed
to be evaluated during the design of a flash-based mass-memory
device for space applications. Moreover all these parameters are
strictly linked together and they affect each other in a complex
way: so an exploration of these different and quite often
contrasting dimensions is needed and no systematic approach has
so far been proposed to consider them all as a whole.

Figure 2 – Main functional blocks of the Flash-memory

manager

4.2.2 The Evaluation Tool Architecture
The proposed FLash ARchitecture Evaluation (FLARE) design

environment is aimed at supporting designers through all the steps
of the design cycle flash-based hard disk for space applications,
including Architectural Exploration, Design Validation &
Verification, (Automatic) Test insertion, Dependability evaluation
and so on. FLARE is currently under development.

Figure 3 shows the architecture of the system.

4.2.2.1 The Configuration Management Block
The exploration of all the possible alternatives and design

dimensions is allowed with the help of the System Configuration
Management: designers are able to easily modify the memory
configuration block (Architecture configuration), the Test
infrastructure (Test configuration), and all the architectural
solutions aimed at tackling Flash aging (Bad block, Garbage
Collection, Wear Leveling Configuration).

The Architecture Configuration block is intended to contain all
the details about the architecture of the flash-memory to emulate:
capacity, number of blocks and number of pages are only some of
the main architectural parameters that the designers are able to set.

With the Test Configuration block, the designer can set all the
parameters for correctly testing the proposed flash-memory: all
the issues addressed in the previous paragraphs are taken into
account and the proper fault-models and the specific testing
strategies can be specified, always according to the particular
application flash-memory is used for.

As clearly showed previously, some wear-leveling strategies are
needed to spread writes over the flash-memory: designers are
capable to exploit the Wear Leveling Configuration block to
specify all the details about the wear-leveling strategies to adopt
during the emulation campaign. The range of these details can be
variable: designers could choose a “simple” less/more aggressive
wear-leveling strategy among the ones just provided with FLARE
tool or developing their own wear-leveling algorithm could be a
valid alternative, in order to evaluate it.

If wear leveling strategies aim to spread write operations over
the flash-memory device, at a certain point invalidated space
should be reclaimed: in the Garbage Collection module, designers
are able to specify the strategies to identify a block, to collect its

good pages and to erase it. It is usually strictly connected with
wear-leveling strategies: it could even be considered that GC
preferences are managed by wear-leveling strategies, but these
two issues are kept separated now.

However, blocks exceeding the maximum number of erasure
cycles are marked as bad: in Bad Block Configuration module
designers can set the proper parameters to mark, identify and
exclude bad blocks from active space memory. Simple well-
known strategies could be used (e.g., Skip Block Method) as well
as new approaches can be experimented and evaluated by
designers.

Dependability of flash-memory need to be guaranteed:
designers are able to specify in the EDAC Configuration block all
the parameters needed to accomplish the required level of data
integrity and reliability. E.g., a reasonable question could be if a
CRC code is enough to accomplish the requested level of
reliability or something more is needed. Maybe some ECC would
be absolutely necessary to accomplish the required level, e.g.,
Orthogonal Reed-Solomon Error Correction Code might be the
EDAC strategy designers were looking for. In EDAC
Configuration block, designers are capable of defining, exploring
and evaluating all possible EDAC strategies for their particular
design.

The designers’ configuration choices feed the so called
Configuration Manager block: this layer is thought to take care of
managing the “static” data coming from the various dimensions of
the design of a flash-memory device (i.e., the “note” modules on
the right) and to get it across the core functional blocks. This layer
is essential for dispatching the updated configuration modules
discussed above to the appropriate managing blocks. The
architectural choice of having this kind of layer is strictly linked
to flexibility: in fact on the one hand if some changes to
parameters and algorithms are needed, designers can simply
modify the proper module(s) not interesting in the rest, because
the Configuration Manager layer will take care of dispatching the
updated configuration(s) to the appropriate blocks. On the other
hand, designers are capable of developing new (compatible)
configuration modules, in case they felt like the existing modules
were not enough for their needs: adding new configuration
modules to the whole architecture would turn in very few efforts,
thanks to this way of partitioning, and would result in high
modularity and flexibility.

4.2.2.2 The Core Simulator
Flash Memory Simulator is the newly developed system kernel,

charged of providing the designer the possibility of simulating and
evaluating all the parameters of interest.

The Flash-memory Simulator block is one of the most important
functional blocks of the FLARE tool: in fact it is thought to
emulate the behavior of the configured flash-memory. The desired
architecture is specified in the Architecture Configuration module
discussed before: a “customized” architectural configuration for
the flash-memory device could be identified or a ready for use
configuration could be chosen from a developed library. Then the
Configuration Manager takes this information and advertises the
Flash-memory Simulator block about the architectural details of
the flash-memory to emulate.

Figure 3 – A detailed view of the FLARE architecture

4.2.2.3 Dependability Assessment
In addition to the overall architecture, some fault injection

techniques could be considered: a Fault Injector functional block
is added for this purpose. It is fed by a Fault Activation Readout
Measure (FARM) Configuration block [21]: it sets all the needed
parameters for the fault injector to make it work as requested. In
this way a fault can be injected in the system to evaluate its effect
in the emulated flash-memory. Fault injection is an additional
function of the FLARE tool: in fact it is represented surrounded
by a dotted rounded rectangle in order to highlight this point, i.e.,
it is not essential to the correctness of the FLARE tool, but at the
same time it could be very useful for experimenting various fault
injection techniques and configurations.

A Fault injection environment provides the designer to assess
the target system dependability via a powerful manager of fault
injection campaigns in all the part of the system itself. [21]

4.2.2.4 The Monitor and Control Blocks
As the name intuitively suggests, the Monitor and Control block

is monitoring and controlling the output of the previous Flash-
memory Emulator block. Designers can have under control all the
events of the core blocks in order to get a more comprehensive
knowledge about the countermeasure to take in some specific
cases. The Monitor and Control block is peculiarly different from
the Data Warehouse Tool block: in fact the last one is a mean
with which the user can extract information about the emulated
flash-memory at the EOL timeline, whereas the first one is a sort
of automatic tool informing the user about the most significant
events of the actual emulation campaign.

The use of a Database is fundamental to gather all the
information needed at the EOL timeline: its role is simply to store
data. The user is able to access the data with the help of a Data
Warehouse Tool: data and metadata can be extracted, transformed
and loaded, to easily accomplish all the designers’ requests.

5. CONCLUSIONS AND FUTURE WORKS
Flash-memories are gaining acceptance in several fields of

application and they could be adopted also in space applications,
where they could be exploited as a mass-memory device.

However several and quite often contrasting dimensions need to
be explored during the design of a flash-memory based hard-disks
and no systematic approach has so far been proposed to consider
them all as a whole: FLARE is intended to be the one.

The composing blocks of the proposed architecture highlight the
high-level of modularity and flexibility that this tool will be able
to provide to designers: in fact each block is intended to be a sort
of plug-in block, which can simply be plugged-out and replaced
by another block when necessary, without taking care of the rest.
At the same time, when little configuration changes are needed
they can be easily accomplished without involving the way in
which they will be updated in the managing blocks.

FLARE tool is currently under development and refinement: the
first implementation data of the tool are intended to be provided
soon.

6. REFERENCES
[1] Cassel M., Walter D., Schmidt H., Gliem F., Michalik H.,

Stähle M., Vögele K., Roos P. Casel.: "NAND-Flash-
memory Technology in Mass Memory Systems for Space
Applications", Proceedings Data Systems In Aerospace
(DASIA) 2008, Palma de Mallorca, Spain, 2008

[2] Anthony Lai: “Space-ready, radiation-tolerant processor
modules: A COTS technology strategy”, Military Embedded
Systems Resource Guide, May 2005

[3] Brüggemann M., Schmidt H., Walter D., Gliem F., Michalik
H.: “Further Heavy Ion and Proton SEE Evaluation of High
Capacity NAND-Flash-memory Devices for Safeguard Data
Recorder”, 8th ESA/ESTEC D/TEC-QCA Final Presentation
Day, February 2007

[4] Schmidt H., Walter D., Brüggemann M., Gliem F., Harboe-
Sørensen R., Virtanen A.: "Heavy Ion SEE Studies on 4-Gbit
NAND-Flash-memories", Radiation Effects on Components
and Systems (RADECS) 2007, DWL-14, September 2007

[5] Schmidt H., Walter D., Gliem F., Nickson B., Harboe-
Sorensen R., Virtanen A.:“TID and SEE Tests of an
Advanced 8 Gbit NAND-Flash-memory”, Proc. IEEE
Radiation Effects Data Workshop, 2008, 38-41

[6] Brüggemann M., Schmidt H., Walter D., Gliem F., Harboe-
Sørensen R., Roos P., Stähle M.: “SEE Tests of NAND
Flash-memory Devices for Use in a Safeguard Data
Recorder”, Radiation Effects on Components and Systems
(RADECS) 2006, A-3, Volume A-3, 2006

[7] Caramia M., Di Carlo S., Fabiano M., Prinetto P.: “Flash-
memories in Space Applications: Trends and Challenges”, To
appear on East-West Design & Test Symposium (EWDTS)
2009, Moscow, Russia, September 18-21

[8] M-Systems: “Flash-memory Translation Layer for NAND
Flash (NFTL)”, 1998

[9] Intel Corporation, Flash File System, US Patent 540, 448

[10] SanDisk Corporation, White Paper: “SanDisk Flash-memory
Cards Wear Leveling”, Doc. No. 80-36-00278, October 2003

[11] Chang Li-Pin: "On Efficient Wear Leveling for Large-Scale
Flash-Memory Storage Systems", Proceedings of the 22nd
ACM Symposium on Applied Computing, 2007

[12] M. L. Chiang, Paul C. H. Lee, R. C. Chang, "Using Data
Clustering To Improve Cleaning Performance For Flash
Memory", Software - Practice and Experience, 1999

[13] Chang Y.-H., Hsieh J.-W., Kuo T.-W.: “Endurance
Enhancement of Flash-Memory Storage, Systems: An
Efficient Static Wear Leveling Design” Proc. 44th
ACM/IEEE Design Automation Conference (DAC) '07, 212-
217, 2007

[14] Intel Corporation, Technical Report: "Understanding the
Flash Translation Layer (FTL) Specification", December
1998

[15] Hsieh Jen-Wei, Tsai Yi-Lin, Kuo Tei-Wei, Lee Tzao-Lin:
"Configurable Flash-Memory Management: Performance
versus Overheads" IEEE Transactions on Computers, Vol.
57, no. 11, 2008

[16] Chang L. P., Kuo T. W.: "An efficient management scheme
for large-scale flash-memory storage systems", Proceedings
of the 2004 ACM Symposium on Applied Computing ,
Nicosia, Cyprus, 862-868, 2004

[17] Woodhouse D., Red Hat, Inc.: “JFFS : The Journalling Flash
File System”, http://sources.redhat.com/jffs2/jffs2.pdf , 2001

[18] JFFS2, http://sourceware.org/jffs2/

[19] Aleph One Company, Cambridge, UK: “Yet Another Flash
File System”, http://www.aleph1.co.uk/yaffs/index.html, 2002

[20] Samsung, Application Note: “XSR1.5 Bad Block
Management”, 2007

[21] Benso A., Prinetto P.: “Fault Injection Techniques and Tools
for Embedded Systems Reliability Evaluation” – Kluver
Academic Publishers, ISBN: 1-4020-7589-8, 2003

