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Abstract. We review and comment on some aspects of the spinor representation for constant
mean curvature one surfaces in hyperbolic space developed by Bobenko–Pavlyukevich–Spring-
born in [1]. The relations with the Bryant representation are addressed and some examples
are discussed.
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Introduction

This paper is concerned with the study of some aspects of the theory of
conformal immersions of Riemann surfaces in hyperbolic 3-space whose mean
curvature is constant equal to one (CMC 1 surfaces). In the seminal paper [4],
Bryant showed that associated with any CMC 1 surface f : S → H3 there exists
a multi-valued holomorphic null immersion Ψ of S into SL(2,�) and that the
hyperbolic projection of such a Ψ is well defined on S and gives back the original
f . This lead to a representation for CMC 1 surfaces in terms of holomorphic data
which in general are not defined on the same Riemann surface as the conformal
immersion.

After [4], the subject of CMC 1 surfaces has quickly taken hold as a rich and
independent field of research (cf. [11]). Recently, Bobenko, Pavlyukevich and
Springborn [1] have developed a representation for CMC 1 surfaces in terms

iThis work is partially supported by the MIUR project “Metriche riemanniane e varietà
differenziabili”

iiThis work is partially supported by the MIUR project “Proprietà geometriche delle varietà
reali e complesse”
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318 E. Musso, L. Nicolodi

of a pair of holomorphic spinor fields which are defined on the same Riemann
surface as the immersion. (A similar approach was also used in the study of
minimal surfaces in Euclidean space [9].) This representation allows the direct
implementation of special functions in the study of CMC 1 surfaces and results
in an extremely effective computational tool when discussing specific examples.
Using this representation, Bobenko–Pavlyukevich–Springborn [1] clarified the
geometry of known examples such as CMC 1 twonoids and derived explicit for-
mulas for CMC 1 trinoids, which were implicitly classified by Umehara–Yamada
using indirect methods [12].

Yet, several theoretical aspects of this spinor approach and the relations with
the original construction of Bryant remain unclear (at least to these readers).
Our purpose is to clarify these aspects by reformulating the original results of
Bryant and Bobenko–Pavlyukevich–Springborn using the language of moving
frames, the theory of flat connections on principal bundles and their holonomies.
We explain why special functions can be effectively implemented within the
theory of CMC 1 surfaces and discuss the structure underlying the examples
considered in [1], [2] and [4]. In perspective, another purpose of this work is to
provide a common background for the classical differential-geometric approach
to CMC 1 surfaces and the algebraic-geometric one, recently developed by Pirola
[10].

The paper is organized as follows. Section 1 collects some definitions and
basic facts about spinors, suitably adapted to the purpose. Section 2 is devoted
to the construction of the spinor structure and the pair of canonical spinor fields
associated with any conformal immersion of a Riemann surface in H3. Section
3 is concerned with the reformulation of the fundamental results of Bryant and
Bobenko–Pavlyukevich–Springborn, and discusses the relations between CMC
1 surfaces and special functions. Section 4 discusses some examples, including
twonoids and the related examples of Bohle and Peters [2], and the trinoids
of Bobenko–Pavlyukevich–Springborn. Many explicit computations involving
hypergeometric functions, as well as routine programs for the visualization of
CMC 1 surfaces in hyperbolic space can be performed with Mathematica.1

For hypergeometric and other special functions we refer to [15], [7].

1 Preliminaries and notations

1.1 Some relevant geometry

The Minkowski 4-space 4 with the standard Lorentzian inner product

〈 , 〉 = −(x0)2 + (x1)2 + (x3)2 + (x3)2

1cf. the notebook at http://www-sfb288.math.tu-berlin.de/~bobenko.
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The spinor representation of CMC 1 surfaces 319

is identified with the space H(2) of 2× 2 Hermitian matrices by

(x0, x1, x2, x3) ∈ 4 �→
(

x0 + x3 x1 + ix2

x1 − ix2 x0 − x3

)
∈ H(2).

In this model, the Lorentzian inner product can be written as

〈M,M〉 = −detM, M ∈ H(2).

As a consequence, hyperbolic 3-space H3 can be identified with the space-like
hypersurface

{M ∈ H(2) |det M = 1, trM > 0} (1)

endowed with the induced metric. The group SL(2,�) acts isometrically and
transitively on H3 by

A ·M = AMA∗

for all M ∈ H(2), A ∈ SL(2,�), where A∗ stands for the conjugate transpose of
A. Then, the canonical projection

π : A ∈ SL(2,�) �→ AA∗ ∈ H3

gives SL(2,�) the structure of a principal bundle with structure group SU(2).
Let Ω = A−1dA be the holomorphic Maurer-Cartan form of SL(2,�) and Ω =
Ω0 + Ω1 its decomposition into skew-Hermitian and Hermitian parts given by

Ω0 =
1
2
(Ω− Ω∗) =

1
2

(
iω2

1 ω3
1 + iω3

2

−ω3
1 + iω3

2 −iω2
1

)
,

Ω1 =
1
2
(Ω + Ω∗) =

1
2

(
ω3

0 ω1
0 + iω2

0

ω1
0 − iω2

0 −ω3
0

)
.

It follows that Ω1 is semibasic for the projection π and that Ω0 defines the
spinorial Levi-Civita connection of H3. In terms of the above decomposition,
the structure equations of SL(2,�) amount to

dΩ0 + Ω0 ∧ Ω0 = −Ω1 ∧ Ω1, dΩ1 = −Ω0 ∧ Ω1 − Ω1 ∧Ω0. (2)

1.2 Spin structures

A spin structure on a Riemann surface S is a holomorphic line bundle Σ→ S
such that Σ ⊗ Σ is the holomorphic cotangent bundle Λ1,0S. A complex coor-
dinate system (U, z) of S is said to be admissible if there exists a holomorphic
section

√
dz : U → Σ such that

√
dz ⊗ √dz = dz. The triple (U, z,

√
dz) will

____________________________________________________________________________



320 E. Musso, L. Nicolodi

be called an s-complex chart on S. Spin structures do exist on any Riemann
surface (cf. [9]).

The holomorphic sections of a spin structure are referred to as holomorphic
spinors. If P and Q are holomorphic spinors, then their product PQ is a holo-
morphic 1-form. If P is a spinor and (U, z,

√
dz) is an s-complex chart, we set

P|U = P
√

dz, where P : U → � is a holomorphic function, referred to as the
component of P with respect to (U, z,

√
dz).

2 The spin structure of an oriented surface in H3

Let f : S → H3 be a conformal immersion of a connected Riemann surface
S. The bundle of zeroth order frame fields along f is the principal SU(2)-bundle
over S defined by

P0(f) = {(p,A) ∈ S × SL(2,�) : f(p) = AA∗} → S.

Let
Σf (S) = P0(f)×SU(2) �

2 → S

be the associated �2-vector bundle. This is a topologically trivial rank-two com-
plex vector bundle endowed with a Hermitian metric. The restriction of Ω0 on
P0(f) is an SU(2)-connection which induces a Hermitian covariant derivative
Df on Σf (S). As a consequence, there exists a unique holomorphic structure
on Σf (S) whose holomorphic sections are characterized by the fact that the
(0, 1)-part of their covariant derivatives vanishes identically.2

Next, consider the unit normal vector field along f compatible with the
orientation of S, i.e., the unique map

N : S → H(2)

such that

detN = −1, 〈N, f〉 = 0, 〈N, df〉 = 0, if ∧ ∂f ∧ ∂̄f ∧N > 0. (3)

The bundle of first order frame fields along f is defined by

π1 : P1(f) = {(p,A) ∈ P0(f) : N(p) = Ae3A
∗} → S,

where e1, e2, e3 denotes the (complex conjugate) Pauli matrices

e1 =
(

0 1
1 0

)
, e2 =

(
0 i
−i 0

)
, e3 =

(
1 0
0 −1

)
.

2On a Riemann surface S, Λ2S = Λ1,1S, so every Hermitian connection on a complex
vector bundle over S defines a holomorphic structure. This is a standard fact in the theory of
Hermitian vector bundles on a Riemann surface (cf. [8], [14]).

___________________________________________________________________________



The spinor representation of CMC 1 surfaces 321

The structure group of P1(f) is

eiθ ∈ U(1) → A(θ) =
(

eiθ 0
0 e−iθ

)
∈ SU(2).

On P1(f), the 1-form ω3
0 vanishes identically, while the differential forms

ω1
0 ∧ ω2

0 , (ω1
0)

2 + (ω2
0)

2

are semibasic and invariant under the action of the structure group. Their
projections to S give the area element dAf and the first fundamental form
If = 〈df, df〉 of the immersion, respectively. Moreover, the conformal property
of f implies that the semibasic complex-valued 1-form

ω := ω1
0 + iω2

0

is of type (1, 0).3 The off-diagonal term of Ω0,

υ =
1
2
(ω3

1 + iω3
2)

is semibasic. Differentiating the equation ω3
0 = 0 yields

υ ∧ ω̄ − ω ∧ ῡ = 0,

which implies the existence of smooth functions

h11, h22, h12 : P1(f)→ �

such that
υ =

1
4
(h11 + h22)ω +

1
4

((h11 − h22) + ih12) ω̄.

Moreover, an easy inspection shows that

〈dN, df〉 = h11(ω1
0)

2 + 2h12ω
1
0ω

2
0 + h22(ω2

0)
2.

This means that the hij ’ are the coefficients of the second fundamental form of
the immersion. The diagonal part of Ω0

ρ =
1
2

(
iω2

1 0
0 −iω2

1

)
defines a U(1)-connection on the bundle of first order frames, which is referred
to as the spinorial Levi-Civita connection of If .

3This means that ω belongs to the ideal generated by π∗
1(Λ1,0S).

____________________________________________________________________________



322 E. Musso, L. Nicolodi

The first order frame bundle induces a splitting of Σf into the orthogonal
direct sum of two rank one subbundles

Σf = Σ+
f ⊕ Σ−

f

defined by
Σ+
f = P1(f)×r+ �, Σ−

f = P1(f)×r− �,

where r± are the representations

r+ : A(θ) ∈ U(1) ⊂ SU(2) → eiθ, r− : A(θ) ∈ U(1) ⊂ SU(2) → e−iθ.

The spinorial Levi-Civita connection defines Hermitian covariant derivatives D+

and D− on Σ+
f and Σ−

f , respectively. On these line bundles, we then consider
the corresponding holomorphic structures. Note that Σ+

f and Σ−
f are not holo-

morphic sub-bundles of Σf .
Let Σ̃+

f denote the dual bundle of Σ+
f .

1 Proposition. The holomorphic line bundle Σ̃+
f → S defines a spin struc-

ture on the Riemann surface S.

Proof. For a given first order frame field represented by the lift

Φ = (Φ1,Φ2) : U→ SL(2,�),

consider the nowhere vanishing Σ+
f ⊗ Σ+

f -valued 1-form of type (1, 0) locally
defined by

σ|Φ = Φ∗(ω)⊗ (Φ1 ⊗ Φ1).

The induced vector bundle isomorphism is denoted by

σ̃ : T 1,0S → Σ+
f ⊗ Σ+

f .

If on Λ1,0S ⊗ (Σ+
f ⊗ Σ+

f ) we consider the tensor product of the Levi-Civita
covariant derivative of Λ1,0S with the spinorial covariant derivative on Σ+

f it
is easily seen that the section σ is parallel and hence σ̃ is an isomorphism of
holomorphic vector bundles. This yields the required result. QED

2 Definition. We call Σ̃+
f the canonical spin structure of the conformal

immersion f .

3 Remark. The holomorphic bundles T 1,0S and Λ1,0S will be implicitly
identified with Σ+

f ⊗ Σ+
f and Σ̃+

f ⊗ Σ̃+
f , respectively, via the holomorphic iso-

morphisms constructed in the proof of the previous proposition.
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The spinor representation of CMC 1 surfaces 323

Let Φ : U ⊂ S → SL(2,�) be a first order frame field along f . The first
column vector Φ1 : S → �2 can be viewed as a section of the spinor bundle
Σ+
f . Under the above identification, Φ1 ⊗ Φ1 is the nowhere vanishing (1, 0)

differential form Φ∗(ω). For brevity, we adopt the unconventional notation Φ1 =√
Φ∗(ω). Next, consider the two local sections P|Φ and Q|Φ of Σ̃+

f defined by

P|Φ = iΦ2
1

√
Φ∗(ω), Q|Φ = iΦ1

1

√
Φ∗(ω), (4)

where Φ1
1 and Φ2

1 are the components of Φ1. It is now easy to check that this
definition is independent of the choice of first order frame fields. Thus there exist
two global sections Pf and Qf of Σ̃+

f such that Pf |U = P|Φ and Qf |U = Q|Φ,
for every first order frame field Φ : U → SL(2,�).

4 Definition. We call Pf and Qf the Bobenko–Pavlyukevich–Springborn
(BPS) spinor fields of f .

5 Remark. From the definition it follows that Pf and Qf have no common
zeroes.

6 Remark. Although not invariant under the action of SL(2,�), the BPS
spinor fields are equivariant in the sense that(

P(A · f)
Q(A · f)

)
= (e2Ae2)

(
P(f)
Q(f)

)
, (5)

for every conformal immersion f : S → H3 and every A ∈ SL(2,�).

On the bundle of first order frames, consider the SU(2)-valued 1-form given
by

θ = Ω0 +
1
2

(
0 −ω
ω̄ 0

)
. (6)

The form θ uniquely extends to an SU(2)-connection on the zeroth order frame
bundle P0(f). We will still denote this connection by θ.

7 Definition. We call θ the Bryant connection of the conformal immersion
f . This modified connection is Hermitian and hence determines on Σf a new
holomorphic structure.

3 The spinor approach to CMC 1 surfaces

3.1 The first basic theorem

Retaining the terminology and notation introduced above, we now examine
the first basic result in the theory of CMC 1 surfaces (cf. [4], [1]).

____________________________________________________________________________



324 E. Musso, L. Nicolodi

8 Theorem. Let S be a Riemann surface and f : S → H3 be a conformal
immersion. Then the following statements are equivalent:

(1) The mean curvature Hf is identically equal to one.

(2) The Bryant connection is flat.

(3) Σ+
f is a holomorphic line subbundle of Σf , where Σf is endowed with the

holomorphic structure induced by the Bryant connection.

(4) The BPS spinor fields Pf and Qf are holomorphic.

Proof. (1) ⇔ (2). From the structure equation (2), it follows that the curvature
of the Bryant connection is given by

dθ + θ ∧ θ =
(

i(1−Hf ) 0
0 −i(1−Hf )

)
dAf . (7)

This shows that the Bryant connection is flat if and only if Hf ≡ 1.
(1) ⇔ (3). Notice that the line bundle Σ+

f is a holomorphic subbundle of Σf

with the holomorphic structure induced by the Bryant connection if and only if
the (0, 1)-part of θ2

1 vanishes identically. On the other hand, from the expression
(6) of θ we have

θ2
1 =

1
2
(1−Hf )ω̄ − 1

4
[(h11 − h22)− ih12]ω.

This implies that Hf ≡ 1 if and only if Σ+
f is a holomorphic subbundle of Σf

(with the holomorphic structure induced by the Bryant connection).
(4) ⇔ (3). By the definition (6) of the Bryant connection, it follows that

Ω = θ + Jω,

where J is the nilpotent element of SL(2,�) given by J =
(

0 1
0 0

)
. We then

have

dΦ1
1 = θ1

1Φ
1
1 + θ2

1Φ
1
2, dΦ2

1 = θ1
1Φ

2
1 + θ2

1Φ
2
2, D+(Φ1) = −θ1

1 ⊗ Φ1,

which implies

D+(P) = iD+(Φ2
1Φ1) = iΦ2

2θ
2
1 ⊗ Φ1,

D+(Q) = iD+(Φ1
1Φ1) = iΦ1

2θ
2
1 ⊗ Φ1.

Since Φ2
2 and Φ1

2 have no common zeroes, it follows that P, Q are holomorphic
sections of Σ̃+

f if and only if the (0, 1)-part of θ2
1 vanishes identically if and only

if Σ+
f is a holomorphic subbundle of Σf . QED

___________________________________________________________________________



The spinor representation of CMC 1 surfaces 325

3.2 The second basic theorem

9 Definition. Let f : S → H3 be a CMC 1 conformal immersion. By Pf

and Qf , define the SL(2,�)-valued 1-form

ν(Pf ,Qf ) =
(

PfQf −Q2
f

P2
f −PfQf

)
. (8)

This form is holomorphic and isotropic, in the sense that det ν = 0. Next,
consider the associated linear system

dΨΨ−1 = ν(Pf ,Qf ). (9)

We call ν(Pf ,Qf ) the holomorphic isotropic differential of f and refer to (9) as
the Bobenko–Pavlyukevich–Springborn (BPS) linear system of f .

10 Definition. A zeroth order frame field Ψ : U ⊂ U → SL(2,�) along f
is called a holomorphic isotropic lift of f if Ψ is holomorphic and det (dΨ) ≡ 0.

The second main result of the theory is the following (cf. [4], [1]).
11 Theorem. Let f : S → H3 be a CMC 1 conformal immersion. Then

the following statements are equivalent:

(1) Φ : U→ SL(2,�) is a parallel section of the Bryant connection.

(2) Φ : U→ SL(2,�) is a holomorphic isotropic lift of f .

(3) Φ : U → SL(2,�) is a zeroth order frame field satisfying the BPS linear
system of f .

Proof. (1) ⇒ (2). First, we prove that the parallel sections of the canonical
connection are holomorphic isotropic lifts. Since this is a local property, we may
assume that a parallel section Ψ : U ⊂ S → SL(2,�) can be factorized as
Ψ = FA, where F : U→ SL(2,�) is a first order frame field and A : U→ SU(2)
is a smooth function. We then have

F ∗(θ) = F−1dF − JF ∗(ω),

where J is the nilpotent element of SL(2,�) given by

J =
(

0 1
0 0

)
.

From Ψ∗(θ) = 0, we obtain

A−1dA = −A−1
(
F−1dF − JF ∗(ω)

)
A,

____________________________________________________________________________



326 E. Musso, L. Nicolodi

which implies

Ψ−1dΨ = A−1dA + A−1F−1dFA = A−1JAF ∗(ω).

On the other hand, F ∗(ω) is of type (1, 0) and det(J) = 0, which implies that
Ψ is holomorphic and isotropic.

(2) ⇒ (1). Now, let Ψ′ : U ⊂ S → SL(2,�) be a holomorphic isotropic lift.
We may assume that Ψ′ = ΨA, where Ψ : U → SL(2,�) is a parallel lift and
A : U→ SU(2) is a smooth function. Since Ψ and Ψ′ are holomorphic, then A is
holomorphic too. But SU(2) is a real form of SL(2,�) and hence A is constant.
This implies that Ψ′ is parallel.

(2) ⇔ (3). It is clear that if a zeroth order frame field Ψ satisfies the BPS
linear system, then it is holomorphic and isotropic. Conversely, let Φ : U →
SL(2,�) be any zeroth order holomorphic section (a priori we do not need the
assumption that Ψ is isotropic). Write Ψ = ΦA, where Φ : U → SL(2,�) is
a first order frame and A : U → SU(2) is a smooth map. Differentiation of
Ψ = ΦA yields

dΨΨ−1 = Φ
(
Ω + dAA−1

)
Φ−1. (10)

Let

dAA−1 =
(

iα1
1 −ᾱ2

1

α2
1 −iα1

1

)
,

where α1
1 is real-valued. Since Ψ is holomorphic, the (0, 1)-part of the left hand

side of equation (10) vanishes identically. This implies that

iα1
1 = −Ω1

1, α2
1 = Ω2

1.

We then have
dΨΨ−1 = ΦJΦ−1ω.

Computing ΦJΦ−1 we find

dΨΨ−1 =
( −Φ1

1Φ
2
1 (Φ1

1)
2

−(Φ2
1)

2 Φ1
1Φ

2
1

)
ω.

From (4), it follows that

P|Φ = iΦ2
1

√
ω, Q|Φ = iΦ1

1

√
ω,

and hence dΨΨ−1 = ν(Pf ,Qf ). QED

12 Remark. The equivalences of (1) and (2) in Theorem 8 and of (1) and
(2) of Theorem 11 are essentially due to Bryant [4], while the equivalences of
(1) and (4) in Theorem 8 and of (2) and (3) in Theorem 11 have been proved
by Bobenko–Pavlyukevich–Springborn in [1]

___________________________________________________________________________



The spinor representation of CMC 1 surfaces 327

3.3 Some comments on Bryant surfaces

An interesting class of CMC 1 surfaces in H3 is that of the so-called Bryant
surfaces, that is, CMC 1 conformal immersions defined on a punctured compact
Riemann surface. One of the basic theorem of the theory (cf. [4]) affirms that
every complete CMC 1 conformal immersion with finite total curvature is in
fact a Bryant surface.

13 Proposition. If f : S → H3 is a complete CMC 1 conformal immersion
with finite total curvature, then S = S̃ \ {p1, . . . , pk}, where S̃ is a compact
Riemann surface and p1, . . . , pk ∈ S̃.

As a consequence of the previous discussion, one sees that Bryant surfaces
can be implicitly defined by two meromorphic spinor fields (P,Q) with no com-
mon zeroes on a compact Riemann surface S. The reconstruction of the immer-
sion f goes as follows:

(1) Consider |D| = {p1, . . . , pk}, the set of poles of the spinor fields.

(2) Solve the linear system dΨΨ−1 = ν(P,Q) on the universal covering Ŝ of
S \ |D|.

(3) Then f̃ = ΨΨ∗ : Ŝ → H3 is a Bryant surface whose spinor fields are the
pull-backs of P and Q via the covering map of Ŝ onto S \ |D|.

However, in general f̃ is not invariant under the deck transformations of the
universal covering and henceforth it does not defines a Bryant immersion. From
a conceptual viewpoint, let start from a pair of meromorphic spinor fields (P,Q)
with no common zeroes on a compact Riemann surface Ŝ, and let ∆(P,Q)
denote the set of the poles of P and Q. Then the solutions of the linear system

dΨΨ−1 = ν(P,Q)

originate an SL(2,�)-valued sheaf on S = Ŝ\∆(P,Q) whose transition functions
are locally constant. This means that this sheaf generates an SL(2,�)-principal
bundle

B(P,Q) → S (11)

endowed with a flat SL(2,�)-connection β(P,Q).

14 Definition. The pair (P,Q) is said unitarizable if the holonomy group
Hol(P,Q, p) of β(P,Q) (computed with respect to some base point p ∈ S) is
conjugate to a subgroup of SU(2).

15 Proposition. The pair (P,Q) arises from a Bryant immersion if and
only if it is unitarizable.

____________________________________________________________________________



328 E. Musso, L. Nicolodi

Proof. Suppose that there exists R ∈ SL(2,�) such that

RHol(P,Q, p)R−1 ⊂ SU(2).

Consider the holonomy bundle

Bh(P,Q, p) → S

of β(P,Q) with respect to the base point p ∈ S. Two parallel local cross sections
are represented by holomorphic maps

Ψ : U ⊂ S → SL(2,�), Ψ′ : U′ ⊂ S → SL(2,�)

and the corresponding transition function is a locally constant map

A : U ∩ U′ → Hol(P,Q,p).

This implies that if we denote by {(Uj ,Ψj)}j∈J the collection of local parallel
sections of Bh(P,Q, p), then the transition functions of the modified family
{(Uj ,ΨjR

−1)} take values in SU(2). Thus there exists a well-defined Bryant
immersion f : S → H3 such that

f|Uj
= ΨjR

−1(R−1)∗Ψ∗
j , ∀j ∈ J.

It is clear that P and Q coincide with the two BPS spinor fields of f . The
converse can be proved by similar arguments. QED

16 Remark. Note that (P,Q) is a unitarizable pair if and only if the
induced covariant derivative on the �2-vector bundle B(P,Q)×SL(2,�)�

2 admits
a parallel Hermitian metric.

From the above discussion it follows that the study of Bryant surfaces in
H3 can ultimately be reduced to the study of unitarizable pairs of meromorphic
spinor fields on compact Riemann surfaces.

3.4 Bryant surfaces and special functions

In this section we use the spinor approach in a more concrete fashion. The
question is how to produce Bryant immersions starting from a pair of meromor-
phic spinor fields (P,Q) on the Riemann sphere S2 = � ∪ {∞}. The following
remark turns out to be important for the construction of explicit examples.

17 Remark. Consider the linear system of ODE

Φ′ = LΦ (12)

___________________________________________________________________________



The spinor representation of CMC 1 surfaces 329

where L : S2 → SL(2,�) is a meromorphic map given by

L =
(

a b
c −a

)
,

being a, b, c meromorphic functions on S2. The components of either column
vector (x, y)T of a solution Φ are linearly independent solutions of the system

x′ = ax + by, y′ = cx− ay.

If c 	= 0, then

x =
1
c
(y′ + ay)

and substitution into the first equation yields the second order linear ODE

S+(y, L) = y′′ − c′

c
y′ +

(
a′c− ac′

c
− (a2 + cb)

)
y = 0. (13)

Interchanging the role of the two variables, if b 	= 0, then x must satisfy

S−(x,L) = x′′ − b′

b
x′ +

(
ab′ − a′b

b
− (a2 + cb)

)
x = 0. (14)

Therefore, the general solutions Φ : U ⊂ S2 → SL(2,�) of (12) can be ob-
tained from a pair of linearly independent solutions of (13) or of (14). In fact,
contemplate fundamental local solutions (h±

1 , h±
2 ) : U → S2 of (13) and (14),

respectively, and put

M+ =

⎛⎝ 1
c

(
dh+

1

dz
+ ah+

1

)
1
c

(
dh+

2

dz
+ ah+

2

)
h+

1 h+
2

⎞⎠ ,

M− =

⎛⎝ h−
1 h−

2

1
b

(
dh−

1

dz
− ah−

1

)
1
b

(
dh−

2

dz
− ah−

2

) ⎞⎠ .

It is easily checked that detM± is a non-zero constant and, more importantly,
that the general solutions of (12) are of the form

Φ±(h±
1 , h±

2 , A) =
1√

detM±
M±A, (15)

for some A ∈ SL(2,�).

____________________________________________________________________________



330 E. Musso, L. Nicolodi

We now apply these observations to our specific situation. Given a pair
(P,Q) of meromorphic spinors on S2, write P = P

√
dz and Q = Q

√
dz, where

P and Q are meromorphic functions. Then the local problem amounts to inte-
grating the linear system

Ψ′ =
(

PQ −Q2

P 2 −PQ

)
Ψ.

The previous remark tells us how to recover its solutions from the second order
ODE

d2h

dz2
− 2

P

dP

dz

dh

dz
−
(

dP

dz
Q− P

dQ

dz

)
h = 0 (16)

when P 2 	= 0, or the analogous equation when Q2 	= 0. For special choices of
P and Q one can integrate (16) in terms of special functions. Assume we are
in this case (otherwise, there is no hope to explicitly solve the problem). Let
∆ = {p1, . . . , pk} be the set of poles of the spinor fields, then the local solutions
h1 and h2 around pj are special functions defined on �∪{∞}minus a cut Cj , that
is a curve starting from pj and not containing the other poles of the spinor fields.
Thus, one can explicitly produce a complete family F = {Uj,Ψj}j∈{1,...,k} of local
solutions.4 If a complete family F has been constructed, then the unitarizability
problem can be solved as follows:

• Take a small circle around the pole pj, say

γj(t) = rj(cos(θ) + i sin(t))− pj,

and choose the radius so that the circle intersects the cut Cj only in one
point, say γj(tj).

• Then compute the two limits

B+
j = lim

s→0+
Ψj [γj(tj + s)], B−

j = lim
s→0−

Ψj [γj(tj + 2π + s)].

• Define the corresponding monodromy matrix Aj ∈ SL(2,�) by

Aj = (B+
j )−1B−

j .

The set A = {A1, . . . , Ak} gives the monodromy data of the family F.

18 Definition. We say that a complete family F of local solutions is uni-
tarizable if there exists R ∈ SL(2,�) such that R−1AjR ∈ SU(2), j = 1, . . . , k.
The matrix R is said to be a unitarization of the family.

4The term “complete” simply means that S =
S

j Uj .
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If F is unitarizable and if R is a unitarization, then the modified family

FR = {(Uj ,ΨjR)}
originates a well-defined Bryant immersion f : S2 \∆ → H3 such that

f|Uj
= ΨjRR∗Ψ∗

j , j = 1, . . . , k.

Moreover P and Q are exactly the spinor fields of f . By this procedure one can
construct Bryant surfaces with prescribed spinor fields.

The final problem is to understand the moduli space of the Bryant surfaces
with assigned spinor fields. The appropriate equivalence relation is the obvious
one.

19 Definition. Two Bryant immersions f, f ′ : S → H3 are said equivalent
if there exist a biholomorphic map h : S → S and an element A ∈ SL(2,�) such
that f ′ = A(f ◦ h)A∗.

20 Remark. The problem of producing an explicit family of local solutions
of (16) can be rather tricky. In fact, it may happens that (16) is not directly
solvable. In this case, one has to find an explicit holomorphic map G : S \
∆ → PSL(2,�)5 such that the second order differential equation defined by the
modified linear system

Φ′ = G
(
ν(P,Q) + G−1G′)G−1Φ, (17)

can be solved in term of special functions. The most difficult point in the whole
construction is the determination of a unitarizable family. In general, unitariz-
able families seems to be rather special and in most cases do not exist at all
(also when (16) or a gauge-equivalent equation can be solved explicitly). The
analysis of this problem is intrinsically related to the study of the monodromies
of Fuchsian equations which by itself represents an interesting and rich field of
research (cf. [13] and the bibliography therein).

21 Remark. Of particular interest in the applications are the spinor pairs
(P,Q) of hypergeometric type, i.e., meromorphic spinors on S2 for which it is
possible to construct an explicit gauge transformation

G : S2 \∆ → PSL(2,�)

such that the second order ODE defined by (17) takes the form

d2y

dz2
+
(

1− a− a′

z
+

1− b− b′

z − 1

)
dy

dz
+
(

bb′

z − 1
− aa′

z
+ cc′

)
y

z(z − 1)
= 0, (18)

5Here PSL(2,�) is the projective group SL(2,�)/�2, where �2 is the center of SL(2,�).
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where the coefficients satisfy the relation

a + a′ + b + b′ + c + c′ = 1.

In this case, (18) can be explicitly solved in terms of confluent hypergeometric
functions. To our knowledge, not much is known about unitarizable hypergeo-
metric spinor pairs. Explicit examples have been carefully analyzed by Bobenko–
Pavlyukevich–Springborn in [1], but it is not clear if they exhaust the family
of all unitarizable spinor pairs of hypergeometric type. We shall discuss these
example in the next section.

22 Remark. A rather exceptional class is that of exact spinor pairs, that
is meromorphic spinors (P,Q) on S2 for which there exists an explicit gauge
transformation G : S2 \∆ → PSL(2,�) such that the second order ODE defined
by (17) admits two linearly independent meromorphic solutions defined on all
S2. For an exact pair, the linear system admits a univalent meromorphic solu-
tions Ψ : S2 → SL(2,�). The only known examples are related to the “integral”
twonoids and will be analyzed in the next section.

23 Remark. In the next section, we show how this approach has been
successfully applied to Bryant immersions of the punctured sphere, when the
spinor fields have two or three simple poles.

4 Examples

4.1 Twonoids (cf. [4], [1])

A twonoid is a Bryant surface defined on S2 \ {0,∞} by a pair of spinor
fields of the form

P =
(p0

z
+ p∞

)√
dz, Q =

(q0

z
+ q∞

)√
dz.

Using the SL(2,�)-equivariance and a reparametrization of the form z → az,
one can assume that

p∞ = q0 = 0, p0 = q∞ = i
√

m(m + 1),

where
m ∈ � \ {0,−1}.

By (14), the corresponding second order differential equation becomes

y′′ −m(m + 1)z−2y = 0.
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Under the additional assumption m 	= −1/2, two linearly independent solu-
tions of the equation are given by the multi-valued functions h1(z) = zm+1 and
h2(z) = z−m. According to Remark 17, it follows that the isotropic lifts can
be represented, up to right multiplication by an element of SL(2,�), by the
multi-valued map

Ψm =
1√−2m− 1

(
mzm+1 (m + 1)z−m

(m + 1)zm mz−(m+1)

)
. (19)

The monodromy of Ψm around the origin is

Mm =
(

e−2mπi 0
0 e2mπi

)
,

which is unitary (and unitarizable) if and only if m ∈ �. This explains the
reason why, for real values of the parameter m, the hyperbolic projections of
the multi-valued maps Ψm generate well defined Bryant immersions

fm : S2 \ {0,∞} → H3,

also known as the catenoid cousins. A short computation shows that

fm(z) = − 1
2m + 1

Xm(z)
( |z|2m 0

0 |z|−2m

)
Xm(z)∗,

where

Xm(z) =
(

mz m + 1
m + 1 mz−1

)
.

These are surfaces of revolution, whose profile curve is embedded for m ∈
(−1

2 , 0), and has a simple self-intersection otherwise.
Now, a natural question arises whether there exist twonoids which are not

equivalent to a catenoid cousin. This can happen only if m is half-integer. In
this case Mm = ±I and therefore, taking any non-diagonal A ∈ H3 ⊂ H(2)
the hyperbolic projection of the multi-valued isotropic curve ΨmA originates a
well-defined Bryant immersion denoted by

A fm : S2 \ {0,∞} → H3.

These new examples are not equivalent (neither isometric) to a catenoid cousin.
24 Remark. It is worth observing that the catenoid cousins have a conti-

nuous symmetry group (i.e., the rotational group around the axis of revolution).
The other twonoids do not enjoy this property. However, they admit a non-trivial
finite group of symmetries. More precisely,
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• if the parameter m is an integer, then they have a finite symmetry group
isomorphic to �2 × �2m+1;

• if m = h + 1/2 (with h ∈ �) is half-integer, then the corresponding sym-
metry group is isomorphic to �2 × �2h.

Another remarkable geometric property satisfied by all twonoids is that they
have smooth ends. The precise meaning of the term “smooth end” is explained
in the following.

25 Definition. Let f : S \ D → H3 be a Bryant immersion defined on a
punctured Riemann surface S and consider the Poincaré model for the hyper-
bolic space (i.e., H3 is viewed as the unit ball of �3). Then p ∈ D is said to be a
smooth end if f : S \D → H3 ⊂ �3 extends smoothly in a neighborhood U ⊂ S
of p.

As observed in [4], the catenoid cousins fm have finite total curvature K(fm),
namely

K(fm) =
∫

K(fm)dAm = −4π(2m + 1),

where K(fm) is the Gaussian curvature of fm and dAm is the area element.
Observe that

−K(fm)
4π

∈ � ⇐⇒ m ∈ 1
2
� ⇐⇒ fm is half-integral,

where we adopt the following terminology.

26 Definition. A CMC 1 immersion f : S → H3 is said integral, respec-
tively half-integral, if it admits a well-defined holomorphic isotropic lift with
values in SL(2,�), respectively SL(2,�)/�2.

27 Remark. Integral CMC 1 surfaces are characterized by the fact that
the flat connection on B(Pf ,Qf ) is trivial, while half-integral CMC 1 surfaces
are characterized by the fact that the holonomy group is contained in �2.

4.2 The Bohle-Peters examples and the “integral” twonoids

Taking into account that the property for a holomorphic curve in SL(2,�)
of being isotropic is invariant under the full pseudo-group of holomorphic con-
formal transformations, and observing that integral twonoids do admit globally
defined holomorphic isotropic lifts into SL(2,�), Bohle and Peters [2] were able
to construct immersed (non embedded) Bryant surfaces with an arbitrary even
number of smooth ends. Their construction goes as follows: let m be an integer
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and let s be a non-zero complex number. Then, let Fs : SL(2,�) → SL(2,�) be
the conformal rational map defined by(

a b
c d

)
→ ρ

(
a 2s(1− s2)− s2c + (1− s2)2b

c + 2s− s(1− s2)b d

)
,

where
ρ =

1
(1− 2s2)− sc− s(1− s2)b

and let
Ψm : S2 \ {0,∞} → SL(2,�)

be the holomorphic isotropic curve defined as in (19). Then, the hyperbolic
projections of the isotropic curves

Ψs,m,A = (Fs ◦Ψm)A : S2 \ {0,∞} → SL(2,�),

where m ∈ � and A ∈ H3, provide examples of (non-embedded) Bryant surfaces
with an an arbitrary even number of smooth ends; some of these examples have
cyclic symmetry groups.

The construction of the Bohle–Peters examples is based on the fact that
the holomorphic conformal compactification of SL(2,�) is the smooth complex
quadric Q3 ⊂ ��4 defined by

z2
0 + z2

1 + z2
2 + z2

3 + z2
4 = 0.

The conformal embedding of SL(2,�) into Q3 is given by the affine chart

(aij) ∈ SL(2,�) �→
[(
− i(a1

1 + a2
1)

2
,
a1

1 − a2
2

2
,− i(a1

2 − a2
1)

2
,
a2

1 + a1
2

2
, 1
)]

with inverse

sp : [(x0, x1, x2, x3, x4)] ∈ Q3 �→

⎛⎜⎝ i(x0 + ix1)
x4

x2 + ix3

x4
x2 − ix3

x4

i(x0 − ix1)
x4

⎞⎟⎠ .

Note that the “ideal boundary” of SL(2,�) in Q3 is the quadric Q2∞ defined by

z2
0 + z2

1 + z2
2 + z2

3 = 0, z4 = 0.

Therefore, if
Ψ̂ : S → Q3
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is a null curve not contained in the ideal boundary, then

Ψ′ = sp ◦ Ψ̂ : S \D → SL(2,�)

is an isotropic curve of SL(2,�) defined on the complement of the divisor

D = {p ∈ S : Ψ̂(p) ∈ Q2
∞}.

Thus, if
Ψ : S \D → SL(2,�)

is an isotropic curve defined on a punctured compact Riemann surface S = Ŝ\D
which completes to a null curve

Ψ̂ : Ŝ → Q3

and if T ∈ O(5,�) is a conformal transformation of Q3, then

sp(T ◦ Ψ̂) : Ŝ \DT → SL(2,�)

is an isotropic curve defined on the complement of the divisor

DT = {p ∈ S : T ◦ Ψ̂(p) ∈ Q2
∞}.

If f : S \D → H3 is a Bryant immersion that admits a well-defined isotropic
lift Ψ : S \ D → SL(2,�) and if this lift extends to a null curve Ψ̂ : Ŝ → Q3,
then, for each conformal transformation T ∈ O(5,�) and for every A ∈ H3, the
mapping

sp(T ◦ Ψ̂)AA∗sp(T ◦ Ψ̂)∗ : Ŝ \DT → H3

defines a new Bryant immersion which in general is not equivalent to the original
one. This provides a theoretical explanation of the above examples. We can also
understand why the Bohle–Peters examples have an even number of smooth
ends: for an integral value of the parameter m the projective completion Gm ⊂
Q3 of the isotropic curve Ψm intersects the ideal boundary Q2∞ at the points
[(0, 0,−im,m, 0)] and [(0, 0, im,m, 0)] with a contact of order (m + 1). Thus,
when we transform Gm ⊂ Q3 via a generic conformal map T ∈ O(5,�) (such
as the one considered by Bohle–Peters), the new curve TGm intersects Q2∞ in
2(m + 1) distinct points. This implies that the Bryant immersion defined by
TGm has exactly 2(m + 1) smooth ends.

28 Remark. In this context one can show that the isotropic curves of the
integral twonoids are classical W-curves in Q3. Moreover, as indicated by [2],
this observations establish a link between Bryant surfaces with smooth ends
and Willmore isothermic surfaces and superminimal surfaces in S4 [3, 6]. The
general structure of the moduli space of isotropic curves in Q3 is a classical
unsolved problem in algebraic geometry. Also in the case of rational isotropic
curves one has few results in low degrees [5].
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4.3 Trinoids

Using the spinor representation, Bobenko, Pavlyukevich and Springborn [1]
derived explicit formulas for CMC 1 trinoids. In this section we overview the
conceptual scheme behind the construction without any pretension of complete-
ness as regards the subtle technical details: for these we refer to [1].

In these examples the holomorphic data are:

• The Riemann sphere punctured at three points

S = S2 \ {0, 1,∞}.

• Two meromorphic spinors of the form

P =
(

p0

z
+

p1

z − 1
+ p3

)√
dz, Q =

(
q0

z
+

q1

z − 1
+ q3

)√
dz. (20)

The second order ODE (16) is not directly in hypergeometric form. To put
the system in the required form, one has to perform a gauge transformation
defined by means of a holomorphic map

G : z ∈ S →
[
G1(z) ·G2(z) ·

(
2a/λ 0

1 1

)]
∈ SL(2,�)/�2,

where G1 and G2 are defined by

G1(z) =
(

iQ(z) a1z + b1

iP (z) a2z + b2

)
, G2(z) =

( √
z − 1 0
k

z
√
z−1

1√
z−1

)
.

One can determine the coefficients a1, a2, b1, b2, k, a and λ in terms of the
residues p0, p1, p∞ and q0, q1, q∞, so that the local solutions Ψ of (9) are of the
form Φ = G ·Ψ, where Φ satisfies the modified linear system

Φ′ =
(

1
z

(
α 0
0 −α

)
+

1
z − 1

(
β γ
δ −β

))
Φ, (21)

and α, β, γ and δ explicitly depend on p0, p1, p∞ and q0, q1, q∞.6 It is now easy
to check that (21) is equivalent to the hypergeometric equation

d2y

dz2
+
(

α

z
+

1 + 2β
z − 1

)
dy

dz
+
(

β − δγ

z − 1
+

α

z
+ β + γ

)
y

z(z − 1)
= 0,

6It is still mysterious to us how Bobenko, Pavlyukevich and Springborn were able to guess
the appropriate form of the gauge transformation.
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which can be explicitly solved in terms of confluent hypergeometric functions
(one can write the local solutions using Mathematica). As a consequence, one
can explicitly construct a complete family of local solutions to Ψ′ = ν(P,Q)Ψ.
Since there are three singularities, this family contains three elements. To check
the unitarizability is the most subtle task. The monodromy matrices of the fam-
ily can be computed explicitly in terms of the values Γ(w0),Γ(w1) and Γ(w2) of
the Gamma function at three points w0, w1 and w2, which can be determined
in terms of the residues of the spinors. As a result, Bobenko, Pavlyukevich and
Springborn showed that the unitarizable spinors depend on three real param-
eters, and hence the moduli space of Bryant conformal immersions with holo-
morphic data (20) is 3-dimensional. It is remarkable that this space contains a
1-parameter family {fµ}µ∈� of trinoids possessing a trihedral symmetry group.
They also showed that there exists µ0 > 1/4 such that, for µ < µ0, all symmet-
ric trinoids fµ are embedded, while, for µ > µ0, they are not embedded. All the
computations have been implemented in a Mathematica notebook that can
be found at http://www-sfb288.math.tu-berlin.de/~bobenko.
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