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Abstract  This paper reports the state of the art on the study 
of diffraction by a dielectric wedge and it proposes a new 
method to compute the diffracted field. In particular the paper 
presents the application of the Wiener-Hopf method to the 
problem of diffraction of a plane wave by a dielectric wedge 
immersed in free space. The formulation and the equations are 
proposed and discussed in the spectral domain.  

1 INTRODUCTION 

This paper examines the problem of the diffraction 
by a plane wave on a penetrable wedge immersed in 
free space.  
Several attempts to find the solution has been 
reported in literature but a general and complete 
solution of this problem is still not available. 
Exact solutions have been obtained only for 
isorefractive and the ideal double negative (DNG) 
wedges. The solution of isorefractive wedges has been 
accomplished in the past by using the Kontorovich-
Lebedev transform [1-2] in the frequency domain and 
the Green function in the time domain [3]. More 
recently solutions have been obtained [5-10].  
The more interesting attempt to solve the dielectric 
wedge problem was the one proposed by Radlow [11] 
for the diffraction by the right-angled dielectric 
wedge. This method was based on multidimensional 
Wiener-Hopf (W-H) equations, but unfortunately it 
has been ascertained that this solution is wrong Kraut 
& Lehaman [12]. The interest to the Radlow method is 
due to the fact that he introduced multidimensional 
Wiener-Hopf equations to model the problem. 
However the factorization of multidimensional W-H 
equations needs function-theoretic techniques 
employing two complex variables that are 
cumbersome to handle.  
At present the more interesting results obtained for the 
penetrable wedge geometries arise from the reduction 
of the problems to integral equations both one-
dimensional and two-dimensional. These equations 
have been formulated both in the space domain and in 
the spectral domain [13]-[24]. Several techniques were 

used for their solution and many of them are based on 
regularization approaches.  
According to our opinion, the Wiener-Hopf (W-H) 
technique is the most powerful method for solving 
field problems in presence of geometrical 
discontinuities [25-30]. Nevertheless only recently 
[26, 29] this technique has been successfully applied 
to wedges with arbitrary aperture angle. In general, the 
W-H formulation of the wedge problems yields 
generalized W-H equations (GWHE). GWHE can be 
reduced to classical W-H equations (CWHE) only for 
impenetrable wedges; therefore the direct 
approximation of GWHE is required for the dielectric 
wedge. In particular similarly to the CWHE also the 
GWHE can be reduced to Fredholm equations of 
second kind. The main aim of this work is the 
application of this technique to solve the dielectric 
wedge problem.  
This technique based on the approximate solution of 
the GWHE can be extended to solve wedge problems 
involving anisotropic or bianisotropic media [25]. 
Apparently this extension is not possible for 
approximate solution obtained in the framework of 
the Sommerfeld-Malyuzhinets method [17, 23] since 
their applicability seems limited only to media where 
the Helmholtz wave equation holds. 

2 THE DIELECTRIC WEDGE 

Let us consider a dielectric wedge where we have 
identified four angular regions, see Fig. 1:  
0<<, <<0 <<- <<
The wedge is illuminated by plane wave at skew 
incidence  and azimuthal incident angle. 
The Wiener-Hopf technique [26] for angular problems 
is based on the introduction of the following Laplace 
transforms (1)-(2), where the subscript + indicates plus 
functions, i.e. functions having regular half-planes of 
convergence that are upper half-planes in the  -plane. 
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Fig. 1: the dielectric wedge and the four angular regions. 
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For region 1 we obtain the functional equations (3),  

where: coso k  , 22
oo k   , 

0]Im[ o , 22)(   o . 

Using symmetry and variable substitutions we obtain 
similar functional equations for the other regions. For 
example in region 3 the equations (4) hold. 
However we need to notice that the quantities 
involved in equations (3) and (4) depend on the 
constitutive parameters of the angular region (aperture 
angle and material), therefore:  
for region 1 

22
11   , 22

11 ok   , 

1  , 1  , 111  kk  

1 1cos sinm m        , 

1 1cos sinn n         
 
for region 3 

22
33   , 22

33 ok   , 

3  , 3  , 333  kk  

 

3 3cos( ) sin( )m m        , 

3 3cos( ) sin( )n n         
 
With reference to Fig. 1, let us consider an E-polarized 
plane wave at normal incidence [31-32]: and 
jk j
The W-H functional equations assume the following 
form (5). Because of the symmetry we can rewrite the 
equations only using two angular regions and 
therefore by using only two kind of constitutive 
parameters and functions m, n…  
From (5), after some mathematical manipulation we 
obtain two uncoupled system of GWHE functional 
equations of the form presented in (6). 
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where the unknowns are related to the physical 
quantities (1)-(2). Notice that the unknown are defined 
into three different complex planes: 1 2, ,m m . As 
reported in [26, 29] we can apply a special 
transformation to map unknowns defined in , im  

into a new unique complex plane i , therefore we 

obtain CWHE from a GWHE. Each ( , im ) requires 

the definition of a new i  plane. The dielectric wedge 
is modeled after the transformations by two uncoupled 
systems of two functional equations defined into two 
different complex planes 1 2,  : 
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In order to solve (6) we can apply the general 
procedure described in [28-30]: the Fredholm 
technique. 
Since the unknowns are defined into two complex 
planes, we use the Cauchy formula to relate them: 

       1
2 1

1 21

( )1( )
2

i
i

X mX m dm
j m m


 

               (8) 

The use of the angular plane w and w1 and of special 
warping improves the convergence of the numerical 
discretization of the equations (7)-(8).  
Further details on the procedure to get the solution and 
numerical results in terms of diffraction coefficients of 
a dielectric wedge will be discussed and presented at 
the conference. 
 
The solution is given in terms of the diffracted 
components of the unknown (1)-(2). A complete study 

of the field will show the GO, GTD, UTD 
components. 
We note that for different physical parameters the field 
components will show different spectral properties. 
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