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Abstract

Latency Insensitive Protocols (LIP) and Elastic Circuits (EC) solve the same problem of rendering a design
tolerant to additional latencies caused by wires or computational elements. They are performance-limited
by a firing semantics that enforces coherency through a lazy evaluation rule: Computation is enabled if
all inputs to a block are simultaneously available. Adaptive LIP’s (ALIP) and EC with early evaluation
(ECEE) increase the performance by relaxing the evaluation rule: Computation is enabled as soon as the
subset of inputs needed at a given time is available. Their difference in terms of implementation and
behavior in selected cases justifies the need for the comparative analysis reported in this paper. Results
have been obtained through simple examples, a single representative case-study already used in the context
of both LIP’s and EC and through extensive simulations over a suite of benchmarks.

Keywords: Latency Insensitive Design, Elastic Circuits.

1 Introduction

Latency Insensitive Protocols (LIP’s) were introduced to derive a functionally cor-
rect implementation of a system - designed under the hypothesis of zero latency
between modules - in the presence of arbitrary added latencies, such as those de-
riving from long on-chip wires [1]. Elastic architectures were invented in order to
tolerate any latency variability in a design due to either additional wire delays or
computational causes [2]. In both cases, the firing rule requires availability of all
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inputs. Both systems can be modeled with Marked Graphs, a subclass of Petri
nets, in which functional units are transitions (represented by bars or boxes in this
paper) and channels are places (represented by edges connecting the transitions)
[3]. Places are marked with tokens if they hold valid data. Edges without tokens
represent “bubbles” - absence of data. For example, pipelining a wire by adding a
clocked repeater will be modeled with an additional node which holds - initially - no
data. A functional block will advance computation iff all its inputs contain a token
(static firing rule). The consequences of such rule in terms of system throughput
can be dramatic: If the graph consists of a loop of m places with initial tokens, and
n bubbles (places with no tokens) its throughput is m/(m + n). For example, if
there are as many bubbles as nodes (e.g. every single wire has been pipelined with
a clocked repeater) the throughput will be 1/2: one computation every two cycles.

The restriction on strict input availability is one of the reasons of the performance
degradation. Both in the context of LIP’s [4][5][6][7] and of Elastic systems [8][9]
researchers have tried to get rid of this limitation by allowing nodes to fire if a
subset of inputs - or even none of them - is available. As a simple example, consider
a 2-way multiplexer which alternately reads one of its two inputs: Computation
can be enabled if the selected input holds a token, regardless of the invalidity of
the unselected one. This new firing rule is key to increase the performance of such
systems. In the following the inputs that are necessary at any given time in order
to perform the computation will be called the processed inputs.

This paper proposes a comparative analysis of elastic and latency insensitive
systems equipped with this new firing semantics that allows a dynamically adaptive
computation as opposed to the more static and predictable one that comes out as
a consequence of the standard firing rule. The comparison is conducted by means
of real implementations. As for elastic systems, sufficient details for implementa-
tion are given in [9] and [10] which discuss Elastic Circuits with Early Evaluation
(ECEE). Concerning LIP’s, the so-called Adaptive Latency Insensitive Protocols
(ALIP) whose gate-level description is detailed in [6] have been used.

The paper is so organized: Section 2 details analogies and differences of ECEE
and ALIP. Section 3 discusses two simple but common configurations for which
the differences influence performance. A significant yet sufficiently simple realistic
case is used in section 4 to better contrast performances, while in section 5 the two
implementations are confronted with a suite of random benchmarks. Conclusions
of this work are drawn in section 6, together with hints for future investigations.

2 Analogies and Differences

In this section we describe the two approaches [6] and [9], which will be called ALIP
and ECEE in the following. We refer the reader to the original papers for a detailed
discussion of their properties. ALIP and ECEE are sufficiently different between
each other as their static counterparts LIP and EC (see [2]), to justify a detailed
analysis of their pros and cons.

The ECEE constituent blocks are the elastic controllers which enable or stop

2



the clock of a register when computation is or is not allowed. This may occur in
case of invalid input, in case of back-pressure (stop) on a valid output and also if
a counterflow killing information is received on output while the input is valid. A
two-phase clocking style allows to make a separate use of the two constituent latches
of an edge-triggered register. Multi-input and multi-output blocks require join and
fork structures to feed the elastic controllers. Join controllers allow for both static or
adaptive firing semantics. Adaptive firing requires a synchronization of the inputs:
A counterflow kill signal is sent back to the unselected inputs which were not valid
yet. Such information, once received by an elastic controller on its output, will
be used to cancel a valid token, or backpropagated further. According to [9], this
counterflow signal will be called anti-token or negative token in the following.

Similarly to standard latency insensitive design, ALIP’s wrappers gate the clock,
like in the ECEE case, in presence of invalid inputs or back-pressure (stop) on a
valid output. Since a single-phase clocking is used, an input queue with at least one
place avoids losing data when an output stop is received. Such queue, akin to a skid
buffer, can be designed in such a way to avoid additional latency when stops are not
received. We will refer to such queue in the following as half relay station (HRS), as it
contains half as much data registers as regular relay stations described in [11]. Firing
occurs like in ECEE depending on static/adaptive semantics. However, no kill
signals are sent back and the input synchronization is solved locally. The wrapper
keeps track of the number of times a new valid input is observed (computation
number) at each of its inputs, and proceeds to its next computation step iff all
the inputs needed at any given time are available and their computation numbers
are coherent with the ideal clock tick of the computation that has to be performed
next. In fact, it is not necessary to keep track of the number of valid inputs since
the last system reset, but rather only the relation between them: This is obtained
by implementing up-down counters that are controlled by the arrival of valid data
on each input, and the execution of a new computation step by the block [6][7].

2.1 Elastic Protocol Implementation

The killing information that ECEE adopts to enforce data coherency is distributed
in the system by employing a clever duplication of the normal elastic architecture,
and by coupling the two flows in order to annul valid signals. The “second protocol”
requires two additional signals: a Negative Valid, i.e. the anti-token, conveying the
information about computations that need to be killed, and a Negative Stop that
ensures that no negative valid is lost. Figure 1(a) reports the I/O set of positive
and negative signals in a 2in/1out ECEE wrapper and the enable signals ENH and
ENL used to control clock gating of transparent latches in a two-phase clocking
style. In order to understand how the protocol can locally enforce data coherence,
it is expedient to look at the simple example of figure 2(left) in which antitokens
are represented as open circles and tokens as filled circles. In the figure, the given
configuration of token is supposed to be produced by surrounding modules, and the
timing evolution of the protocol is followed (processed inputs are marked with the
letter “P”). At time t=1, as only the first input is processed, the protocol requires
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Fig. 1. ECEE(a) and ALIP(b) 2in/1out wrappers.

the generation of 2 antitokens for the other inputs. As input b holds a valid datum,
a token and an anti-token meet at the transition, and get annihilated. This is
correct, because the input b, though not used, is coherent with input a, and no
skew gets accumulated between valid inputs. On the other hand, the antitoken on
input c is free to propagate in counterflow. In the following time frame (t=2), input
b is needed and two new antitokens are generated as b is valid while no valid data
is present at inputs a and c. During the following time frame (t=3), input a is
processed again, but in this case no valid data is present on a, and the data on b is
stopped. No antitokens are generated. As it will be clear later when ALIP will be
discussed, stopping b in this case is not strictly necessary because the datum present
on input b is not needed for the computation. However, the ECEE implementation
proposed in [9] forces the generation of a stop on each valid input if the selected
input is not present, or in general, if the early evaluation does not produce a valid
token on the controller’s output. One important observation is that the antitokens
are actually given a double semantics: 1. they are used to make sure that valid
data that were not used because of an early evaluation are discarded, by forcing
an invariant on each loop (sum of tokens - sum of anti-tokens), and 2. they are
interpreted by each module as a kill signal to interrupt the present computation - if
any. For example, in the figure, the block marked with an arrow has its computation
killed. If we count the number of times a computation is performed at every block
since the beginning of the system’s operation, it might be the case that, contrary
to the ALIP case, certain blocks have operated less than others. This fact, that is
constitutive of the elastic protocol, has important consequences: Blocks that hold
a state, or locally maintain registers that are re-used, need to expose the internal
state to the protocol. In practice, if feedback loops are present in a block that has
to be wrapped in ECEE style, the output-input loop has to be dealt with like any
other channel in the system and provided with the protocol signals. This precaution
avoids losing coherency as it is illustrated after the second protocol is analyzed.

2.2 Adaptive LI Protocol Implementation

Figure 1(b) is the ALIP counterpart of the ECEE 2in/1out example of figure 1(a).
Only positive signals and a single phase clocking style are used. Considering the
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Fig. 2. ECEE and ALIP compared.

same system discussed in the ECEE case, the ALIP evolution is shown in figure
2(right). At the beginning the three inputs are coherent (as in the previous case),
so that the relative computation numbers (stored in up/down counters) are all zero,
as depicted in the figure. At time t=1, the module is active, because input a is the
only processed, and it holds valid data. At the same time, because the unnecessary

5



input c is not valid, input c has to record a skew between it and the module by
incrementing its counter to 1. The value of 1 means that the third input is behind
the other two by one step. The counter on b, even though the input was not used
by the module, remains at 0 because it contains valid data as well (data discarded).
In the second time frame, the processing is on input b, that holds valid data, so
the computation is performed, while the counters for inputs a and c have to be
incremented because they hold no data. In the third time frame, the input a needs
to be processed, but it is not valid, so no computation is done. Input c is also not
valid, so that its skew counter is not modified (same relative skew). Contrarily to
the ECEE case where valid b is stopped at t=3, here b is safely discarded because
it is not processed and its counter is zero (in ECEE, b will be discarded only when
a valid datum on selected input a will eventually reach the join controller). The
counter on input b is decremented to -1. The new datum on b at t=4 has to be
stopped because it is not possible to know if it will be used in the future, not until
the processed input misalignment will be reabsorbed. Therefore -1 is the lower
limit of the up/down counter. Such first stop on b is absorbed by the previously
mentioned HRS which is a one-place FIFO and will store the datum. If another
valid datum will eventually appear at the b input at t=5 (not shown in figure), the
stop will be propagated back by the HRS which is sized to store just one datum.

2.3 Pros and Cons of ALIP and ECEE

Previous discussion about the behavior of ECEE and ALIP in the example of figure
2 highlighted their analogies and differences. There are conditions in which ALIP
reduces the number of stalling signals, like at t=3, due to both the use of counters
and of the HRS. It is then likely that some ALIP systems will perform better, and
this will be clear in sections 3-4. However, this increase of performance does not
come for free, as HRS as well as input counters are area-consuming. We performed
logic synthesis of all the elements of the two protocols with a modern CMOS tech-
nology, and the results show that the area cost of an HRS is very similar to that of
an ECEE join element, if the data parallelism is 16 bit. In general, the area cost for
the various experiments we performed are roughly 50% to 100% higher for ALIP,
mainly due to the added HRS. It is possible to employ fine-tuning to reduce the
impact of HRS and this will be investigated in a future work.

It must be said that HRS are needed only if queues are not already present on
the input channels, as it happens when Relay-Stations have already been added.
As for counters, their size determines performance, because a stop will inevitably
be sent when they reach the maximum count, even if, in general, small counters
will guarantee close to best performance, as shown in section 5. This limitation is
avoided in ECEE as they can generate as many antitokens as the surrounding system
is able to absorb. But on the other hand, this advantage is counterbalanced by the
extra-routing needed for antitokens and for negative stops (each point to point
communication requires 2 more wires than its ALIP counterpart). It is possible
to show that in general not all connections require these extra signals to gain the
maximum throughput. But such advantage will result in a similar reduction for
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ALIP systems, due to the hardware simplification that ordinary LIP allow. Another
drawback of ECEE, for certain design style, is the use of a two-phase clocking style,
that increases the cost of timing verification and complicates testing compared to
ALIP, let alone the constraint set on the phases’ duration and the need to substitute
a design’s all edge-triggered registers with latch pairs.

Although we did not make any power evaluation, it might be the case that less
power is consumed in ECEE - at the same performance of ALIP - due to the possibly
higher number of clock-gating events caused by antitokens. But it can also be the
case that the extra (possibly long) wires and extra control logic add more power
than local counters in ALIP. More work is needed on this point.

As it was anticipated at the end of section 2.1, another major difference between
the two approaches is the way gates holding a state, like FSM’s registers, are dealt
with. Feedback loops internal to the FSM are used to store states in registers. Such
loops are often invisible from the FSM’s external interface as in the simple example
of figure 3 which can be seen as a 1-input/1-output sequential circuit. Imagine also

next state
logic

ck

logic
output

in out

Fig. 3. Simple 1-in/1-out FSM.

to make the FSM elastic by wrapping it with a 1-in/1-out ECEE controller, replacing
the register with a pair of latches, and by not touching the inner loop. We model
the initial state with a positive token indicating FSM’s output validity. According
to the ECEE protocol, every time an invalid input is received, the FSM’s output
will become invalid. Suppose now that at the same time a token and an antitoken
are received. If we let the computation be aborted we will lose the possible state
change that the valid input may imply, but this is clearly a mistake if we don’t want
the protocol signals to change the way the system evolves. There are two (provably
behaviorally equivalent) ways to solve the problem: (1) exposing the feedback loop
to the protocol by inserting a 1-in/2-out fork on the register’s output and a 2-
in/1-out join on the register’s input; (2) stop all incoming negative tokens at the
output. It is still possible to maintain the early evaluation feature of the protocol
if the element with state is a join, by letting it generate negative tokens, but never
propagate existing ones. The architectural modifications for the second option are
trivial, and consist in substituting the ECEE buffer with an elastic buffer without
early evaluation, and interfacing it as detailed in [10]. Exposing the feedback loop
to the protocol is relatively easy when the block consists of a single or few state
registers. Applying a similar strategy to a more complex situation, like in the case
of IP-blocks, requires a perfect knowledge of the block, then somewhat reducing the
flexibility of the protocol. Stopping output antitokens might better fit this case.

Blocking the backpropagation of antitokens may lead to a performance limitation
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which does not occur in ALIP’s where negative tokens are not used: Whatever the
case of firing semantics, any FSM can be simply wrapped and provided with its clock
gating function without the need to expose the internal feedback to the protocol.

From this discussion it is clear that general rules of better applicability of one
protocol with respect to the other are hard to define. In particular cases, like those
reported in the next two sections, the supremacy of ALIP in terms of performance
emerges clearly. Section 5 will show that the combination of multiple conditions,
emulated by means of a set of benchmarks, makes the analysis rather difficult.

3 Simple Examples

In this section we illustrate the cases in which we observed some penalties that affect
ECEE compared to ALIP with simple and readily understandable examples. The
first one is the classic reconvergent fanout case in which the output of a block is sent
to two (or more) branches with different latencies. The second one is representative
of the class of problems that arise when state holding blocks are involved.

Reconvergent Fanout with static protocols
To begin with, let us assume that block B in the graph depicted in figure 4 need

all input to be valid in order to fire. At time t=0 B stalls - it has only one valid
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input - and stops the token from A. As a result, depending on the back-pressure
path latency from B to A, sooner or later block A receives an output stop signal.
Now, if the stop signal arrives when there is no token on A’s input, its effect on
throughput is null, as it does not add any other computation stall. If instead A is
ready to fire, the output stop would actually stall A for an additional cycle.

In the latency-insensitive case (LIP in figure), every block’s input must be pro-
vided with by-passable queues (HRS) that are able to absorb and delay stop signals.
If the queue has one place, the stop will reach block A one cycle after B’s stall (time
t=1). As a result, A receives both an invalid token (due to B stall) and an output
stop. Since A would stall in any case, due to the invalid input, the stop has no
effect. The system’s throughput would be given by the minimum cycle ratio of the
corresponding marked graph that amounts to 2/3 in this case: two tokens and a
delay of three in the loop A-C-B. Accordingly, after three time steps (t=3 in figure)
the graphs gets back to the initial state after every block has issued two tokens.

Contrary to the LIP case in which input queues are necessary for the proper
operation of the protocol - and thus are already present - elastic circuits wrappers
do not natively include input queues. Therefore, in the example above - t=0 of
the EC example in figure 4 - the stop signal from B to A will immediately reach
its final destination, leading to an additional stall. The elastic throughput would
be 1/2. It can be argued that by-passable queues may be added to elastic circuits
when necessary, and this is precisely the point of [13] which discusses throughput
optimization by buffer resizing (and insertion). The difference lies then in that in
ECEE by-passable elements should be first added and then resized while the first
step in ALIP systems is unnecessary as they come with HRS built-in.

Reconvergent Fanout with adaptive systems
Now consider the case in which B reads alternately A and C outputs with an

adaptive firing semantics. It is tempting to state that the reconvergent fanout
problem has been solved. In fact, if only A’s output were chosen, the system’s
throughput would be given by the ratio between the number of tokens in the loop
formed by A and B and the overall latency of the loop, that is 2/2=1. If it were B,
than one might similarly expect 2/3 be the throughput, because of the two tokens
and the latency of three in the A-B-C loop. However the behavior is more subtle
and less intuitive, both in the LIP and elastic cases.

In both cases, B stalls because the selected input from C is not valid. However,
the ALIP wrapper (ALIP case in figure 4) discards the valid (not processed) token
from A and decreases the counter to -1 - indicating that next token will be an “early”
value. At t=1, B receives a valid datum from C and can fire. It also receives an
early token from A which has to be stopped. The HRS will delay this stop that will
eventually reach A at t=2. Since A’s output has no token (A stalled because of the
previous B’s stall), the stop effect is null. At t=3 the system is in the starting state
and every block has done two computations - throughput is still 2/3.

Contrary to the ALIP case, when a processed input is unavailable the ECEE im-
plementation stops a valid datum on the unselected input even though it will never
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be used: no anti-token is sent back on the non-processed input because the protocol
requires that a output positive token be generated (to maintain the cycle invari-
ant). As a result, if a bypassable queue is not present, the back-propagated stop
immediately reaches block A, thus leading to a performance degradation identical
to the static case and so to a throughput of 1/2.

When both inputs are selected with 50% probability, the average throughput of
ALIP is 3/4, while ECEE performance is limited to 2/3.

Finite State Machine
Block A and C in figure 5 are FSMs like the one in figure 3 and feed block B. If B
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Fig. 5. Example of ECEE FSM behavior.

implemented a static firing rule, a throughput of 1/2 would be obtained. If instead
B chose only the input from C, which always holds a valid token, the expected
performance would be 1. This is precisely what happens in the ALIP case. In
ECEE, when B fires, an antitoken is sent back to A. The particular combination of
a non valid token and an antitoken in the link to A, together with the absence of
an antitoken in the FSM loop leads to a “negative” stop of the generated antitoken
as depicted in figure, t=0. The implementation of the “join” element with early
evaluation described in [9] is such that in this situation, at t=1 block B stalls and
sends a stop toward C, because no further antitoken can be generated. As a result,
performance degradation ensues. The stop is sent once every three cycles, leading
to an ECEE throughput of 2/3, 1/3 less than ALIP.

It is worth mentioning that such phenomenon, for static protocols, can be solved
with extra buffers or buffer sizing [13]. However, adaptive protocols might depend
on more subtle data-related interaction between the various parts of the system that
cannot be as efficiently modeled and optimized out. Furthermore, such optimiza-
tions could be substantially expensive either in hardware or optimization time.

4 The DLX case

The DLX processor has been used in various disguises in the context of LIP’s and
elastic circuits as a benchmarking tool [1][2][8]. We implemented a slightly modified
version of the graph reported in [2] both in ALIP and ECEE style, with the aim of
building a more complex and significant example than the simplest ones discussed
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in the previous section. Although still far from a real implementation of a “latency-
insensitive” processor, our embodiment allows to reproduce some of the issues of
in-order pipelined processors, like structural hazards, data and control dependencies.

In particular, we inserted two additional units in parallel with the already present
0-latency ALU: a pipelined unit (e.g. a pipelined multiplier) and a multi-cycle unit
(e.g. a non-pipelined divider). The decoded instruction activates one of the exe-
cution units. The alert reader will notice that such “case switch” is out of the
scope of Marked Graphs’ theory (but not outside the scope of the protocols, as they
do respond to data dependent behavior). Nonetheless the ensemble of the execu-
tion units, seen from the I/O perspective, behave as a 1-in/1-out dataflow operator
which perfectly complies with the theory. The system’s graph is shown in figure 6.
The switch-select couple which encloses the three units is designed in such a way to
respect the theory. In particular, it guarantees the execution order by stalling “fast”
instructions while “slow” ones are on their way (e.g. an ALU operation which follows
a just started pipelined multiplication with latency greater than 1 or a multi-cycle
division must wait). Basically, tokens entering the execution units exit in the same
order in a first-in first-out fashion, irrespective of the operation latency.
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Multi
Cycle

Fig. 6. The graph corresponding to the DLX pipeline.

All DLX pipeline registers (IF/ID, ID/EXE, EXE/MEM, MEM/WB) and the
program counter (PC) hold a token. The pipelined unit is initialized with as many
bubbles as its internal pipeline stages. The multi-cycle unit is devoid of tokens
as well. The blocks with two inputs implement an adaptive firing rule. As an
example, the ID/EXE stage always requires the input from IF/ID while the input
from MEM/WB is needed only in case of data-dependency. Similarly, the PC
and IF/ID stages speculatively proceed unless a control dependency occurs which
requires observing the input from EXE/MEM (branch taken or not).

We implemented an ALIP and an ECEE version of this simplified DLX in behav-
ioral VHDL which allows to vary parameters, such as the mix of instructions, the
percentage of data-dependency, the possibility to send instruction bursts (e.g. many
consecutive pipelined MUL operations followed by many ADD ones). With this set-
ting we were able to gather many interesting data and compare the behavior of ALIP
and ECEE in a rather complex yet still manageable example.

We obtained the curve labeled “ALIP & ECEE 100% data dependency” in figure
7(left) by simulating the system in a situation of complete data-dependency: Every
issued instruction required a source operand that had not been written back yet
in the register file. In this basic implementation we did not include any pipeline
by-pass, therefore the token on the IF/ID stage’s output is stopped and consumed
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only when a token arrives from the MEM/WB stage 3 . In other words, the ID/EXE
stage implements a static firing policy. Four out of five curves (labeled ALIP, ECEE
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Fig. 7. DLX throughput as a function of the pipelined instruction fraction. Random instructions (left) and
burst of instructions (right).

no buf, 1 buf and 2 buf) were instead obtained in case of no data-dependency. In
this case every issued instruction already finds all required operands in the register
file (MEM/WB-ID/EXE link ignored, adaptive firing rule).

Both in case of data dependency and of independence we varied the percentage
of instructions that use the pipelined unit from 0% to 100% in steps of 10%. In this
experiment, the latency of the pipelined unit was set to 3, while the multi-cycle unit
was never used (execution latency of all instructions 0 or 3 cycles). We discuss first
the results in the extreme cases (0% and 100%) and then the intermediate ones.

Data independence, 0% and 100% pipelined instructions
As expected, the throughput is 1 if the pipelined unit is never used (0%). One

expects also that the throughput be 1 even when the pipelined unit is fully used
(100%). The ALIP implementation in fact reaches maximum throughput (ALIP
labeled curve), while ECEE does not (ECEE no buf, throughput 0.571 at 100%
pipelined instructions). The reason why ECEE contradicts the expectation is a
latency mismatch between the antitokens sent back by PC and IF/ID to EXE/MEM
and the antitoken sent by ID/EXE back to MEM/WB. The former ones arrive earlier
and must wait (negative stops are exerted in this case, similarly to what happens in
the FSM case depicted in figure 5). As it is well known, buffer insertion can be used
for latency equalization. The curves labeled “ECEE 1 buf” and “ECEE 2 buf”
were obtained by inserting one and two elastic buffers along the EXE/MEM-PC
and EXE/MEM-IF/ID links. Both solutions increase the ECEE performance but
two buffers are necessary in order to attain a throughput of 1 in the 100% case.

Data independence, 10%-90% pipelined instructions
Figure 7(left) shows that structural hazards in this in-order processor reduce

throughput when a mix of pipelined and non-pipelined instructions is fetched. ALIP

3 Simply but unrealistically, we don’t look at the actual required register that is being written back but
remove stall as soon as a token arrives. We will complicate the control behavior in a future work in order
to mimic a more realistic processor.
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and ECEE without buffers behave similarly in range 10%-50% but ALIP is “faster”
in rising back to the maximum throughput in range 50%-90%. The ECEE case with
two buffers is just as good as the ALIP case (the two curves perfectly overlap).

Data dependency
In the case of complete data-dependency (that is no early evaluation in the

ID/EXE stage), the corresponding curve in figure shows that ALIP and ECEE
behave exactly in the same way (that is why we reported a single curve). Increasing
the instructions that use the pipeline unit reduces the throughput down to 1/2 in
the 100% case, as can be easily calculated from the ratio between the number of
tokens in the execution loop and the overall latency (3 and 6).

In the simulations reported in figure 7, left plot, both ECEE and ALIP are
limited in performance by the structural hazard, while ECEE suffers also from
the aforementioned latency unbalance. In order to decouple the two issues, we
made an experiment in which instructions of the same type are issued in bursts
instead of in a random way as it was for the previous case. Figure 7, right plot,
reports the results for the case of data independence. When we lessen the common
performance limiter, the difference between ALIP and standard (no buffer) ECEE
grows, meaning that the latency mismatch has a large impact. Again, two buffers
are needed to close the gap.

Finally we tested the multi-cycle unit by issuing only multi-cycle instructions in
case of dependency and independence. As expected, the performance is 1/ML, that
is the inverse of the multi-cycle latency, in both cases and both for ALIP and ECEE.

The previous relevant DLX case exemplifies some of the remarks of previous
sections concerning the better potential for performance in the ALIP case. How-
ever this does not prevent from possible better performance of ECEE in particular
cases. Complex interactions between blocks in a topology with a larger number of
components might favor the ECEE case, as next section shows.

5 Results over a suite of benchmarks

In order to perform a comparison over a sizeable set of potential topologies, we ran-
domly generated benchmarks that consist in circuit graphs with differing numbers
of gates and proportion between 2-input and 1-input gates. The circuits were gen-
erated by making sure that the graph is strongly connected (this pass is necessary
for ECEE that assumes strongly connected components). Each module has been
assigned an initial token randomly, and each 2-input node has been implemented
with a mux-like adaptive module or a normal 2-input module (that works under
the static hypothesis). The branch chosen by the adaptive components was decided
randomly at each computation with a probability of 0.5. We tested a total of four
combinations for each benchmark, obtained by selecting (through a simple greedy
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heuristic) (1) either a minimal number of tokens to guarantee liveness (at least
one token must be initially present in every topological cycle), or a percentage of
50% modules with a token (always guaranteeing the liveness condition); and (2)
different number of multiplexers: 100% and 50% of the 2-input modules, randomly
selected. These four combinations were tested (the exact same netlist, initial token
distribution and identical random seeds for each selection) with 3 different proto-
cols: ALIP, ECEE and non adaptive LIP (indicated as static in the tables). A
fourth case, EC with no early evaluation performed as the static LIP system and
is therefore not reported. The test consisted in generating the VHDL code of the
fully instrumented systems, and running 10,000 cycles of simulation in order to get
minimum and maximum throughput (defined as number of performed computation
in the ALIP case, and using the formula reported in [10], for the case of ECEE).
During the simulations, assertions where used to check for protocol coherency.

The results in tables 1-2 report the throughput measured in the various experi-
ments. Blocks and joins columns report the number of components in the graph and
the number of 2-input components for each benchmark. Boldface figures represent
the best result for a benchmark - when not present two values are sufficiently close
to each other - less than 1%. The ALIP counters were chosen sufficiently small (4
bits), so that the excess area due to their presence was kept to a minimum. It did
not appear to substantially decrease the performance. The experiments confirmed
expectations, for the greater part: the static case is always worse than (in certain
cases just as good as) any other protocol, and the potential gains, for both ALIP and
ECEE cases can be quite significant (up to almost 300% for certain benchmarks).

As far as the comparison between the ALIP and the ECEE protocol goes, on
average ALIP performs better than ECEE. There are a small number of cases,
though, in which ECEE outperforms ALIP. We believe that there might be partic-
ular topologies combined with patterns of processing that excite some conditions
in which mutual interaction between blocks, and in particular killing of upstream
blocks, favors ECEE compared to ALIP. Unfortunately, we weren’t able to repro-
duce this type of behavior with simple and intuitively understandable examples:
Future investigations are planned that will address this issue.

6 Conclusions

In this paper we reviewed and compared Adaptive Latency Insensitive Protocols
(ALIP) and Elastic Circuits with Early Evaluation (ECEE). The comparison was
aimed at clarifying the rationale for the difference that occurred in simple examples
and in the specific DLX case in which ALIP exhibits a performance advantage. The
general case seems to confirm this trend, but some randomly generated benchmarks
show a preference toward ECEE whose exact cause remains to be investigated. It is
important to consider that such advantage can be an artifact of the random bench-
marks suite, therefore extra work will be performed both in the complete analysis of
conditions leading to an advantage to ALIP or ECEE, and in ensuring benchmark-
ing for real-life topologies (extensions of DLX to more complex or different circuit
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Table 1
Random netlists simulation results: A = ALIP, E = ECEE, Token = MIN.

MUX = 50% MUX = 100%

Static A E A E

Bench blocks joins Thr Thr Thr Thr Thr

r1 6 1 0.20 0.20 0.20 0.22 0.22

r2 8 8 0.25 0.34 0.35 0.42 0.44

r3 9 2 0.25 0.25 0.25 0.27 0.26

r4 9 2 0.13 0.16 0.15 0.18 0.18

r5 9 3 0.17 0.17 0.17 0.26 0.22

r6 11 11 0.20 0.26 0.25 0.33 0.37

r7 15 15 0.25 0.27 0.27 0.38 0.36

r8 13 4 0.11 0.11 0.11 0.17 0.17

r9 13 5 0.20 0.24 0.25 0.28 0.30

r10 13 7 0.13 0.14 0.14 0.17 0.19

r11 14 4 0.13 0.13 0.13 0.17 0.14

r12 20 2 0.17 0.27 0.30 0.39 0.34

r13 16 4 0.08 0.09 0.09 0.14 0.12

r14 16 8 0.09 0.11 0.11 0.18 0.15

r15 18 8 0.09 0.11 0.10 0.14 0.13

r16 20 8 0.13 0.16 0.16 0.21 0.21

r17 21 5 0.17 0.17 0.17 0.20 0.25

r18 22 22 0.09 0.19 0.19 0.33 0.30

r19 25 25 0.11 0.13 0.13 0.30 0.28

r20 28 28 0.17 0.19 0.18 0.31 0.25

r21 28 28 0.09 0.16 0.15 0.31 0.26

r22 35 35 0.11 0.14 0.14 0.27 0.26

arithmetic average 0.15 0.18 (+20%) 0.18 (+20%) 0.26 (+71%) 0.25 (+64%)

harmonic average 0.13 0.16 (+20%) 0.16 (+20%) 0.23 (+75%) 0.22 (+65%)

Table 2
Random netlists simulation results: A = ALIP, E = ECEE, Token = 50%.

MUX = 50% MUX = 100%

Static A E A E

Bench blocks joins Thr Thr Thr Thr Thr

r1 6 1 0.40 0.40 0.40 0.44 0.44

r2 8 8 0.33 0.45 0.40 0.56 0.58

r3 9 2 0.57 0.57 0.57 0.62 0.61

r4 9 2 0.33 0.41 0.41 0.45 0.46

r5 9 3 0.5 0.5 0.5 0.5 0.5

r6 11 11 0.33 0.33 0.33 0.60 0.58

r7 15 15 0.33 0.46 0.34 0.59 0.52

r8 13 4 0.50 0.50 0.50 0.59 0.53

r9 13 5 0.55 0.57 0.50 0.59 0.54

r10 13 7 0.29 0.29 0.29 0.33 0.33

r11 14 4 0.38 0.38 0.38 0.46 0.44

r12 20 20 0.50 0.50 0.50 0.66 0.58

r13 16 4 0.33 0.43 0.27 0.50 0.33

r14 16 8 0.43 0.45 0.44 0.53 0.47

r15 18 8 0.33 0.38 0.37 0.43 0.42

r16 20 8 0.25 0.25 0.25 0.40 0.38

r17 21 5 0.50 0.50 0.50 0.56 0.57

r18 22 22 0.50 0.50 0.50 0.60 0.55

r19 25 25 0.40 0.45 0.57 0.57 0.48

r20 28 28 0.33 0.33 0.33 0.56 0.43

r21 28 28 0.40 0.43 0.40 0.57 0.51

r22 35 35 0.29 0.34 0.31 0.48 0.40

arithmetic average 0.40 0.43 (+7%) 0.40 (+1%) 0.53 (+32%) 0.48 (+21%)

harmonic average 0.38 0.41 (+8%) 0.38 (+1%) 0.51 (+35%) 0.47 (+24%)
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graphs). In terms of complexity, ECEE outperforms ALIP, but detailed logic syn-
thesis results have not been discussed and will be the subject of a future analysis.
However, most of the ECEE’s area gain is due to the two-phase clocking choice, an
option that not all designers will pursue with a light heart. Furthermore, it is likely
that a two-phase clocking redesign of ALIP will result in a significant area saving.

As in the general case it was not possible to discern which protocol is better,
this calls for further analysis that helps select the best strategy given a particular
design rather than the best overall. In any case, the results show that both protocols
significantly increase the performance over the solutions without early evaluation.
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