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Abstract

Let M C R™ be a submanifold of a euclidean space. A vector d € R" is
called a helix direction of M if the angle between d and any tangent space
T,M is constant. Let H(M) be the set of helix directions of M. If the
set H(M) contains r linearly independent vectors we say that M is a weak
r-helix. We say that M is a strong r-helix if H(M) is a r-dimensional
linear subspace of R™. For curves and hypersurfaces both definitions agree.
The object of this article is to show that these definitions are not equivalent.
Namely, we construct (non strong) weak 2-helix surfaces of R*.

Mathematics Subject Classification(2000): 53B825,53C40.

Keywords: r-helix submanifold, constant angle submanifolds, weak he-
lix.

1 Introduction

Recently, M. Ghomi solved in [Gh] the shadow problem formulated by H.
Wente. He used the concept of shadow boundary (or horizon) in his work. In
[RH, pag. 2] Ruiz-Hernandez observed that shadow boundaries are naturally
related to helix submanifolds i.e. submanifolds whose tangent space makes
constant angle with a fixed direction d. Helix surfaces has also been studied
in non flat ambient spaces (see for example [DM, DFVV]). An interesting
motivation for the study of helix hypersurfaces comes also from the physics
of interfaces of liquid cristals (see [CD] for details). The concept of (strong)
r-helix submanifold of R™ was introduced in [DRH|. Let M C R™ be a
submanifold of a euclidean space. A vector d € R™ is called a helix direction
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of M if the angle between d and any tangent space T,M is constant. Let
H(M) be the set of helix directions of M. If the set H(M) contains r
linearly independent vectors we say that M is a weak r-helix. We say that
M is a strong r-helix if H(M) is a r-dimensional linear subspace of R™.
For curves and hypersurfaces both definitions agree.

The object of this article is to show that these definitions are not equiva-
lent. Namely, we prove the following theorem.

Theorem 1.1 There exist non strong weak 2 -heliz surfaces of R*.

In order to prove the above theorem we give in Theorem 3.1 the classifi-
cation of strong 2-helix surfaces of R*. Then we study a quasi-linear PDE
with analytic coefficients to prove our main theorem.

In the last section we explain the relation between strong/weak helix sub-
manifolds and the helix-property introduced by F. Dillen and S. Nélker in
[DN].

ACKNOWLEDGMENTS: I would like to thank Fabio Nicola, Paolo Tilli and
Gabriel Ruiz-Herndndez for useful conversations. I thank the referee for use-
ful remarks and for the reference to the article [DN] that he pointed out to
me. A special thanks to Laura Garbolino for her help.

2 Definitions and basic facts

Let M C R™ be a submanifold. A vector d € R" is called a helix direction
of M if the angle 6 between d and the tangent space T,M is constant for
all p € M. In such case we call # the helix angle of d. As a convention
we let the zero vector 0 to be a helix direction for every submanifold. Let
d # 0 be a helix direction of M. The helix angle 6 € [0,7/2] is given by
the decomposition ﬁ = cos(0)T'(p) + sin(0)&(p), where T'(p) € T,M and
&(p) € vp(M) are unitary vectors. Let m, : R” — T,M be the orthogonal
projection.

Proposition 2.1 Let M C R" be a submanifold and let d € R™ a vector.
The following conditions are equivalent:

e d is a heliz direction of M .

o ||Imp(d)||? = ¢ is a constant (i.e. does not depend upon p € M ). In such
case we have

ld Aer(p) Aex(p) A+ Aem(p)|? = cller(p) Aea(p) A Aem(p)l,

where (e1(p),e2(p), -+ ,em(p)) is any basis of T,M .



o (mp(d),d) = c is a constant.

Let M C R™ be a submanifold and let H(M) := {d : d is a helix direction of M}
be the set of helix directions of M .

Here is the strong definition of an r-helix.

Definition 2.2 A submanifold M C R™ is a strong r -heliz if the set H(M)
is a linear subspace of R™ of dimension greater or equal to r.

Here is the weak definition of an 7 -helix.

Definition 2.3 A submanifold M C R™ is a weak r-heliz if the set H(M)
contains v linearly independent vectors d; € R™.

Notice that for curves and hypersurfaces of R™ both definitions agree.

Given a weak 7-helix and r independent helix directions d; € H(M)
(1 <i<r) we can split them as normal and tangent components. Namely,

HdZH = cos(0;)T; + sin(6;)&;

Proposition 2.4 A weak r-helix M is strong if and only if the inner prod-
ucts (T;,Ty) (resp. (&,&;) ) are constant functions on M .

Proof . Let x1dy + xody + - -+ + z,.d, be a linear combination of the d;’s
with constant coefficients. Then

Z zid; = Z x; cos(6;)T; + Z:c, sin(6;)&;.

So
I le cos(0:)T;||> = Z(xz cos(6;)T;, xj cos(0;)T;) =
i ij

= le cos(0;)zj cos(0;)(T;, T;) = X'.G. X
]

where X' := (21 cos(61), -+ ,z,cos(f,)) and G = ((T3,7;)). Thus if G is a
constant matrix then Proposition 2.1 implies that H (M) is a linear subspace
of R™. Reciprocally, if X'".G.X = f(X) then by taking derivatives with
respect to any tangent vector v, € T,M we get:

0G
XL —X=0.
vy
Thus, the quadratic form of the symmetric matrix gTC; vanishes identically.

So gTG vanishes identically and we are done. O
p



3 Strong 2-helix in R*

Here is the local classification of strong 2-helix surfaces of R*.

Theorem 3.1 A strong 2-heliz M? C R* is flat, i.e. the Gauss curvature
of M is zero. Moreover such 2-heliz comes (locally) from:

(i) a 1-heliv H?> C R3, i.e. locally H*> = M? CR*=R3 xR,
(ii) a 1 helic H' C R3, i.e. locally M =R x H' CR* =R x R3.

Moreover if there are two orthogonal helix directions with the same angle
7 then there exist a heliz direction d of angle 0 =0, i.e. M s a product as

Proof. Let M? C R* be a strong 2-helix. It is not difficult to see that
if dim(H(M)) > 3 then M? is totally geodesic. Indeed, if dim(H(M)) > 3
then dim(H(M))Nvy(M)) > 1. So we can split orthogonally R* = R? @ Rd,
where d € H( )Nvp(M)), i.e. M is contained in an affine hyperplane. Let
V = (Rd)* € H(M) be the orthogonal complement of Rd in H(M). Then
dim(V NR3) > 2 so M? is a 2-helix of R*. The same argument as above
shows that a 2-helix of R? is totally geodesic.
So we can assume that dim(H(M)) = 2. It is not difficult to see that if
there exists a helix direction d € H(M) of angle § € {0,5} we have that
M? comes from (i) or (ii). So assume also that there are no helix directions
of angle 6 € {0,5}. We are going to show that this is not possible. Let
di,ds € R* be two helix directions of M?. Decompose the vectors di,ds as

d
it cos(61)T + sin(61)&1
lda |

do .
—— = cos(#2)T1 + sin(h2)&s .

[da
Then Ti,T> (resp. &1,&2) are linearly independent. Indeed, if Ti,T»

(resp. &1,&2) are dependent then we can find a helix direction d of M of
angle 5 (resp. of angle 0).

For any tangent vector X € TM? we have the following equations for
j=1,2:

= cos(0;)Vx T;(p) —sin(6;) A% (X) and (1)
= cos(0;)a(X,T;(p ))—I—sin(Qj)VJ)gEj. (2)

where VyY := (DxY)" is the Levi-Civita connection of the surface
M? C R* (i.e. the tangent component of the derivative D of R" to the
submanifold M?), « is its second fundamental form, A$(X) := —(Dx¢)*
its shape operator and V¢ := (Dx€&)t is the normal connection (see [BCO]



for details). Let us compute the covariant derivatives of the tangent fields
Tl, T2 . Namely,

V11 =0, (3)
(I, T%)2

VT2T1 = W(—<T1;T2>Tl + Tg), (4)
(I, To)q

VTITQ = W(Tl - <T17T2>T2)7 (5)

Vo, =0, (6)

where (Th,Ts); = T;{T1,Ts) = M for i =1,2.

Notice that the above equations implies that the vector fields 17,75 are
V -parallel if their angle is constant. Thus, from Proposition 2.4 we get that
T1,T> are V-parallel.

For the shape operator of M? we get:

AS(Ty) = (8)
AS(Ty) = ( 1)V1, T, (9)
AR (Ty) = ( 2)Vr, Ib, (10)
AS(Ty) = (11)

Since Ty, T» are V-parallel we get that M? is totally geodesic (i.e. its
shape operator AS is zero) which is a contradiction since we have assumed
above M? to be non totally geodesic. So a strong 2-helix of R* is given
locally as in (¢) or (i7). Notice that in both cases the Gauss curvature is
identically zero.

To prove the last part it is enough to assume that the strong 2-helix M?
comes from (7). That is to say M? C R? and M2 Cc R* =R3 x R.

Then H(M?) = spang{d,es}, where d € R? is a helix direction of angle
0 €[0,%]. If by,by € H(M?) are orthogonal then there exists a such that:

b1 = cos(a)d + sin(a)eq,
+by = —sin(a)d + cos(a)es.
Since the helix angles of b1,bz are both equal to 7 we get the following
two possibilities:

= cos(a) cos(f) = — sin(«) cos(0)

1
V2



or

— = cos(«a) cos(f) = sin(a) cos(h).

V2

In both cases we get cos(a) = j:% which imply # = 0. Thus in this case
M also comes from (i7). O

4 Constructing a weak 2-helix of R*

The goal of this section is to show the existence of a weak (non strong) 2-helix
of R*. Namely, to prove Theorem 1.1.

The idea is to look for immersions F': (z,y) — (x,y, u(z,y),v(x,y)) where
we impose the condition of being a weak 2-helix w.r. to e and e4 with the

same angle 7. Notice that the last part of Proposition 3.1 imply that such

immersion F' is a strong 2-helix if and only if the functions u,v are linear.
Indeed, there can not exist a helix direction d € span{es,es} of helix angle
@ = 0. Thus, we have to show that such immersion F' does exist.

Proposition 4.1 Let F: Q — R*, where Q C R? is open and F : (z,y) —
(z,y,u(z,y),v(z,y)) . Then F is a weak 2-heliz w.r. to e3 and e4 with the
same angle 7 if and only if the following system is satisfied on €2 :

_ IVol| = [[Vull ,
(H) = { Det(Vv,Vu) = £1

Proof . The conditions to be helix w.r. to es and e4 with angle T on (2

4
are (see Proposition 2.1):

= { les nEe B = 1 B
les A P A B2 = 31F A By

From

Fo NFy = (e1 +uges+uvgeq) A(ea +uyes+uvyeq) =
=e1 Neg + uyey Nes+ vyer A eg+
Fugzesz N eg + ugvyes N eg+

Fvgeq N €2 + vpuyeq Aes
esNFy NFy=e3Ne Nex +vye3 Ner Neg+vzes NegAeg

esa NFpy NFy=eg Nep Nex +uyes Nep Aes+uzes Neg Nes

we get

| Ex A FyH2 =1+ ||VuH2 + HVUH2 + Det(Vu, Vv)2

6



lles A Fo A Fy[|* =1+ [ Vo |?
lea A Fo AFy|? =1+ | Vulf?
Now (%) holds if and only if (**) holds where

(%) = { lles A Fu A Fy|? + llea A Fo A Fy|1* = || Fe A Byl
les A Fp A Ey||* = |lea A Fy A Fy |2

and this is equivalent to system (H). O

4.1 The non linear operator L
Let L:R?\ D — R?, where D is the unit disc, be given by:
—ytay/ (@2 y2)2—1

L e B =

2 +y2

The operator L has the following properties:

L) =17
—
v

Proposition 4.2 Let u,v be smooth functions on 0 such that L(Vu) = Vv .
If Vu is not constant on Q then F(z,y) = (z,y,u(z,y),v(x,y)) is a weak

non strong 2 -helix.

Proof. Since Vu is not constant F can not be totally geodesic. Propo-
sition 4.1 implies that F' is a weak 2-helix. The last part of Theorem 3.1
implies that F' can not be a strong 2-helix. Indeed, if F' is strong then there
exists a helix direction d € span{es,es} of angle # = 0 which is impossible.

|

4.2 The hyperbolic quasi-linear PDE associated to

the operator L

It is standard to get a quasi-linear PDE from L. Namely, given Vu we impose
the condition on L(Vu) to be a gradient, i.e. equality of mixed derivatives.

Thus, such PDE is :

(Aug, uy))y = (B(uz, uy))s

equivalently,

Aluxy + Aguyy = Biug, + Bguyx .
Thus we get the following quasi-linear PDE



(QL) 0= Bjug; + (*Al + BQ)ny + (ng)uyy .

A long but straightforward computation shows that the above equation is
hyperbolic, i.e.

(—A1 +Bg)2 . —1

~B e e T = ) (w1

<0.

4.3 The existence of a non strong weak 2-helix in
R4

Notice that A, As, Bi, Bo are real analytic functions. So we can apply
Cauchy-Kowalevski theorem to solve the equation (QL) as soon as we can
find non characteristic real analytic initial data (see [J, p. 56] for details).

So in order to show the existence of a real analytic function u solving
(QL) equation and such that Vu is not constant we have to find adequated
analytic inital data for the Cauchy problem, i.e. a non characteristic hyper-
surface S with the normal derivatives of u along §'.

Let us call, as is standard, p = u,, ¢ = u, and let Iy = (go,po) be a point
such that p% + qg > 1. Let g be the following bilinear form defined near the
point Ij:

g = Bidq® + (— Ay + Ba)dpdq + (—Az)dp® .

Since the PDE (QL) is hyperbolic g gives a Lorentz metric around 1. So
we can find an analytic vector field V' such that

gV, V) #0

around Iy. We can also regard (po, qo) as point in the (z,y) plane. So V(z,y)
is also a vector field around (pp,qo) in the plane (z,y). It is not difficult to
see that there exists an analytic curve 7(¢) such that «(0) = (po,qo) and
(+(t),V(y(t))) = 0. That is to say V(t) is normal to (¢). Consider the
following initial conditions on (t) for the Cauchy problem for the quasi-linear
PDE (QL):

_ ol
ult) = "5
20— ). v

Then this initial condition is analytic and non characteristic. Indeed, the
condition g(V, V') # 0 holds for the initial data (u(t), ng)) and this is exactly
the condition on the initial data to be non characteristic.

Thus we can apply Cauchy-Kowalevski theorem to get a solution u around
(po,qo) - Observe that (Vu)(t) = v(¢). Thus Vu is not constant. We have
proved the following theorem.




Theorem 4.3 There exists a non linear function u such that L(Vu) is a
gradient.

So Theorem 1.1 follows from the above theorem by using Proposition 4.2.

5 The helix-property of Dillen-Nolker

In [DN] the authors introduced the concept of heliz-property for submanifolds
of a pseudo-euclidean space.

Definition 5.1 [DN, Definition 3.1, p.48] An isometric immersion f:U C
R™ — R™ satisfies the heliz-property if there is a fized vector subspace R' of
R™ and a fized linear map C : RY — R™ such that for all p e U, v € T,U
and b € R!

(fev,Cby = (v,b) .

It is possible to give a characterization of submanifolds who satisfies the
helix-property in terms of its second fundamental form «. Recall that an
isometric immersion f : U C R™ — R"™ (resp. a submanifold M C R™) is
called full if the image f(U) (resp. M) is not contained in a proper afine
subspace of R™.

Proposition 5.2 [DN, Proposition 3.4, p.49] A full isometric immersion f :
U CR™ — R” satisfies the helix-property if and only if there is a fixed linear
subspace R' of R™ such that (a(X,Y),V) =0 for all V € R! and for all
tangent vectors X and Y .

The above proposition imply that the helix-property is related with the
extrinsic geometry of the geodesics of f(U) = M C R™. Namely, any geodesic
of M is a helix, in the classical sense, w.r. to any direction of the subspace R!.

The following two propositions explain the relation between the helix-
property of Dillen-Nolker and the concept of weak/strong helix submanifold
introduced in this paper.

Proposition 5.3 Assume that the full submanifold M C R™ satisfies the
heliz-property w.r. to the subspace R' as in Proposition 5.2. Then the sub-
space R! is contained in H(M), i.e. any V € R is a heliz direction of M .
In particular, H(M) contains | linearly independent heliz directions and so
M is a weak [ -helix submanifold.

Before giving the proof, let us explain why we can not conclude that the
submanifold M as in the above proposition is a strong [-helix. This is so
since the set H(M) of helix directions of M can be bigger than the sub-
space R! of helix directions coming from the helix-property. For example,
let F:U c R? — R* be a weak non strong 2-helix given by Theorem 1.1.



Define f:U x R — R® by f(z,y,2) = (F(x,y),2). Then f is an isometric
immersion which satisfies the helix-property (see [DN, Example 3.2, p.49]) but
f is not a strong helix since H(M = f(U xR)) is not a linear subspace of R®.

Proof of Proposition 5.3. According to Proposition 2.1 it is enough to show
that the length of the projection 7,(V) for a fixed V € R! does not depends
upon p € M. Let us call VM the vector field on M given by the projection
of V,ie., VM(p) =m,(V). Let hy be the height function hy : R® — R |
hy (p) := (p, V) associated to the fixed V € R!. Notice that the vector field
VM on M is the gradient of the restriction of hy to M. Thus, VM satisfies

(VxVM y) = (VvyVM X) |

for all tangent vectors X and Y of M, where V is the Levi-Civita
connection of M . Let now 7(t) be an arbitrary geodesic of M . Then

WOV _ o)1)
and
2
W =('(t),V) = (a(¥'(t),7(t),V) =0,

where the last equality is due to Proposition 5.2. So we get
(), V)= (y(t),VM) =cte .

By using the Levi-Civita connection of M we get:

! M
d<’7 (27; v > - <'7,(t)7 V'y/(t)V]VI> :

Since the geodesic v(t) is arbitrary we get that VM is a Killing vector
field of M, i.e., (X,VxVM) =0 for all tangent vectors X of M. Thus,
we get that VM is a parallel vector field of M since (X,VyVM) is also
symmetric in X,Y being VM a gradient. Now the length of VM is clearly
constant on M and this shows that V is a helix direction of M . O

0:

Proposition 5.4 Let M C R"™ be a full strong heliz submanifold of the
euclidean space. Then M satisfies the heliz-property w.r. to the subspace
H(M) if and only if the projection VM is a parallel vector field of M for all
V € H(M), where VM (p) :=7,(V).

Proof. Notice that the proof of the only if part is identical to the proof
of Proposition 5.3. Let now V € H(M) be a helix direction. Let V =
cos(f) T +sin(0)¢ be the decomposition of V' into tangent and normal com-
ponents. By taking derivatives w.r. to X € TM we get

0 = cos(0)Vx T(p)—sin(0)A5(X) and (12)
0 = cos(@)a(X,T(p)) +sin(d)VxE. (13)

10



Assume now that the projection VM = cos(§) T of V onto M is parallel.
Then Equation 12 imply that A¢ = 0 and so ¢ L span{a(X,Y) : X,Y €
TM} . Now Proposition 5.2 imply that M satisfies the helix-property w.r. to
H(M). O

An example of a strong 1-helix that does not satisfies the helix-property
is provided by the standard cone C := {(z,y,2) : 22 + y*> = 22,2 > 0}. The
normal space of the cone C makes a constant angle with the z-axis, so C is a
strong 1-helix of R3. Notice that the linear span of the second fundamental
form of the cone C is R®. Thus, Proposition 5.2 imply that the cone C does
not satisfies the helix-property. Actually it is not difficult to see that cylinders
over plane curves (i.e., R x v C R x R?, where 7 is a curve in R?) are the
only surfaces of R? satisfying the helix-property.
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