
27 July 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A FPGA-Based Reconfigurable Software Architecture for Highly Dependable Systems / DI CARLO, Stefano; Prinetto,
Paolo Ernesto; Scionti, A.. - STAMPA. - (2009), pp. 125-130. (Intervento presentato al convegno IEEE Asian Test
Symposium (ATS) tenutosi a Taichung, TW nel 23-26 Nov. 2009) [10.1109/ATS.2009.53].

Original

A FPGA-Based Reconfigurable Software Architecture for Highly Dependable Systems

Publisher:

Published
DOI:10.1109/ATS.2009.53

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2297911 since: 2016-09-16T17:24:59Z

IEEE Computer Society

A FPGA-Based Reconfigurable
Software Architecture for Highly
Dependable Systems
Authors: Di Carlo S., Prinetto P., Scionti A.,

Published in the Proceedings of the IEEE Asian Test Symposium (ATS), 23-26 Nov. 2009, Taichung,

TW.

N.B. This is a copy of the ACCEPTED version of the manuscript. The final
PUBLISHED manuscript is available on IEEE Xplore®:

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5359382

DOI: 10.1109/ATS.2009.53

© 2000 IEEE. Personal use of this material is permitted. Permission from IEEE must be

obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale

or redistribution to servers or lists, or reuse of any copyrighted component of this work in

other works.

!Politecnico di Torino

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5359382
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5359382
http://dx.doi.org/10.1109/ATS.2009.53
http://dx.doi.org/10.1109/ATS.2009.53

A FPGA-based Reconfigurable Software
Architecture for Highly Dependable Systems

Stefano Di Carlo, Paolo Prinetto, Alberto Scionti
Control and Computer Engineering Department

Politecnico di Torino
Torino, Italy

Email: {stefano.dicarlo,paolo.prinetto,alberto.scionti}@polito.it

Abstract—Nowadays, Systems-On-Chip are commonly
equipped with reconfigurable hardware. The use of hybrid
architectures based on a mixture of general purpose processors
and reconfigurable components has gained importance across
the scientific community allowing a significant improvement
of computational performance. Along with the demand for
performance, the great sensitivity of reconfigurable hardware
devices to physical defects lead to the request of highly
dependable and fault tolerant systems. This paper proposes
an FPGA-based reconfigurable software architecture able
to abstract the underlying hardware platform giving an
homogeneous view of it. The abstraction mechanism is used to
implement fault tolerance mechanisms with a minimum impact
on the system performance.

I. INTRODUCTION

Systems-on-Chip (SoC) are a major revolution in IC design
where the whole functionality of a system is placed on a single
chip. Presently, SoCs include several tens of million gates,
multiple IP cores, and complex on-chip buses and protocols.

Most of todays virtual components (i.e., IP cores) are con-
stituted of reconfigurable hardware [1]. Field Programmable
Gate Arrays (FPGAs) represent the state-of-the-art in the field
of reconfigurable hardware and are nowadays common parts
of complex SoCs [2], [3], [4].

Hybrid architectures based on a mixture of general purpose
processors, and reconfigurable hardware components are in-
creasingly used to accelerate computational intensive tasks.
Examples of these approaches can be found in [9], [10]. In
the former, a FPGA-based coprocessor has been developed to
accelerate the simulation of a molecular dynamic’s application,
where the movements of atoms in a substance over the
time are modeled. The authors present an hardware/software
approach in which the most computationally intensive tasks
of the application are selected and accelerated directly on a
FPGA device, while the remaining part of the application
is still executed on a traditional general purpose processor.
In the latter, the authors propose the implementation of a
multi-objective evolutionary optimization algorithm on a re-
configurable hardware based system. Another example can be
found in [11], where a FPGA-based accelerator is used to
improve the performance of the process scheduler of a real-
time operating system.

Together with design and performance problems, the ad-
vance of the manufacturing technology and architectures

makes SoCs and reconfigurable hardware more sensible to
physical defects, thus requiring new solutions to design fault
tolerant systems able to continue their mission even in pres-
ence of a partial failure of the internal components [5], [6],
[7], [8], [14].

This paper exploits hardware abstraction into hybrid archi-
tectures together with software reconfiguration, to enable cost-
effective implementations of dependable systems. Automatic
re-configurability of software is utilized to design self-healing
systems capable of autonomous recovery from temporary
errors and permanent faults detected both into reconfigurable
hardware cores, and limited portions of general purpose mi-
croprocessors (e.g., floating point unit).

A programming framework, based on a XML description of
a set of available reconfiguration mechanisms is used to pro-
vide programmers with a development kit to write programs
able to automatically reconfigure selected functionalities ev-
ery time a hardware block involved into the computation is
detected as faulty. The identification of faulty elements, out of
the scope of this paper, can be performed by means of on-line
Hardware/Software Built-In-Self-Test techniques, and notified
to the target programs through the operating system by means
of interrupt services and Inter Process Communication (IPC)
mechanisms.

This architecture allows to recover from temporary errors
(e.g., errors induced by SEUs) and to repair permanent faults
(e.g., stuck-at faults) with a minimum impact on the system
performance. It therefore ensures very high data integrity and
availability without external intervention. These capabilities
make this solution useful for a variety of dependable appli-
cations including unmanned remote applications such as deep
space exploration, or mission critical ones.

The paper is organized as follows: section II gives a general
view of the proposed software framework, section III analyzes
the internal switching mechanism adopted for program re-
configuration, while section IV proposes experimental results.
Finally section V concludes the paper.

II. THE FRAMEWORK OVERVIEW

Due to their complexity, hybrid architectures require the
introduction of new programming models. For the sake of
simplicity, we consider in this paper a simple system composed
of a general purpose microprocessor (GPP), together with

its memory, coupled with a reconfigurable hardware module
based on a FPGA component (RH). This system includes
all peculiarities of more complex hybrid architectures, and
therefore allows us the development of a general methodology
that can be later extended to more complex designs. The hybrid
architecture considered in this paper is depicted in Fig. 1.

General Purpose
Processor (GPP)

Memory

Reconfigurable Hardware (RH)

I/O interface

HYBRID PLATFORM

Fig. 1. Hybrid system architecture

In general the application that has to be executed on the
hybrid architecture needs to be partitioned into a set of
tasks. Computational intensive tasks are usually executed on
RH, while the remaining ones can be executed on GPP. In
order to let the programmer dealing with an homogeneous
system instead of two separate entities, hardware abstraction
is usually exploited [15]. In [16], Andrews et al. propose
hthreads (or hybrid threads), an abstract computational model
that actually allows thread partitioning between a general
purpose processor and a reconfigurable device. It is com-
posed of a hardware/software codesigned operating system
and middleware services that support the multithreaded pro-
gramming model. The hthreads compiler and run-time libraries
allow programmers to write multithreaded programs with the
standard C language. The hthreads operating system and
middleware services provide the mechanisms that allow the
threads to run on either the general purpose microprocessor,
or within a custom circuit on the FPGA. In the hthreads
design flow, programmers express their system computations
using traditional pthreads semantics. The main drawback of
this solution is the rigid distinction between the portion of
the application executed by specialized hardware, and the one
executed by the general purpose microprocessor. In order to
efficiently exploit software reconfiguration for implementing
fault tolerance systems, software applications should be able to
dynamically map the execution of different functionalities both
on the general purpose hardware, and on the reconfigurable
hardware. This in turns requires providing the application itself
with a structured description of the available reconfiguration
facilities that can be exploited at run-time to reconfigure the
computational tasks every time a fault is detected.

Software Based Self-Test (SBST) techniques executed on
GPP, as well as embedded hardware Built-In Self-Test (BIST)

facilities directly embedded into the hardware cores mapped
on RH are used to check the correct behavior of the different
hardware blocks. A monitor, either implemented as a hardware
component or a software routine, is in charge of collecting
test responses and generating proper reconfiguration events
into the system. The time required for the test execution and
the system reconfiguration has a limited impact on the overall
performance.

Figure 2 shows the structure of the software framework we
propose that can be logically split into two main parts: (i) the
exploitation package, and (ii) the software support package.

The exploitation package acts as a middleware layer, export-
ing software modules used to manage the underlying hardware
platform. In particular it exports information concerning the
hardware and software facilities available at the operating
system level. This information can be used by a software
component (or just by the operating system itself) as a
database of available reconfiguration alternatives, allowing to
optimally decide how to map application functionalities. From
the reliability point of view this allows to take optimal decision
at run-time on how to replace faulty hardware functions on RH
or faulty units on GPP.

The software reconfiguration is based on an automatic
switching mechanism: when a hardware failure is detected,
a notification is sent through the operating system to the
program that, based on the available replacement facilities,
can eventually replace the faulty functionality with a differ-
ent hardware implementation, or with an equivalent software
version, executed on GPP. Similarly, if one of the software
functions can not be correctly executed due to a hardware
fault in GPP (e.g., a fault in the FPU), it can be replaced by
an equivalent hardware function.

The software support package contains software elements
(i.e., a software library and the integrated development envi-
ronment) used to realize the hardware abstraction mechanism.
It provides the designer with a transparent mechanism to
access both software and hardware resources using a uniform
interface, thus giving a flexible way to split the application.

A. Exploitation package
The exploitation package resorts to four basic elements to

provide hardware virtualization at the application level: (i) the
hardware configuration files, (ii) the operating system drivers,
(iii) the function files, and (iv) the description file.

A hardware configuration file identifies a hardware compo-
nent that can be mapped into RH to perform a certain function.
FPGA devices, representing our target reconfigurable compo-
nents, can be configured by mean of a binary bitstream file
containing the mapping of the internal configuration facilities.
A library of these files can be therefore stored to form a
repository of available hardware functions. Each core should
be eventually provided with an embedded test mechanism and
a monitor block able to check the correct behavior of the core
itself, and to notify faulty conditions. In order to have a general
architecture, all available blocks should be provided with a
common access interface, e.g., a register file used to configure

HYBRID ARCHITECTURE

Configuration
file

SOFTWARE FRAMWORK

OS Driver

Function file

Description
file

Support
library

IDE

E
x

p
lo

it
a
ti

o
n

 P
a

c
k
a

g
e

S
o

ft
w

a
re

 P
a

c
k

a
g

e

H
a

rd
w

a
re

 l
e

v
e

l
O

p
.

S
y
s
.
le

v
e

l
A

p
p

lic
a

ti
o

n
 l
e

v
e

l

GPP + RH

Homogeneous view

Fig. 2. The proposed high dependable and fault tolerant framework.

the core with a set of specific parameters, or to read back the
result of the computation.

In order to decouple the hardware layer from the different
software layers, the actual communication with the hardware
cores should be managed through a dedicated operating system
driver provided together with each core. The driver is also
in charge of collecting hardware notifications of faulty con-
ditions, and generating proper notifications to the programs
currently using the faulty cores. The driver may also issue
reconfiguration requests to optimally balance the system load.

All available functionalities, both at the hardware level and
at the software one, are actually exported to the program
through a set of function files described using a target high
level programming language. For example considering the
ANSI C language [17], [18], the set of available functionalities
is declared with a couple of files, one for the header of the
functions, and the other one for the specific implementation.
Pure software functionalities will be directly described in these
function files, while hardware implemented functionalities will
simply consist at this level of a set of calls to specific operating
system driver functions.

Finally, the description file is used to provide a highly struc-
tured model of the available functionalities. The description
file is the main component of the exploitation package. It is
used to abstract the underlying hardware architecture. It is
described using a high level structured description language
such as the standard XML language [19]. The structure of the
file can be easily navigated by a software module and can be
used as a database containing the description of the available
resources. Each resource (i.e software, or hardware function)
is described in terms of access mechanism, performance, and
location within the software framework. Fig. 3 shows an
example of the internal structure of the description file for a
hardware function. The access mechanism is described through
the declaration of the input parameters required to correctly

execute the specific function and the output parameters used
to store the result of the computation. For each parameter the
type is provided. The performance is described in terms of
estimated execution time, which can be used to select the
optimal replacement for a faulty function, while the location
in the framework is given by the corresponding library that
specifies the behavior of the function and the software or hard-
ware function counterpart. A set of custom defined description
parameters for each function are also available.

<?xml version="1.0"?>
<Target core="Core1">

<Functions>
<Function name="HW_function1">

<ver> ... </ver>
<owner> ... </owner>
<year> ... </year>
<desc> ... </desc>
<numberOfPars> ... </numberOfPars>
<typeOfPars> ... </typeOfPars>
<outputType> ... </outputType>
<execTime> ... </execTime>
<EqFunction> ... </EqFunction>
<EqLibrary> ... </EqLibrary>
<fId> ... </fId>
<customField1> ... </customField1>
<customField2> ... </customField2>

</Function>
<Function name="HW_function2">

<ver> ... </ver>
...

</Function>
...

</Functions>
</Target>

...
<Target core="CoreN">

...

Fig. 3. Example of the exported XML description file.

B. Software support package

The software support package provides the software de-
signer with the possibility of writing in a simple and straight-
forward manner programs that can switch their execution from
the hardware context to the software one, and vice versa.

In principle, it is composed of a software library and
an Integrated Development Environment (IDE) (see Fig. 2).
The software library contains all functions used to perform
reconfiguration whenever a request occurs. These functions
are used by the operating system driver to correctly handle all
low level reconfiguration actions, starting from the selection
of the proper component, to the bitstream configuration into
RH.

The library also contains functions to access and navigate
the content of the XML description file. These functions are
designed to parse the content of the description file, and to
collect those information that are useful for taking optimal
decisions for the replacement (e.g., a faulty hardware function
can be replaced with a single equivalent software function or
using a set of hardware and software functions that minimize
the execution time).

The IDE aims at simplifying the creation of the
reconfigurable-program. The key point of this component is
the possibility of writing applications as close as possible to
normal software-only programs.

III. CONTEXT EXECUTION SWITCHING

In order to actively allow switching between different
implementations of the same function, an efficient switching
mechanism should be provided into the framework.

The mechanism we propose in this paper relies on a
data structure used to store handlers of both hardware, and
software versions of available functionalities, together with the
capability of the operating system to notify applications when
reconfiguration events coming from a faulty core are detected.

The data structure is composed of three arrays of pointers
as depicted in Fig. 4. Each array element identifies a given
functionality as described in the XML description file. The
hardware executable context array stores pointers to available
hardware functions while the software executable context
array stores pointers to the software ones. A null pointer
in one of these arrays indicates that the given version of
the function is not available in the current implementation.
Whenever multiple copies of a function are available, each
element of the array is organized itself as an array of pointers.
The third array (i.e., current execution context) contains, for
each function the pointer to the currently used version, copied
from one of the first two arrays.

In order to be transparent with the currently used im-
plementation of a function, it is enough to force designers
to access functionalities through pointers contained into the
current execution context array. This actually provides an
efficient abstraction mechanism through which accessing both
GPP and RH.

Test sessions of the hardware components can be period-
ically scheduled during the normal behavior of the system.
Whenever a fault is detected an interrupt is generated to notify
the event to the operating system. When a fault is notified, the
faulty function entry in the current execution context array is
selected and the corresponding pointer is replaced with the
one of a different hardware implementation if available or
with a pure software version. The replacement is based on
the result of the exploration of the available resources through
the XML description file. In this way the next call to the
faulty function will execute a different version not involving
the faulty detected core.

The proposed mechanism assures a high level of efficiency
(only few assembler instructions are generated from the com-
pilation of the application) thanks to the fact that only a pointer
copy is involved in the replacement process.

IV. EXPERIMENTAL PLATFORM AND RESULTS

The proposed approach as been implemented into a system
for encrypted data transmission. A testable AES-128 crypto-
graphic core mapped on a reconfigurable device is used to
increase the system performance. Periodic test sessions are
executed on this core, and injected faults are used to simulate

HW function
pointer 1

HW function
pointer 2

Faulty
function

HW function
pointer N

HW function
pointer N

SW function
pointer N

SW function
pointer 3

SW function
pointer 2

SW function
pointer 1

Replaced
function

HW function
pointer 1

HW function
pointer 2

Current execution
context

Software executable
context

Hardware executable
context

Fig. 4. Execution context switching data structure.

faulty conditions and to evaluate the recovery capability of the
system.

The experiments have been performed using the ML403
Evaluation Platform equipped with a Virtex-4 FPGA TM in-
tegrating a 32-bit PowePC TM microprocessor running at
300MHz, a FPGA, and 64Kb of embedded RAM (BRAM)
on the same die. The platform is equipped also with 64Mb of
DDR SDRAM with a 32-bit interface, a RS232 port imple-
mented by a Xilinx-provided core, an Ethernet communication
channel, and a System ACE compact-flash-support core. Fig.
5 shows the platform used for the experimental session.

The proposed software framework has been implemented
on top of the MontaVista Linux TM operating system with
a 2.4.26 kernel version, specifically designed for embedded
systems. The compact flash card provided together with the
reference board has been split in three blocks used to store
the configuration bitstream of the different FPGA components
(including the AES cryptographic core), the memory swap
disk partition, and the root filesystem created by means of
the BusyBox [21] system. Moreover an optimized version
of the operating system kernel has been compiled after the
configuration of the board.

The AES encryption standard has been mapped on the
reconfigurable area of the FPGA device. This core is based on
the testable architecture proposed in [20] where an additional
SELF-TEST operating mode is used to detect faults into the
core. At the same time, an equivalent software implementation
of the AES cryptographic function has been adopted, recurring
to a standard cryptographic library written in C language. For
the experiments the core has been designed to allow fault
injection by writing a specific fault injection register. Injections
are directly issued by the operating system driver whenever a
user signal sigusr1 is generated.

Both software and hardware cryptographic functions have
been integrated into a single application, recurring to the
proposed software abstraction mechanism. The application
performs a loop that continuously executes the encryption
of 128 bit data blocks. Whenever the application accesses to
the cryptographic functions a test session is performed before
executing the function, checking the presence of faults in
the core. Fig. 7 shows the execution time of the encryption

PowerPC Reconfigurable Block

VIRTEX-4 FPGA

Fig. 5. The block diagram of the ML403 Evaluation platform

function before and after the reconfiguration from hardware
to software. The x-axis displays the iteration number while
the y-axis the function execution time. Fig. 6 shows the XML
file used to export the information related to the encryption
functionality of the hardware core and that of the software
library.

During the first part of the execution the system is fault free
and the encryption process is efficiently performed using the
hardware AES cryptographic core. The hardware encryption
phase takes an average time of 4.0µs oscillating between
3.0µs and 7.0µs due to the system workload.

At about 12010 iterations, a fault is detected and the
software is reconfigured. This is clearly visible in Fig. 7 as
there is a peak in the execution time equal to 1750.0µs, caused
by the detection of the fault and by the reconfiguration of the
system.

After the reconfiguration phase, however, the system per-
formance increases again and the system continues to perform
its functionality, even if with reduced capabilities. The per-
formance measured with the pure software execution is two
order of magnitude slower than the one measured with the
acceleration enabled (i.e., the software encryption has been
performed with an average time equals to 700.0µs).

V. CONCLUSION

In this paper we presented the implementation of a software
framework for the abstraction of the different hardware re-
sources available in a hybrid architecture that can be exploited
both to design high performance software applications, and to
ensure fault tolerance. A switching mechanism is provided as
a recovery method after the detection of a fault . The approach
allows the implementation of a highly dependable system
with a minimum impact on the performance, and without the
interruption of the executed task.

ACKNOWLEDGMENT

The authors would like to thank Matteo Bosio for the help
in setting up the experimentation platform.

REFERENCES

[1] D. Bouldin, Platform-Based System-on-Chip Design, Proceedings of
2003 Microelectronic Systems Education Conference (MSE), Anaheim,
CA, pp. 48-49, June 1-2, 2003.

[2] G. Dimitroulakos, M. D. Galanis, and C. E. Goutis,Performance im-
provements using coarse- grain reconfigurable logic in embedded SOCs,
Field Programmable Logic and Applications, 2005. International Con-
ference on Volume, Issue, 24-26 Aug. 2005 Page(s): 630 - 635.

[3] J. Villareal et al, Improving Software Performance with Configurable
Logic, in Design Automation for Embedded Systems (DAES), vol. 7,
pp. 325-339, 2002.

<?xml version="1.0"?>
<Target core="CryptoCore">

<Functions>
<Function name="Encryption_data">

<ver> 1.0 </ver>
<owner> Politecnico di Torino </owner>
<year> 2009 </year>
<desc> AES encryption function </desc>
<numberOfPars> 4 </numberOfPars>
<typeOfPars> int,int,int,int </typeOfPars>
<outputType> int </outputType>
<execTime> 3.0us </execTime>
<EqFunction> encryption_data </EqFunction>
<EqLibrary> aeslib </EqLibrary>
<fId> 1 </fId>

</Function>
</Functions>

</Target>
<Target core="General Purpose Processor">

<Functions>
<Function name="encryption_data">

<ver> 1.0 </ver>
<owner> Politecnico di Torino </owner>
<year> 2009 </year>
<desc> AES encryption function </desc>
<numberOfPars> 4 </numberOfPars>
<typeOfPars> int,int,int,int </typeOfPars>
<outputType> int </outputType>
<execTime> 690.0us </execTime>
<EqFunction> Encryption_data </EqFunction>
<EqLibrary> aeslib </EqLibrary>
<fId> 2 </fId>

</Function>
</Functions>

</Target>

Fig. 6. The XML description file for the experimental platform.

Fig. 7. AES encryption time response

[4] G. Stitt et al., Energy Savings and Speedups from Partitioning Critical
Software Loops to Hardware in Embedded Systems, in ACM Trans. on
Embedded Computing Systems (TECS), vol.3, no.1, pp. 218-232, Feb.
2004.

[5] I. G. Harris, P. R. Menon, R. Tessier, BIST-based delay path testing in
FPGA architectures, Test Conference, 2001. Proceedings. International,
Volume, Issue, 2001 Page(s):932 - 938.

[6] F. Hanchek and S. Dutt, Methodologies for tolerating cell and intercon-
nect faults in FPGAs, Computers, IEEE Transactions on, Volume 47,
Issue 1, Jan 1998 Page(s):15 - 33.

[7] Y. Shu-Yi and E. J. McCluskey Permanent fault repair for FPGAs with
limited redundant area, Defect and Fault Tolerance in VLSI Systems,

2001. Proceedings. 2001 IEEE International Symposium on Volume ,
Issue , 2001 Page(s):125 - 133.

[8] N. Campregher, FPGA interconnect fault tolerance, Field Programmable
Logic and Applications, 2005. International Conference on, Volume,
Issue, 24-26 Aug. 2005 Page(s): 725 - 726.

[9] R. Scrofano, M. B. Gokhale, F. Trouw and V. K. Prasanna, Accelerating
Molecular Dynamics Simulations with Reconfigurable Computers, IEEE
TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,
VOL. 19, NO. 6, JUNE 2008.

[10] S. Bonissone and R. Subbu, Evolutionary Multiobjective Optimization
on a Chip, Proceedings of the 2007 IEEE Workshop on Evolvable and
Adaptive Hardware (WEAH 2007).

[11] M. Song, S. H. Hong and Y.Chung, Reducing the overhead of real-time
operating system through reconfigurable hardware, Digital System De-
sign Architectures, Methods and Tools, 2007, DSD2007. 10th Euromicro
Conference on 2007.

[12] Xilinx Application Notes XAPP216, Correcting Single-Event Upset
Through Virtex Partial Reconfiguration, 2000.

[13] M. Sonza Reorda, L. Sterpone and M. Violante, Multiple errors pro-
duced by single upsets in FPGA configuration memory: a possible
solution, IEEE European Test Symposium, 2005, pp. 136-141.

[14] M. Violante and L. Sterpone, Hardening FPGA-based systems against
SEUs: A new design methodology, JOURNAL OF COMPUTERS, VOL.
1, NO. 1, APRIL 2006.

[15] D. Andrews, D. Niehaus and P. Ashenden, Programming models for
hybrid cpu/fpga chips, IEEE Computer, 37(1):118-120, January 2004.

[16] D. Andrews, R. Sass, E. Anderson, J. Agron, W. Peck, J. Stevens,
F. Baijot and E. Komp, Achieving programming model abstractions for
reconfigurable computing, Very Large Scale Integration (VLSI) Systems,
IEEE Transaction on, 16(1):34-44, January 2008.

[17] The standard ANSI C language:
http://www.open-std.org/jtc1/sc22/wg14/.

[18] B. W. Kernighan and D M. Ritchie, The C Programming Language,
Second Edition, Prentice Hall, Inc., 1988, ISBN 0-13-110370-9.

[19] The standard XML language:
http://www.w3.org/XML/.

[20] G. Di Natale, M. Doulcier, M. L. Flotte and B. Rouzeyre, Self-Test
techniques for crypto-devices, Very Large Scale Integration (VLSI)
Systems, IEEE Transaction on, 2008.

[21] The BusyBox system:
http://www.busybox.net/about.html

