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ABSTRACT 

Surface EMG signal modeling has important applications in the interpretation of experimental EMG 

data. Most models of surface EMG generation considered volume conductors homogeneous in the 

direction of propagation of the action potentials. However, this may not be the case in practice due 

to local tissue in-homogeneities or to the fact that there may be groups of muscle fibers with 

different orientations. This study addresses the issue of analytically describing surface EMG signals 

generated by bi-pinnate muscles, i.e., muscles which have two groups of fibers with two 

orientations. The approach will also be adapted to the case of a muscle with fibers inclined in the 

depth direction. Such muscle anatomies are in-homogeneous in the direction of propagation of the 

action potentials with the consequence that the system can not be described as space invariant in the 

direction of source propagation. In these conditions, the potentials detected at the skin surface do 

not travel without shape changes. This determines numerical issues in the implementation of the 

model which are addressed in this work. The study provides the solution of the non-homogenous, 

anisotropic problem, proposes an implementation of the results in complete surface EMG 

generation models (including finite length fibers), and shows representative results of the 

application of the models proposed.  
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1. INTRODUCTION 

It is recognized that surface EMG signal modeling is fundamental for interpreting EMG recordings 

[19][20], designing and testing algorithms for information extraction [5], and for didactic purposes 

[24]. In the last decades, many surface EMG generation models have been proposed. Both 

numerical [17][23] and analytical [4][6][10][12][13][18] approaches were used to describe the 

electrical properties of the tissues separating the muscle fibers and the detecting electrodes. The 

volume conductor has been described as homogeneous in many past modeling approaches (e.g., 

[4][19]) and in-homogeneous in more recent developments [1][6][10]. In the latter case, layered 

descriptions of the tissues, either planar [6] or cylindrical [10][12][13], have been adopted.  

In almost all the models proposed in the literature, the volume conductor is homogeneous in the 

direction of propagation of the intracellular action potentials. The latter assumption implies that the 

system, viewed as a spatial linear filter, is space invariant in the direction of propagation of the 

source. For infinite length fibers, the potential distribution over the skin can thus be described as a 

propagating plane wave, for which the spatial coordinate along the fiber direction xlo and the time 

coordinate t are related by xlo = vt, with v the constant velocity of propagation [10]. In case of 

infinite length fibers, the potential detected along the fiber direction at different spatial locations is 

thus simply the delayed version of a prototype shape. On the basis of these assumptions, it is 

possible to estimate a propagation delay from the surface EMG signals, and thus to establish the 

theoretical basis for methods aimed at the non-invasive estimation of muscle fiber conduction 

velocity (CV). The signal detection by spatial filtering has also its theoretical basis on the 

assumption that the EMG signals detected by electrodes placed along the spatial direction of the 

muscle fibers have equal shapes with a delay [16][21][22]. When considering finite length fibers, 

the proportional relation between space and time coordinates does not strictly hold since the source 

changes shape with time due to the generation and extinction of the action potentials at the end-

plates and tendons. In these cases, important limitations of the simple theoretical approximations 
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considered have a direct impact on, e.g., estimation of muscle fiber CV [11] and spatial filter 

selectivity [7]. 

Besides finite length fibers, the volume conductor may also introduce shape variations in the 

detected surface potentials due to in-homogeneities in the direction of propagation of the potentials 

[23]. Schneider et al. [23] showed that tissue in-homogeneities may significantly affect estimation 

of delay between surface detected potentials. In that study the in-homogeneities were included by 

local areas of conductivity different from that of the muscle. The muscle tissue may also be in-

homogeneous due to not unique fiber orientation, e.g., muscles in which there are two groups of 

muscle fibers with two different directions (bi-pinnate muscles). The anatomy of muscles is very 

complex, presenting uni-, bi-, multi- pinnate, circum-pinnate or complex-pinnate distribution of 

bundles of fibers [2][3]. Models assuming fibers all parallel to each other may thus be not 

appropriate for the interpretation of particular experimental conditions. 

In the case of bi-pinnate muscles (e.g., rectus femoris muscle), the muscle tissue is non-

homogeneous and anisotropic since the two fiber groups have different conductivities in the 

direction parallel and perpendicular to the fibers. Thus, even in case of infinite length fibers, the 

surface potentials detected at different electrode locations along fiber direction change shape and 

the system is not space invariant in the direction of propagation of the action potentials.  

No previous modeling works provided an analytical description of surface EMG signals generated 

by muscles with not unique fiber orientation. This study addresses this issue for the bi-pinnate case. 

Since the approach is analytical, simplifications of the experimental conditions will be introduced.  

The approach will also be adapted to the case of a muscle with fibers inclined in the depth direction. 

The study provides the solution of the non-homogenous, anisotropic problem, proposes an 

implementation of the results in complete surface EMG generation models (including finite length 

fibers), and shows representative results of the application of the models proposed. 
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2. METHODS 

The top view of the investigated geometry is shown in Fig. 1a. A simplified model of a bi-pinnate 

muscle is considered. The two pinnation angles are generic. The muscle tissue is more conductive 

along the muscle fiber direction than in the perpendicular directions. The signal is detected directly 

over the muscle. No intermediate layer will be assumed since this would lead to important 

mathematical issues, as it will be discussed in the following. The solution of this problem will also 

provide the bases for the analysis of the generation of surface EMG signals from muscle fibers 

inclined in the depth direction, as shown in Fig. 1b (a lateral view of the system is provided in this 

case). In the latter case, a multi-layer geometry will be investigated, since with this geometry the 

addition of subcutaneous layers can be treated simply. 

 

Figure 1 about here 

 

2.1 Bi-pinnate Muscle  

2.1.1 Mathematical model of a bi-pinnate muscle 

The electrical field problems in physiology, in first approximation, can be considered as quasi-static 

[14]. Thus, from the bio-electrical point of view, the tissues can be described as a volume 

conductor. In these conditions, the electrical potential is the solution of the Poisson equation:  

I )(                            (1) 

where   is the potential (V ), I  is the current density source (A/m
3
), and   the conductivity tensor 

(S/m). Different volume conductors can essentially be modeled choosing the proper conductivity 

tensor.  

We will study a model of an infinite bi-pinnate muscle. The conductivity tensor is diagonal in the 

coordinate system ),,( zTn , shown in Fig. 1a. n  is the coordinate along the fibers, which are placed 

along the family of curves defined by the coordinates: 
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),,cos( 00 znsinnx        (2) 

where the sign   refers to the half space 0y  and 0y , the discontinuity of the conductivity is 

at 0y , and   indicates the two pinnation angles. T  is orthogonal to the fiber direction and to z  

(Fig. 1a). In Fig. 1a the skin plane is x-y while in Fig. 1b the skin plane is x-z. Thus, in the first case 

a top view is provided while in the second a lateral view is reported in Fig. 1. The reason for this 

different choice of the reference axes will be clear later. The geometries reported in Figure 1 are 

rather simple and represents approximation of experimental conditions. However, the inclusion of 

more than one inclination angle makes the analytical solution very complex even with this simple 

geometry. 

The system of orthonormal versors associated to ),,( zTn  is  
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where i


, j


, and k


 are the versors associated to the coordinates (x, y, z). 

 

2.1.2 Formulation of the mathematical problem and choice of the coordinate system 

The mathematical problem of determining the potential distribution generated by a source in the 

volume conductor shown in Fig. 1a is to solve Eq. (1) with the boundary conditions of continuity of 

the potential and its flux at the intersection of the fibers ( 0y ), and the vanishing of the solution at 

infinity.  

The issue of imposing the interface conditions is not trivial in the ),,( zTn  coordinate system (the 

system in which the conductivity tensor is diagonal). In this coordinate system, indeed, the interface 

presents a complex expression, crossing the characteristic lines of the coordinate system. The 

interface conditions are more easily described changing the coordinate system to ),,( zyx . In this 

case, the interface is described as 0y . Furthermore, the volume conductor is homogeneous in the 
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direction parallel to the interface, which allows to consider the bi-dimensional Fourier transform of 

Eq. (1) in the homogeneous plane (x, z). In this case, for each pair of spatial frequencies (kx, kz), two 

ordinary differential equations of the variable y  (one for the half space 0y  and another for 

0y ), with conditions at 0y , are obtained.  

 

2.1.3 Formulation of the Poisson equation in the system ),,( zyx  

The versors associated to the x, y, and z axes of the Cartesian coordinate system are ),,( kji


. The 

differential operator of Eq. (1) becomes: 



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with k


 orthogonal to the vectors jiaa Tn


,,,


 (Fig. 1a). Performing the scalar products in Eq. (4), 

we obtain: 

2
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with: 
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If 2  , which corresponds to a planar volume conductor without discontinuity in its 

conductivity, we obtain ,,0,,, TTnnnyTx     and the Poisson equation 

assumes the simpler form already investigated in the literature [6]. In the case zzTTnn   , we 
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obtain an isotropic volume conductor and Eq. (5) represents the Poisson equation for an isotropic, 

homogeneous medium. 

 

2.1.4 General solution of the Poisson equation for the bi-pinnate muscle 

Being the problem linear and homogeneous in the plane ),( zx , we can study the solution in the 

Fourier domain for these two coordinates:  




 dxdzeezyxkky
zjkxjk

zx
zx),,(),,(ˆ           (7) 

The response of the system to an impulsive source is given, in the spatial frequency domain, by the 

solution of the following equation:  

szsx zjkxjk
szzzxx eeyykk

dy

d
jk

dy

d 
  )(ˆ)(

ˆˆ 22

2

2







         (8) 

where ),,( sss zyx  are the coordinates of the source. In the two-dimensional Fourier domain, the 

Poisson equation is a second order ordinary differential equation. With respect to the case of 

homogeneous planar tissues, investigated in [6], the Fourier transformation is performed in the 

depth muscle direction (z with the current notations). This does not allow to easily impose interface 

conditions in this direction, as it was done in [6], and thus it does not allow to easily add 

subcutaneous layers to the geometrical configuration. The only simple extension concerns the case 

of a semi-infinite muscle bounded by an insulating medium at a certain coordinate z = zb; in such a 

case, the application of the image theorem allows to obtain the surface potential as twice that 

calculated for the case of infinite muscle, treated below. The solution of the problem with layers 

added above the bi-pinnate muscle requires to maintain the spatial coordinate z and solve a partial 

differential equation in two variables, instead of an ordinary differential equation, transforming only 

in the x coordinate. In this study we will limit our analysis of the bi-pinnate muscle to the case of 

only muscle tissue.  
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Eq. (8) can be studied as an eigenvalue problem [25]. Assuming that the solution has the form 

yk ye̂ , the following expression for the exponent yk  is obtained: 













2

4)4(
222

zzzxx
y

kkjk
k        (9) 

where the first   symbol in yk  refers to the plus or minus sign in front of the square root, the 

second refers to the two half spaces in which the discontinuity divides the domain ( 0y  and 

0y ).  

Substituting the expressions for   ,,  [Eqs. (6)], the radicand in Eq. (9) can be rewritten as 

])cossin(44[
2222

zTTnnzzxTTnn kk   , which is a positive number for any kx and kz and 

for the two regions divided by the discontinuity of the conductivity. 

 

2.1.5 Boundary conditions and particular solution 

Let’s consider, without loss of generality, the source placed in the half space 0y  and divide the 

space in three regions, i.e., syy  , 0 yys , and 0y . The solution in this three regions can be 

expressed as:  
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                  (10) 

where it has been imposed the condition of limitation of the potential for y .  

The particular solution of the problem under study can be obtained imposing the interface 

conditions for 0y , and the source conditions for syy   [10]. The source conditions are the 

continuity of the potential and the discontinuity of the flux given by the Dirac delta function at 

syy   [10]. The following linear system is obtained:  

bXA  ,                                             (11) 
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with:  
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           (12)       

Imposing the conditions in Eq. (11), 221 ,, BAA , and 3B  are obtained as functions of xk  and zk . 

This provides, by Eq. (10), the solution in the transformed domain ),,( ykk zx .  

Analytically inverting the system of Eq. (11) we have:  
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The solution in the space domain is obtained substituting Eq. (13) into Eq. (10) and inverting the 

Fourier transform.  

 

2.1.6 Scale properties of the solution for propagating sources along a fiber 

Since the system is not space invariant for sources travelling along the muscle fibers, the surface 

potential generated by an impulsive source should be computed, since it is different, for each source 

location. However, a relationship between solutions generated by sources at different locations can 

be obtained. Let’s consider an impulsive source travelling along a fiber. Suppose, without loss of 

generality, that the reference system has its origin on the fiber considered, at the interface between 

the fiber bundles constituting the bi-pinnate muscle. Suppose that the source is at the position 

)0,,( sss yxr 


.  
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The geometry of the system allows to express the instantaneous positions of the source while 

travelling along the fiber as vectors proportional to sr


. Indeed, at time t , the position of the 

impulsive source is given by the following expression:  

sr

vtr

s rrtktr
s

s

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


 )()( .                                (14) 

With the following change of variables: 
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1
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we obtain that the response to the source placed at srtk


)(  solves the same problem [for the variables 

),,,( ZYX ] as that for the source placed at sr


 (with variables ),,,( zyx ). Thus, once the solution 

is obtained for the source at a given location, the solution at any other point along the fiber is 

obtained by scaling the space variables by )(tk :  
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It is clear that this does not imply that the signal detected in time domain at different locations is 

only scaled during propagation (note for example that all three variables, including z, are scaled).  

 

2.1.7 Numerical issues 

As inverting analytically the Fourier transform of the solution is not possible, we adopted a 

numerical approach. The numerical implementation requires the sampling of the spatial frequencies 

xk  and zk  (see also [10]). Sampling of the angular frequencies xk  and zk  determines a periodic 

repetition in the spatial domain. The origin of the reference system, as reported in Fig. 1a, is placed 

at the pinnation interface and the source is placed in the half space 0y . Since the potential is 

maximum in correspondence to the source and decreases when the distance from the source 

increases, it is important that the source is distant from the borders of the spatial region described to 

avoid the aliasing due to periodic repetition of the solution (refer to [10] for more details). Thus, it 
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is preferable, when numerically solving the problem, to consider the source as located at the origin 

of the coordinate system, which implies that the pinnation interface is at a certain coordinate pyy   

(which changes as the source moves since also the origin of the coordinate system “moves” with the 

source).  

In this case, the solution can be expressed as 
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The linear algebraic system for the determination of the arbitrary coefficients is given by Eq. (11) 

with:  
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and inverting the system we have: 
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It has to be noted that, with this reference coordinate system, the location of the pinnation interface 

changes when the source position changes. In the same way, the detection point “moves” as the 

source travels along the fiber. 

Once the solution is obtained in the spatial frequency domain, it is necessary to compute the 

potential detected in a particular point in space (the detection point). To do so, a bi-dimensional 

inverse Fourier transform should be computed and the resultant function sampled at the spatial 
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location of the detection point. However, since only one value of the inverse Fourier transform is 

needed, it may be obtained by a double integral in kx and kz. For a different source position, both the 

solution (since the medium is not space invariant) and the location of the detection point (since the 

origin of the axis always corresponds to the source) change.  

 

2.2 Fibers inclined with respect to the detection surface 

We will now consider the application of the concepts proposed above to the case of a planar volume 

conductor with different homogeneous layers. The muscle layer has the fibers inclined with respect 

to the detection surface in the depth direction; the other layers are considered isotropic (although 

this condition is not essential), and can model, for example, a fat, skin, or air layer. In this case, the 

system is again not space invariant in the direction along which the source propagates. The 

conductivity tensor for the muscle layer is diagonal with respect to the ),,( zTn  reference system, 

defined above. For the other layers the conductivity tensor is given by a constant conductivity 

multiplied by the identity tensor.  

In the following, we will discuss the geometry reported in Fig. 1b in the case of only one additional 

homogeneous layer. The extension to more layers is straightforward. The volume conductor is thus 

comprised of an infinite muscle extending in the half space 0y , and an isotropic layer placed 

between the muscle and an insulating medium ( dyy 0 ). 

 

2.2.1 Mathematical formulation and general solution 

The solution for the muscle layer is the same as that obtained in the case of the bi-pinnate muscle of 

Fig. 1a, for the half space 0y . For the isotropic layer, the solution is given by the following 

equation:  
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Considering the Fourier transform in the ),( zx  variables we have: 
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whose general solution is:  

ykkykk zxzx eBeA
2222

333
ˆ


                                                                      (21) 

The final solution is obtained considering the general expressions 21
ˆ,ˆ   from Eq. (10) and 3̂  from 

Eq. (21). In case of more than one isotropic layer, the expression of Eq. (21) is used for each layer.  

 

2.2.2 Boundary conditions 

The particular solution can be obtained imposing the continuity of the potential and its flux at the 

interface between the conducting media, the continuity of the potential and the discontinuity of the 

flux at the impulsive source, and the vanishing flux at the insulating interface. 

The linear system of Eq. (11) is now defined by the following matrix of 

coefficients:
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with yk  and   defined in Eqs. (8) and (6), respectively, and ),,( sss zyx  the coordinates of the 

impulsive source.  

Solving the system in Eq. (11) and using the last two components of the vector X , we obtain the 

analytical expression of the potential in the Fourier domain over the detection surface dyy  : 
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Applying a bi-dimensional inverse Fourier transform, the desired solution is obtained. 

In case of more than one isotropic layer, the conditions of continuity of the potential and its flux at 

each interface will be added. If one layer extends to infinity, the coefficient multiplying the 

corresponding diverging term in Eq. (21) will be set to zero.  

As for the case of the bi-pinnate muscle, the system is not space invariant in the direction of 

propagation of the action potentials, thus the response of the system to a source should be computed 

for each source location, as described above for the bi-pinnate case.  

The case of fiber inclined with respect to the (x, z) plane can be treated by considering the 

inclination of the detection system over the detection plane, as proposed in [6], thus the volume 

conductor of Fig. 1b may describe fibers inclined with any orientation. In particular, the detection 

system transfer function can include the inclination angle of system over the skin plane. This can be 

accounted for by rotating the transfer function of the system in the spatial or spatial frequency 

domain [6]. 

 

3. RESULTS 

The concepts described above were included in a model for surface EMG signal simulation which 

accounts for the travelling of an action potential along a muscle fiber, its generation at the end-plate 

and its extinction at the tendon junctions. The model also includes the possibility of summing 

together motor unit action potentials with the correspondent firing patterns in order to describe the 

complete generation of the interference surface EMG signal [8][9]. In particular, once the single 

fiber action potentials have been generated, they are added to determine the motor unit action 

potential. Each motor unit is active in specific instants of time according to the specific recruitment 
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strategy simulated. The summation of the motor unit action potential trains provides the interference 

surface EMG signal. In the following only a few representative results of the application of the 

developed models for the generation of single muscle fiber action potentials will be provided. 

Future work will focus on the systematic investigation of the effect of the specific volume 

conductor properties on the features of the detected surface EMG signals.   

Fig. 2 shows the surface potential distribution generated by three impulsive sources located along a 

muscle fiber of a bi-pinnate muscle. The two pinnation angles are both equal to 15°, and the 

detection surface is at 2z  mm. The conductivity of the muscle is 0.5 S/m in the fiber direction 

and 0.1 S/m in the directions perpendicular to the fibers. The origin of the axes corresponds to the 

source, as discussed in Section 2.1.7. The potential distribution changes depending on the source 

location.  

Fig. 3 shows the surface potential generated by three impulsive sources located along a muscle fiber 

which is inclined by 15° in the depth direction with respect to the detection surface. The change in 

potential shape with changing the position of the source is evident. Figs. 2 and 3 show that the 

problems under consideration are not space invariant, thus the detected potential of a travelling 

source cannot be obtained as a convolution of an impulse response with a linear filter, as in previous 

works [6][10].   

 

Figures 2 and 3 about here 

 

Figs. 4 and 5 show examples of simulated signals from a bi-pinnate muscle. The traveling source is 

modeled by two current tripoles, generated at the end-plate and traveling in opposite directions 

along a fiber towards the tendons where they extinguish. Current source parameters are the same as 

in [18] and the way in which the generation and extinction of the intracellular action potentials is 

simulated is the same as in [19]. The shape of the surface detected action potentials changes in both 
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the case of detection along fiber direction (Fig. 4) and in the other direction (Fig. 5). In both cases, 

indeed, the system is not space invariant in the direction of source propagation. 

For bi-pinnate muscles, the signal recorded over the muscle is the summation of contributions of 

motor units with fibers having different orientations, thus, when detected along a certain direction, 

the interference signal will not show a constant delay at different muscle locations. Features of these 

signals can be investigated with the present model. 

 

Figures 4 and 5 about here 

 

4. DISCUSSION AND CONCLUSIONS 

In this study we investigated the problem of analytically describing the surface EMG signal 

generation from volume conductors which are not space invariant along the direction of propagation 

of the sources. The case analyzed is that of a bi-pinnate muscle, which presents two fiber 

orientations. The model analyzed is a simplification of the real conditions, assuming a planar 

volume conductor with rectilinear fibers. However, it covers more complex anatomical conditions 

than previous works. Indeed, there are no other works in the literature which analytically addressed 

the issue of describing the surface EMG generation from muscle tissues with more than one 

different fiber direction. The availability of such a model may help in interpreting signals generated 

by muscles with more complex architectures than those comprised of fibers all parallel with respect 

to each other. In particular, the fact that the potentials detected over the skin along fiber direction 

may change in shape is important for practical reasons, such as the estimation of muscle fiber CV. 

Moreover, a model such as that proposed in this study may be used to test non-invasive methods for 

estimating the pinnation angle from, e.g., surface EMG topographical mapping [15]. 

The approach proposed for the solution of the problem is derived from previous works from our 

group [6][10]. The solution was investigated in the bi-dimensional Fourier domain, as previously 

done. With this approach, systems of partial differential equations are treated as systems of ordinary 
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differential equations. However, the approach implies issues to be carefully addressed in the 

implementation of the solution. In case of space invariant systems, as those analyzed in [6][10], the 

solution is only shifted in space if the source is shifted. This implies that, in practice, the source can 

be considered as always located at the origin of the coordinate system. For systems which are not 

space invariant, the response to the source should be computed at each location and the center of the 

coordinate axis does not necessarily correspond to the source. We proposed, together with the 

general analytical solution with fixed coordinate axis, a solution for which the origin of the 

coordinates corresponds to the source. This significantly simplifies the numerical implementation.  

The case of a muscle with fibers inclined in the depth direction was studied using similar concepts 

as those adopted for the bi-pinnate case. With this approach, the fibers may be described as oriented 

in a generic direction within the muscle. 

The main contribution of this study is the derivation of the general solution of the problem of 

surface EMG signal generation from non-homogeneous muscle tissue when the in-homogeneity is 

due to the presence of two fiber orientations. The model developed may help in better 

understanding the generation of surface EMG signals from complex muscle architectures and in 

interpreting experimental results. 
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FIGURE CAPTIONS 

Fig. 1 a) Top view of the bi-pinnate muscle investigated. The muscle fibers are parallel to the skin 

plane and have two orientations (which can be, in general, different) defined by the angles  . The 

intracellular action potentials travel along the muscle fibers. The muscle tissue is in-homogeneous 

along the fiber direction and anisotropic. b) Lateral view of the second configuration considered, 

whose solution is derived from that obtained in the case of the bi-pinnate muscle. The muscle tissue 

is homogeneous and anisotropic with fibers inclined in the depth direction by the angle  . An 

isotropic medium separates the muscle from the air layer. Note that the x and y axes are defined 

differently in the cases a) and b) (top view and lateral view, respectively). 

Fig. 2 a) Top view of a volume conductor simulating a bi-pinnate muscle (pinnation angles 15°) 

with three locations of an impulsive source. The potential is detected at z = 2 mm. The potential 

distribution generated by the three sources is shown in b), c) and d), as contour plots. Note that the 

potential distribution changes with source position since the system is not space-invariant. 

Fig. 3 a) A lateral view of a volume conductor simulating a muscle with fibers inclined in the depth 

direction (inclination angle 15°) with three locations of an impulsive source. The potential 

distribution generated by each of the three sources is shown in b), c) and d). The potential 

distribution changes with source position. 

Fig. 4 Examples of simulated signals as generated by a fiber located in a bi-pinnate muscle and 

detected by an array of electrodes located along the direction of the muscle fiber. The locations of 

the end-plate and tendon junctions are schematically indicated by circles. The top view of the 

simulated muscle is shown in (a). Monopolar (b), single (c) and double differential (d) signals are 

reported. 

Fig. 5 Examples of simulated signals as generated by a fiber located in a bi-pinnate muscle and 

detected by an array of electrodes placed in the other muscle fiber direction. The locations of the 

end-plate and the tendon junctions are schematically indicated by circles and are the same as in Fig. 
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4. The top view of the simulated muscle is shown in (a). Monopolar (b), single (c) and double 

differential (d) signals are reported. 


