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LINKING SOLUTIONS FOR p-LAPLACE EQUATIONS WITH
NONLINEARITY AT CRITICAL GROWTH

MARCO DEGIOVANNI AND SERGIO LANCELOTTI

Abstract. Under a suitable condition on n and p, the quasilinear equation at critical
growth −∆pu = λ|u|p−2u + |u|p∗−2 u is shown to admit a nontrivial weak solution

u ∈ W 1,p
0 (Ω) for any λ ≥ λ1. Nonstandard linking structures, for the associated

functional, are recognized.

1. Introduction and main results

Let Ω be a bounded open subset of Rn, let 1 < p < n and let λ ∈ R. We are interested

in the existence of nontrivial solutions u for the quasilinear problem

(1.1)

{
−∆pu = λ|u|p−2 u+ |u|p∗−2 u in Ω ,

u = 0 on ∂Ω ,

where ∆pu := div (|∇u|p−2 ∇u) denotes the p-Laplace operator and p∗ := np/(n− p) the

critical Sobolev exponent for the embedding of W 1,p
0 (Ω) in Lq(Ω). Let us also set

S = inf


∫
Rn

|∇u|p dx(∫
Rn

|u|p∗ dx
)p/p∗

: u ∈ C∞
c (Rn) \ {0}

 ,

λ1 = min


∫
Ω

|∇u|p dx∫
Ω

|u|p dx
: u ∈ W 1,p

0 (Ω) \ {0}


and denote by φ1 ∈ W 1,p

0 (Ω) a positive solution of −∆pu = λ1|u|p−2 u (see Lindqvist

[16]).
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After the seminal paper of Brezis-Nirenberg [4], many works have been devoted

to problems at critical growth, mainly when p = 2. In particular, let us recall that,

according to the main result of [4], problem (1.1) admits a positive solution u for any

λ ∈]0, λ1[, provided that p = 2 and n ≥ 4. The result has been extended by Egnell,

Garcia Azorero-Peral Alonso, Guedda-Veron [9, 12, 14], who have proved

that problem (1.1) admits a positive solution u for any λ ∈]0, λ1[, provided that p > 1

and n ≥ p2. Such a solution u can be obtained via the Mountain pass theorem of

Ambrosetti-Rabinowitz [1] applied to the C1-functional f : W 1,p
0 (Ω) −→ R defined

as

(1.2) f(u) =
1

p

∫
Ω

|∇u|p dx− λ

p

∫
Ω

|u|p dx− 1

p∗

∫
Ω

|u|p∗ dx

and satisfies

(1.3) 0 < f(u) <
1

n
Sn/p .

On the other hand, it is known [4, 9, 14] that, if Ω is star-shaped and with smooth

boundary, then problem (1.1) has no nontrivial solution u for any λ ≤ 0.

When λ ≥ λ1, it is still meaningful to look for nontrivial solutions u, but the situation

is quite different in the two cases p = 2 and p ̸= 2. If p = 2, it has been proved by

Capozzi-Fortunato-Palmieri [5] that problem (1.1) has a nontrivial solution u in

each of the following cases:

(a) λ ≥ λ1 and n ≥ 5;

(b) λ > λ1, λ ̸∈ σ(−∆2) and n ≥ 4;

(see also Gazzola-Ruf [13, Corollary 1]). Such a solution can be obtained via the

Linking theorem of Rabinowitz (see e.g. [19, Theorem 5.3]) applied to the functional f

and still satisfies (1.3).
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On the other hand, when p ̸= 2 there is in general no direct sum decomposition

of W 1,p
0 (Ω), which allows to recognize a linking structure in a standard way. To our

knowledge, the only workable situation amounts to the fact that, if Ω is connected and

we set

λ 2 = sup

{
min

{∫
Ω

|∇u|p dx : u ∈ Y ,

∫
Ω

|u|p dx = 1

}
:

W 1,p
0 (Ω) = (Rφ1)⊕ Y with Y closed in W 1,p

0 (Ω)

}
,

then λ 2 > λ1 and, for every b < λ 2, there exists a decomposition

W 1,p
0 (Ω) = (Rφ1)⊕ Y

such that ∫
Ω

|∇u|p dx = λ1

∫
Ω

|u|p dx , ∀u ∈ Rφ1 ,∫
Ω

|∇u|p dx ≥ b

∫
Ω

|u|p dx , ∀u ∈ Y .

Taking advantage of this fact, Arioli-Gazzola [2] have proved that, for any p > 1,

problem (1.1) has a nontrivial solution u in each of the following cases:

(a) λ1 ≤ λ < λ 2 and n2

n+1
> p2;

(b) λ1 < λ < λ 2 and n ≥ p2.

Such a solution is still obtained via the classical Linking theorem and satisfies (1.3).

Our purpose is to provide a complete extension to the case p > 1 of the mentioned

result of Capozzi-Fortunato-Palmieri. Because of the lack of decompositions by

linear subspaces, we will apply the results of our recent paper [7], which provide an

extension of the Linking theorem with linear subspaces substituted by cones. In the line

of the case (a), we prove the following:

Theorem 1.1. Assume that

(1.4) Ω has C1,α boundary for some α ∈]0, 1[
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and that

(1.5)
n3 + p3

n2 + n
> p2 .

Then problem (1.1) has a nontrivial solution u satisfying (1.3) for every λ ≥ λ1.

By the way, we also improve the condition on n and p of Arioli-Gazzola, as (1.5)

is equivalent to

n2 + p3

n

n+ 1
> p2 .

This is due to a different concentration technique on points “moving to the boundary”

of Ω, rather than at a fixed interior point (the key information is contained in Lemma 3.2).

Still in the line of (a), we also prove the following results:

Theorem 1.2. Assume that

(1.6)
n2

n+ 1
> p2 .

Then problem (1.1) has a nontrivial solution u satisfying (1.3) for every λ ≥ λ1.

In other words, under the condition of Arioli-Gazzola, the result holds for any

λ ≥ λ1, without any smoothness assumption on the boundary of Ω.

Theorem 1.3. Assume that Ω is a ball and that (1.6) holds. Then problem (1.1) has a

nontrivial radial solution u satisfying (1.3) for every λ ≥ λ1.

A comparison between Theorems 1.1 and 1.3 raises an interesting question: if Ω is a

ball and

n2

n+ 1
≤ p2 <

n3 + p3

n2 + n
,

what about the existence of a nontrivial radial solution u satisfying (1.3), say, when

λ = λ1? A (negative) answer could come from an extension of the result of Arioli-

Gazzola-Grunau-Sassone [3].
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In order to state our results in the line of (b), let us set, according to [6, 7, 17, 18],

(1.7) λm = inf

{
sup
u∈A

∫
Ω
|∇u|p dx∫
Ω
|u|p dx

: A ⊆ W 1,p
0 (Ω) \ {0}, A is symmetric and

Index (A) ≥ m

}
,

where Index is the Z2-cohomological index of Fadell-Rabinowitz [10, 11]. Then it

is well-known that (λm) is a nondecreasing divergent sequence and λ1 is the same as

before, while λ 2 ≤ λ2. Moreover, in the case p = 2 we have {λm : m ≥ 1} = σ(−∆2),

but for p ̸= 2 it is only known that the equation −∆pu = λm|u|p−2 u admits a nontrivial

solution u for any m ≥ 1.

We prove the following result:

Theorem 1.4. If n ≥ p2, then problem (1.1) has a nontrivial solution u satisfying (1.3)

for every λ > λ1 with λ ̸∈ {λm : m ≥ 1}.

If Ω is a ball, let

λ(r)
m = inf

{
sup
u∈A

∫
Ω
|∇u|p dx∫
Ω
|u|p dx

: A ⊆ W 1,p
0,r (Ω) \ {0}, A is symmetric and

Index (A) ≥ m

}
,

where W 1,p
0,r (Ω) denotes the corresponding Sobolev space of radial functions. From the

results of [16] it follows that λ
(r)
1 = λ1. Then we have

Theorem 1.5. Assume that Ω is a ball. If n ≥ p2, then problem (1.1) has a nontrivial

radial solution u satisfying (1.3) for every λ > λ1 with λ ̸∈
{
λ
(r)
m : m ≥ 1

}
.

In the next section we recall and prove some preliminary facts, while in Section 3 we

prove the results we have stated in the Introduction.
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2. Linking over cones

First of all, let us recall from [7] a generalization of the Linking theorem in which

linear subspaces are substituted by symmetric cones.

Theorem 2.1. Let X be a Banach space and let f : X −→ R be a function of class C1.

Let X−, X+ be two symmetric cones in X such that X+ is closed in X,

X− ∩X+ = {0} ,

Index (X− \ {0}) = Index (X \X+) < ∞ .

Let also e ∈ X \X−, 0 < r+ < r−,

S+ = {v ∈ X+ : ∥v∥ = r+} ,

Q = {te+ w : t ≥ 0 , w ∈ X− , ∥te+ w∥ ≤ r−} ,

P = {w ∈ X− : ∥w∥ ≤ r−} ∪ {te+ w : t ≥ 0 , w ∈ X− , ∥te+ w∥ = r−}

be such that

sup
P

f < inf
S+

f , sup
Q

f < +∞ .

Define

c = inf
η∈N

sup f(η(Q× {1})) ,

where N is the set of deformations η : Q× [0, 1] −→ X with η(P × [0, 1]) ∩ S+ = ∅.

Then we have

(2.1) inf
S+

f ≤ c ≤ sup
Q

f

and there exists a sequence (uk) in X with ∥f ′(uk)∥ → 0 and f(uk) → c.

Proof. From [7, Theorem 2.2 and Corollary 2.9] it follows that (2.1) holds. If, by con-

tradiction, there is no sequence (uk) as required, then there exists σ > 0 such that

∥f ′(u)∥ ≥ σ whenever c − σ ≤ f(u) ≤ c + σ. In particular, f satisfies (PS)c and from
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[7, Theorem 2.2 and Corollary 2.9] we deduce that c is a critical value of f , whence a

contradiction. �

Assume now that Ω is a bounded open subset of Rn and that 1 < p < ∞. If we define

λm according to (1.7), by [7, Theorem 3.2] the following holds:

Theorem 2.2. If m ≥ 1 is such that λm < λm+1, then we have

Index

({
u ∈ W 1,p

0 (Ω) \ {0} :

∫
Ω

|∇u|p dx ≤ λm

∫
Ω

|u|p dx
})

= Index

({
u ∈ W 1,p

0 (Ω) :

∫
Ω

|∇u|p dx < λm+1

∫
Ω

|u|p dx
})

= m.

In view of the application of Theorem 2.1, the simplest choice is

(2.2) X+ =

{
u ∈ W 1,p

0 (Ω) :

∫
Ω

|∇u|p dx ≥ λm+1

∫
Ω

|u|p dx
}

,

while X− could be defined as

(2.3)

{
u ∈ W 1,p

0 (Ω) :

∫
Ω

|∇u|p dx ≤ λm

∫
Ω

|u|p dx
}

.

The next result asserts that as X− we can also choose a smaller cone, with better

regularity properties. Let us set ∥u∥ =
(∫

Ω
|∇u|p dx

)1/p
for every u ∈ W 1,p

0 (Ω) and denote

by ∥ ∥q the usual norm in Lq(Ω). We also set M =
{
u ∈ W 1,p

0 (Ω) :
∫
Ω
|u|p dx = 1

}
and

denote by Bϱ (x) the open ball of center x and radius ϱ.

Theorem 2.3. Let m ≥ 1 be such that λm < λm+1. Then there exists a symmetric cone

X− in W 1,p
0 (Ω) such that X− is closed in Lp(Ω) and:

(a) we have

X− ⊆
{
u ∈ W 1,p

0 (Ω) :

∫
Ω

|∇u|p dx ≤ λm

∫
Ω

|u|p dx
}
∩ L∞(Ω) ∩ C1,α

loc (Ω) ;

(b) X− ∩M is bounded in L∞(Ω) and in C1,α
loc (Ω);

(c) X− ∩M is strongly compact in W 1,p
0 (Ω) and in C1(Ω);

(d) we have Index (X− \ {0}) = m.
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Moreover, if Ω satisfies (1.4), we have that X− ∩ M is bounded in C1,α(Ω), for some

α ∈]0, 1[, and strongly compact in C1(Ω).

Proof. We only prove the case 1 < p < n. The case p ≥ n can be treated with minor

modifications.

Let X̃− be the symmetric cone defined in (2.3). Then M ∩X̃− is a symmetric subset of

W 1,p
0 (Ω)\{0} with Index

(
M ∩ X̃−

)
= m, being an odd deformation retract of X̃− \{0}.

Moreover, M ∩ X̃− is strongly compact in Lp(Ω).

Let us recall that, for every w ∈ Lq(Ω) with q ≥ (p∗)′, there exists one and only one

u ∈ W 1,p
0 (Ω) such that −∆pu = w. Moreover, if q ̸= n/p, we have u ∈ Lβ(q)(Ω) and

∥u∥p−1
β(q) ≤ c(Ω, p, q)∥w∥q, where

β(q) =


n(p− 1)q

n− pq
if q < n/p ,

∞ if q > n/p .

(see e.g. [14, Propositions 1.2 and 1.3]).

In particular, for every w ∈ Lq(Ω) with q/(p − 1) ≥ (p∗)′, there exists one and only

one u ∈ W 1,p
0 (Ω) such that −∆pu = |w|p−2w. Moreover, if q/(p − 1) ̸= n/p, we have

u ∈ Lγ(q)(Ω) and ∥u∥γ(q) ≤ c̃(Ω, p, q)∥w∥q, where

γ(q) =


nq

n(p− 1)− pq
if q/(p− 1) < n/p ,

∞ if q/(p− 1) > n/p .

For every w ∈ M , let J(w) ∈ M be defined as J(w) = u/∥u∥p, where u ∈ W 1,p
0 (Ω) is

the solution of −∆pu = |w|p−2w. Then it is easily seen that there exists k ≥ 2 such that

Jk−1(M) is bounded in L∞(Ω). By [8, 15, 20] it follows that Jk(M) is also bounded in

C1,α
loc (Ω), or even in C1,α(Ω) for some α ∈]0, 1[, if Ω satisfies (1.4).

Moreover, we have∫
Ω

|w|p−2w

(
u

∥∇u∥pp

)
dx =

∫
Ω

|∇u|p−2∇u · ∇
(

u

∥∇u∥pp

)
dx = 1

=

∫
Ω

|w|p dx =

∫
Ω

|∇u|p−2∇u · ∇w dx ≤ ∥∇u∥p−1
p ∥∇w∥p ,
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which implies, by the convexity of ∥ ∥pp,∥∥∥∥ u

∥∇u∥pp

∥∥∥∥p
p

≥ ∥w∥pp + p

∫
Ω

|w|p−2w

(
u

∥∇u∥pp
− w

)
dx = 1 ,

hence ∥∥∥∥∇( u

∥u∥p

)∥∥∥∥
p

≤ 1

∥∇u∥p−1
p

≤ ∥∇w∥p ,

namely ∥∇(J(w))∥p ≤ ∥∇w∥p.

Therefore Jk(M ∩ X̃−) is a bounded subset of L∞(Ω) and of C1,α
loc (Ω) (resp. C

1,α(Ω))

with Jk(M ∩ X̃−) ⊆ M ∩ X̃−. Since J is odd and continuous from the topology of Lp(Ω)

to that of W 1,p
0 (Ω), it follows that

Index
(
Jk(M ∩ X̃−)

)
= Index

(
M ∩ X̃−

)
= m

and that Jk(M ∩ X̃−) is strongly compact in W 1,p
0 (Ω). By the boundedness in C1,α

loc (Ω),

the set Jk(M ∩ X̃−) is also strongly compact in C1(Ω) (or even in C1(Ω), if we have the

boundedness in C1,α(Ω)). Now, if we set

X− =
{
tu : t ≥ 0 , u ∈ Jk(M ∩ X̃−)

}
,

it is clear that X− is a symmetric cone in W 1,p
0 (Ω) satisfying (a)–(d). Since Jk(M ∩ X̃−)

is compact inW 1,p
0 (Ω) with 0 ̸∈ Jk(M∩X̃−), we also have that X− is closed in Lp(Ω). �

3. Proof of the main results

Let Ω be a bounded open subset of Rn and let p > 1 with p2 ≤ n. For every ε > 0 we

set, as in [2],

u∗
ε(x) =

c(n, p) ε
n−p

p(p−1)(
ε

p
p−1 + |x|

p
p−1

)n−p
p

,

where c(n, p) > 0 is such that∫
Rn

|∇u∗
ε|p dx =

∫
Rn

|u∗
ε|p

∗
dx = Sn/p .

Up to a different parametrization with respect to ε, the family (u∗
ε) is the same of

[9, 12, 14]. Let also η : R −→ [0, 1] be a C∞-function such that η(s) = 1 for s ≤ 1/4 and
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η(s) = 0 for s ≥ 1/2. For every ε, ϱ > 0, we set

uϱ,ε(x) = η

(
|x|
ϱ

)
u∗
ε(x) .

Lemma 3.1. There exist C, σ > 0 such that∫
Rn

|∇uϱ,ε|p dx ≤ Sn/p + C(ε/ϱ)
n−p
p−1 ,(3.1) ∫

Rn

|uϱ,ε|p
∗
dx ≥ Sn/p − C(ε/ϱ)

n
p−1 ,(3.2) ∫

Rn

|uϱ,ε|p dx ≥

{
σεp − Cϱp(ε/ϱ)

n−p
p−1 if n > p2 ,

σεp log(ϱ/ε)− Cεp if n = p2 ,
(3.3)

for every ϱ, ε > 0.

Proof. Formulae (3.1) and (3.2) can be found in [2]. Formula (3.3) is similar. Let us

prove it for reader’s convenience. Since

uϱ,ε(ϱx) = ϱ−
n−p
p u1,ε/ϱ(x) ,

we have ∫
Rn

|uϱ,ε(x)|p dx = ϱn
∫
Rn

|uϱ,ε(ϱy)|p dy = ϱp
∫
Rn

|u1,ε/ϱ(y)|p dy .

On the other hand, it is well known (see e.g. [14]) that∫
Rn

|u1,ε(y)|p dy ≥

{
σεp − Cε

n−p
p−1 if n > p2 ,

σεp log(1/ε)− Cεp if n = p2 .

Then formula (3.3) easily follows. �

Now let x ∈ Ω and R > 0 be such that BR (x) ⊆ Ω and ∂ BR (x) ∩ ∂Ω ̸= ∅. If

x0 ∈ ∂ BR (x) ∩ ∂Ω and

xϱ = x0 + ϱ
x− x0

|x− x0|
,

we have that |xϱ − x0| = ϱ and Bϱ (xϱ) ⊆ Ω for every ϱ ∈]0, R].

Let ϑ : R → [0, 1] be a C∞-function such that ϑ(s) = 0 for s ≤ 1/2 and ϑ(s) = 1 for

s ≥ 1. Let also m ≥ 1 with λm < λm+1, let X+ be as in (2.2), X− be as in Theorem 2.3
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and let

eϱ,ε(x) = uϱ,ε(x− xϱ) ,

vϱ(x) = ϑ

(
|x− xϱ|

ϱ

)
v(x) for every v ∈ X− ,

Xϱ
− = {vϱ : v ∈ X−} .

Of course, Xϱ
− also is a symmetric cone in W 1,p

0 (Ω).

Lemma 3.2. Assume that Ω satisfies (1.4). Then there exists C > 0 such that

(3.4)

∫
Ω

|vϱ|p dx ≥
∫
Ω

|v|p dx− Cϱn+p

(∫
Ω

|v|p∗ dx
)p/p∗

,

(3.5)

∫
Ω

|vϱ|p
∗
dx ≥

∫
Ω

|v|p∗ dx− Cϱn+p∗
∫
Ω

|v|p∗ dx ,

(3.6)

∫
Ω

|∇vϱ|p dx ≤
∫
Ω

|∇v|p dx+ Cϱn
(∫

Ω

|v|p∗ dx
)p/p∗

,

for every v ∈ X− and ϱ ∈]0, R].

Moreover, there exists ϱ0 ∈]0, R] such that

eϱ,ε ̸∈ Xϱ
− and Xϱ

− is closed in Lp(Ω) ,

Xϱ
− ∩X+ = {0} , Index (Xϱ

− \ {0}) = Index
(
W 1,p

0 (Ω) \X+

)
= m,

for every ϱ ∈]0, ϱ0] and ε > 0.

Proof. Since Ω is smooth enough, according to Theorem 2.3 there exists C > 0 such that

(3.7)

{
v(x0) = 0

∥v∥∞ + ∥∇v∥∞ ≤ C∥v∥p
for every v ∈ X− .

For every v ∈ X− and ϱ ∈]0, R], we have∫
Ω

|vϱ|p dx ≥
∫
Ω

|v|p dx− Ln (Bϱ (xϱ)) sup
Bϱ(xϱ)

|v|p .

On the other hand, since v(x0) = 0 it holds

sup
Bϱ(xϱ)

|v| ≤ 2ϱ∥∇v∥∞ .
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Then (3.4) easily follows. The proof of (3.5) is similar. We also have∫
Ω

|∇vϱ|p dx ≤
∫
Ω

|∇v|p dx+ CLn (Bϱ (xϱ))

(
sup

Bϱ(xϱ)

|∇v|p + ϱ−p sup
Bϱ(xϱ)

|v|p
)

,

whence assertion (3.6).

From (3.4), (3.6) and (3.7) it follows that∫
Ω

|∇vϱ|p dx ≤ 1

2
(λm + λm+1)

∫
Ω

|vϱ|p dx ,

provided that ϱ is small enough. Therefore Xϱ
−∩X+ = {0}. Moreover, for every v ∈ X−

we have∫
Ω

|v|p dx ≤ (Ln (Bϱ (xϱ)))
1− p

p∗

(∫
Ω

|v|p∗ dx
) p

p∗

+

∫
Ω\Bϱ(xϱ)

|v|p dx

≤ S−1 (Ln (Bϱ (xϱ)))
1− p

p∗

∫
Ω

|∇v|p dx+

∫
Ω\Bϱ(xϱ)

|v|p dx

≤ S−1λm (Ln (Bϱ (xϱ)))
1− p

p∗

∫
Ω

|v|p dx+

∫
Ω\Bϱ(xϱ)

|v|p dx .

If ϱ is small enough, we get∫
Ω

|v|p dx ≤ C

∫
Ω\Bϱ(xϱ)

|v|p dx for every v ∈ X− .

First of all, it follows that eϱ,ε ̸∈ Xϱ
− and that we have vϱ = 0 only for v = 0. Since

{v 7→ vϱ} is continuous and odd from X− \ {0} to Xϱ
− \ {0}, it follows

Index (Xϱ
− \ {0}) ≥ Index (X− \ {0}) = Index

(
W 1,p

0 (Ω) \X+

)
= m.

Actually, equality holds, as Xϱ
− \{0} ⊆ W 1,p

0 (Ω)\X+. Finally, let (v
(k)) be a sequence in

X− with (v
(k)
ϱ ) convergent to some z in Lp(Ω). Then (v(k)) is bounded in Lp(Ω\Bϱ (xϱ)),

hence in Lp(Ω), hence in W 1,p
0 (Ω). Up to a subsequence, (v(k)) is Lp(Ω)-convergent to

some element of X−, whence z ∈ Xϱ
−. �

Now let f : W 1,p
0 (Ω) −→ R be the functional defined in (1.2).

Lemma 3.3. Assume that Ω satisfies (1.4) and that (1.5) holds. Let m ≥ 1 be such that

λm < λm+1, λm ≤ λ and let X− be as in Theorem 2.3. Then there exist δ > 0 and two
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sequences εk → 0+ and ϱk → 0+ with εk/ϱk → 0+ such that

sup
{
f (teϱk,εk + w) : t ≥ 0 , w ∈ Xϱk

−

}
≤ 1

n
Sn/p (1− δεpk)

n/p

for every k ∈ N.

Proof. Since Xϱ
− is a cone, it is easily seen that

sup
{
f (teϱ,ε + w) : t ≥ 0 , w ∈ Xϱ

−

}
=

1

n

[
sup

{∥∇(eϱ,ε + w)∥pp − λ∥eϱ,ε + w∥pp
∥eϱ,ε + w∥pp∗

: w ∈ Xϱ
−

}]n/p

=
1

n

[
sup

{(
∥∇eϱ,ε∥pp − λ∥eϱ,ε∥pp

)
+
(
∥∇w∥pp − λ∥w∥pp

)(
∥eϱ,ε∥p

∗

p∗ + ∥w∥p∗p∗
)p/p∗ : w ∈ Xϱ

−

}]n/p
,

as supt (eϱ,ε) ∩ supt (w) is negligible. Writing w = vϱ with v ∈ X−, the assertion we

need to prove takes the form

sup

{(
∥∇eϱ,ε∥pp − λ∥eϱ,ε∥pp

)
+
(
∥∇vϱ∥pp − λ∥vϱ∥pp

)(
∥eϱ,ε∥p

∗

p∗ + ∥vϱ∥p
∗

p∗

)p/p∗ : v ∈ X−

}
≤ S (1− δεp) .

On the other hand, by Lemmas 3.1, 3.2 and the fact that λm ≤ λ, we have(
∥∇eϱ,ε∥pp − λ∥eϱ,ε∥pp

)
+
(
∥∇vϱ∥pp − λ∥vϱ∥pp

)(
∥eϱ,ε∥p

∗

p∗ + ∥vϱ∥p
∗

p∗

)p/p∗
≤

(
S

n
p + C

(
ε
ϱ

)n−p
p−1 − λσεp + λCϱp

(
ε
ϱ

)n−p
p−1

)
+
(
Cϱn∥v∥pp∗ − λCϱn+p∥v∥pp∗

)
(
S

n
p − C

(
ε
ϱ

) n
p−1

+ ∥v∥p∗p∗ − Cϱn+p∗∥v∥p∗p∗
)p/p∗

.

Now, let εk → 0+ and let ϱk = µε
p2/n2

k with µ > 0 small enough, which will be determined

later. We need to show that, for every sequence (vk) in X−,

ε−p
k


(
S

n
p + C

(
εk
ϱk

)n−p
p−1 − λσεpk + λCϱpk

(
εk
ϱk

)n−p
p−1

)
+
(
Cϱnk∥vk∥

p
p∗ − λCϱn+p

k ∥vk∥pp∗
)

S

(
S

n
p − C

(
εk
ϱk

) n
p−1

+ ∥vk∥p
∗

p∗ − Cϱn+p∗

k ∥vk∥p
∗

p∗

)p/p∗
− 1


has strictly negative upper limit as k → ∞. Up to subsequences, it is enough to consider

the three cases:

(i) ∥vk∥p∗ → +∞,
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(ii) ∥vk∥p∗ → ℓ ∈]0,+∞[,

(iii) ∥vk∥p∗ → 0.

In case (i) we get(
S

n
p + C

(
εk
ϱk

)n−p
p−1 − λσεpk + λCϱpk

(
εk
ϱk

)n−p
p−1

)
+
(
Cϱnk∥vk∥

p
p∗ − λCϱn+p

k ∥vk∥pp∗
)

S

(
S

n
p − C

(
εk
ϱk

) n
p−1

+ ∥vk∥p
∗

p∗ − Cϱn+p∗

k ∥vk∥p
∗

p∗

)p/p∗
→ 0 ,

while in case (ii) we obtain(
S

n
p + C

(
εk
ϱk

)n−p
p−1 − λσεpk + λCϱpk

(
εk
ϱk

)n−p
p−1

)
+
(
Cϱnk∥vk∥

p
p∗ − λCϱn+p

k ∥vk∥pp∗
)

S

(
S

n
p − C

(
εk
ϱk

) n
p−1

+ ∥vk∥p
∗

p∗ − Cϱn+p∗

k ∥vk∥p
∗

p∗

)p/p∗

→ S
n
p

S
(
S

n
p + ℓp∗

)p/p∗ < 1 .

In both cases, the assertion easily follows. In case (iii), it is equivalent to consider,

neglecting higher order terms, the upper limit of

ε−p
k

S
n
p + C

(
εk
ϱk

)n−p
p−1 − λσεpk + Cϱnk∥vk∥

p
p∗

S
(
S

n
p + ∥vk∥p

∗

p∗

)p/p∗ − 1

 .

Since there exists a > 0 such that(
S

n
p + ∥vk∥p

∗

p∗

)p/p∗
≥ S

n
p∗ + a∥vk∥p

∗

p∗ ,

we have

ε−p
k

S
n
p + C

(
εk
ϱk

)n−p
p−1 − λσεpk + Cϱnk∥vk∥

p
p∗

S
(
S

n
p + ∥vk∥p

∗

p∗

)p/p∗ − 1



≤ ε−p
k

S
n
p + C

(
εk
ϱk

)n−p
p−1 − λσεpk + Cϱnk∥vk∥

p
p∗

SS
n
p∗ + aS∥vk∥p

∗

p∗

− 1



= ε−p
k

C
(

εk
ϱk

)n−p
p−1 − λσεpk + Cϱnk∥vk∥

p
p∗ − aS∥vk∥p

∗

p∗

S
n
p + aS∥vk∥p

∗

p∗

.
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By Young’s inequality, there exists C1 > 0 such that

Cϱnk∥vk∥
p
p∗ ≤ C1ϱ

np∗
p∗−p

k + aS∥vk∥p
∗

p∗ = C1ϱ
n2

p

k + aS∥vk∥p
∗

p∗ .

It follows

ε−p
k

S
n
p + C

(
εk
ϱk

)n−p
p−1 − λσεpk + Cϱnk∥vk∥

p
p∗

S
(
S

n
p + ∥vk∥p

∗

p∗

)p/p∗ − 1

 ≤ ε−p
k

C
(

εk
ϱk

)n−p
p−1 − λσεpk + C1ϱ

n2

p

k

S
n
p + aS∥vk∥p

∗

p∗

.

If we choose µ > 0 small enough to guarantee that

C1 ϱ
n2

p

k = C1 µ
n2

p εpk ≤
1

2
λσεpk ,

it only remains to control the term
(

εk
ϱk

)n−p
p−1

by requiring

n− p

p− 1
− p2

n2

n− p

p− 1
> p .

This is exactly assumption (1.5) and the assertion follows. �

Proof of Theorem 1.1. Let m ≥ 1 be such that λm ≤ λ < λm+1, let X+ be as in (2.2)

and X− be as in Theorem 2.3.

Since λ < λm+1, there exist r+, α > 0 such that f(u) ≥ α for every u ∈ X+ with

∥u∥ = r+. On the other hand, since λ ≥ λm, by Lemma 3.2 we also have, for every

v ∈ X−,

f(vϱ) ≤
C

p
ϱn∥v∥pp∗ −

λ

p
Cϱn+p∥v∥pp∗ −

1

p∗
∥v∥p

∗

p∗ +
C

p∗
ϱn+p∗∥v∥p

∗

p∗ ≤
1

2
α− 1

2p∗
∥v∥p

∗

p∗

if ϱ > 0 is small enough. Combining this fact with Lemmas 3.2 and 3.3, we see that

there exist ε, ϱ, δ > 0 such that eϱ,ε ̸∈ Xϱ
−, X

ϱ
− is closed in Lp(Ω) and

Xϱ
− ∩X+ = {0} , Index (Xϱ

− \ {0}) = Index
(
W 1,p

0 (Ω) \X+

)
= m,

sup
{
f (teϱ,ε + w) : t ≥ 0 , w ∈ Xϱ

−

}
≤ 1

n
Sn/p (1− δεp)n/p ,

sup
{
f(w) : w ∈ Xϱ

−

}
≤ 1

2
α .

Since Xϱ
− is closed in Lp(Ω), we have

∥teϱ,ε∥p∗ + ∥w∥p∗ ≤ b∥teϱ,ε + w∥p∗ for every t ∈ R and w ∈ Xϱ
−
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for some b > 0 (see also [7]). It follows that

f(u) → −∞ whenever ∥u∥ → ∞ with u ∈ Reϱ,ε +Xϱ
− .

In particular, there exists r− > r+ such that f(u) ≤ 0 whenever u ∈ Reϱ,ε + Xϱ
− with

∥u∥ = r−.

From Theorem 2.1 we deduce that f admits a Palais-Smale sequence at a level c with

0 < c < 1
n
Sn/p. On the other hand, by [14, Theorem 3.4] f satisfies the Palais-Smale

condition at such a level. Then f admits a critical point u with

0 < f(u) <
1

n
Sn/p .

Of course, u is a nontrivial weak solution of (1.1). �

Proof of Theorem 1.2. Since the general lines of the argument are the same, we only

point out the changes. This time, given B2R (x) ⊆ Ω, we set as in [2]

eϱ,ε(x) = uϱ,ε(x− x) ,

vϱ(x) = ϑ

(
|x− x|

ϱ

)
v(x) for every v ∈ X− .

Without any assumption on ∂Ω, we know from Theorem 2.3 that

sup
BR(x)

|∇v|+ sup
BR(x)

|v| ≤ C∥v∥p for every v ∈ X− .

Then Lemma 3.2 holds with (3.4), (3.5) and (3.6) substituted by

(3.8)

∫
Ω

|vϱ|p dx ≥
∫
Ω

|v|p dx− Cϱn
(∫

Ω

|v|p∗ dx
)p/p∗

,

(3.9)

∫
Ω

|vϱ|p
∗
dx ≥

∫
Ω

|v|p∗ dx− Cϱn
∫
Ω

|v|p∗ dx ,

(3.10)

∫
Ω

|∇vϱ|p dx ≤
∫
Ω

|∇v|p dx+ Cϱn−p

(∫
Ω

|v|p∗ dx
)p/p∗

.
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In the proof of Lemma 3.3, only case (iii) needs some adaptation. Neglecting higher

order terms, we have to consider the upper limit of

ε−p
k

S
n
p + C

(
εk
ϱk

)n−p
p−1 − λσεpk + Cϱn−p

k ∥vk∥pp∗

S
(
S

n
p + ∥vk∥p

∗

p∗

)p/p∗ − 1

 ,

which is less than or equal to

ε−p
k

C
(

εk
ϱk

)n−p
p−1 − λσεpk + Cϱn−p

k ∥vk∥pp∗ − aS∥vk∥p
∗

p∗

S
n
p + aS∥vk∥p

∗

p∗

.

By Young’s inequality, there exists C1 > 0 such that

Cϱn−p
k ∥vk∥pp∗ ≤ C1ϱ

(n−p)p∗
p∗−p

k + aS∥vk∥p
∗

p∗ = C1ϱ
(n−p)n

p

k + aS∥vk∥p
∗

p∗ ,

whence

ε−p
k

S
n
p + C

(
εk
ϱk

)n−p
p−1 − λσεpk + Cϱn−p

k ∥vk∥pp∗

S
(
S

n
p + ∥vk∥p

∗

p∗

)p/p∗ − 1



≤ ε−p
k

C
(

εk
ϱk

)n−p
p−1 − λσεpk + C1ϱ

(n−p)n
p

k

S
n
p + aS∥vk∥p

∗

p∗

.

Here we choose ϱk = µε
p2/(n−p)n
k with µ > 0 small enough to guarantee that

C1 ϱ
(n−p)n

p

k = C1 µ
(n−p)n

p εpk ≤
1

2
λσεpk .

In the end, to control the term
(

εk
ϱk

)n−p
p−1

, we have to require that

n− p

p− 1
− p2

(n− p)n

n− p

p− 1
> p .

This is exactly assumption (1.6) and the assertion follows. �

Proof of Theorem 1.3. We follow step by step the proof of Theorem 1.2, taking as x the

center of Ω and working in the space of radial functions. It is easily seen that the proof

of Theorem 2.3 and all the other constructions are compatible with radiality. Then the

assertion follows in a standard way. �
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Proof of Theorem 1.4. Again the proof is similar to that of Theorem 1.2. We only point

out the changes, concerning case (iii) in the proof of Lemma 3.3.

First of all, now λm < λ < λm+1. Since

∥∇vϱ∥pp − λ∥vϱ∥pp ≤ ∥∇v∥pp − λ∥v∥pp + Cϱn−p∥v∥pp∗ + Cϱn∥v∥pp∗

≤ −Sλ−1
m (λ− λm)∥v∥pp∗ + Cϱn−p∥v∥pp∗ + Cϱn∥v∥pp∗ ,

up to higher order terms, we have to consider the upper limit of

ε−p
k

S
n
p + C

(
εk
ϱk

)n−p
p−1 − λ∥eϱk,εk∥pp − Sλ−1

m (λ− λm)∥vk∥pp∗ + Cϱn−p
k ∥vk∥pp∗

S
(
S

n
p + ∥vk∥p

∗

p∗

)p/p∗ − 1

 .

In turn, it is enough to argue on the upper limit of

ε−p
k

S
n
p + C

(
εk
ϱk

)n−p
p−1 − λ∥eϱk,εk∥pp

SS
n
p∗

− 1

 = ε−p
k

C
(

εk
ϱk

)n−p
p−1 − λ∥eϱk,εk∥pp

S
n
p

.

Now, in both cases n > p2 and n = p2, it is easily seen that, for every sequence εk →

0+, there exists some sequence (ϱk), going to 0 slowly enough, which guarantees the

result. �

Proof of Theorem 1.5. It is enough to repeat the proof of Theorem 1.4 in the setting of

radial functions. �
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