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Abstract

Consider two random vectors X1 and X2 whose distributions are defined according to

the multivariate frailty approach, and let Xk,t = [Xk − t|Xk > t], k = 1, 2, be the

corresponding vectors of residual lifetimes at t = (t1, . . . , tn), ti ∈ R, i = 1, . . . , n. Condi-

tions for multivariate stochastic comparisons of random vectors described by the frailty

approach have been recently presented in Misra, Gupta and Gupta (2009), “Stochastic

comparisons of multivariate frailty models”, Journal of Statistical Planning and Infer-

ence, 139, 2084–2090. Here we prosecute their study, providing sufficient conditions for

the stochastic comparison X1,t ≤st X2,t, where t is an arbitrary vector in R
n. Sufficient

conditions for the stochastic comparisons Xi,t ≤st Xi,t+v, where t is as above and v is a

vector with non-negative components, are presented too.

AMS Subject Classification: 60E15, 60K10.

Key words and phrases: Frailty Models, Multivariate Residual Lifetimes, Multivariate

Usual Stochastic Order, Multivariate Aging.



1 Introduction

The frailty approach is commonly used in reliability theory and survival analysis to model

the dependence between subjects or components; according to this model the frailty (an

unobservable random variable that describes environmental factors) acts simultaneously

on the hazard functions of the lifetimes. In details, for fixed k = 1, 2 the vector Xk =

(Xk,1, . . . , Xk,n) is said to be described by a multivariate frailty model if its joint survival

function is defined as

FXk
(t1, . . . , tn) = IP[Xk,1 > t1, . . . , Xk,n > tn] = E

[(
Πn

i=1Gk,i(ti)
)Θk

]
, ti ∈ R

+, (1.1)

where Θk is an environmental random frailty taking values in R
+ and Gk,i is any survival

function, commonly called baseline survival function of Xk,i (and, of course, different

from the survival function of Xk,i unless Θk = 1 a.s.). For a detailed description of

frailty models and their applications we refer the reader to Hougaard (2000). Note that,

commonly, frailty models are used to describe vectors of non–independent lifetimes, but,

actually, non–negativity of variables Xk,i is not required in subsequent sections.

Recall that given two random vectors (or variables) X1 and X2, then X1 is said to

be smaller than X2 in the usual stochastic order (denoted X1 ≤st X2) iff E[φ(X1)] ≤

E[φ(X2)] for every increasing function φ such that the expectations exist (see Shaked

and Shanthikumar (2007) for details, properties and applications of the usual stochastic

order). Also, recall that, in the univariate case, X1 ≤st X2 iff FX1(t) ≤ FX2(t) for all

t ∈ R.

Interesting conditions for stochastic comparisons between two vectors X1 and X2

defined as above have been recently shown in Misra et al. (2009). In particular, in Misra

et al. (2009) it is shown that X1 ≤st X2 whenever G1,i = G2,i for all i = 1, . . . , n and

Θ2 ≤st Θ1, where ≤st is the usual stochastic order.

In Section 2 we provide an alternative sufficient condition for X1 ≤st X2, and we

describe an immediate consequence of this result in comparisons of corresponding vectors

of residual lifetimes at multivariate times t ∈ R
n. In particular, we show that the

inequality X1 ≤st X2 follows also from a different stochastic inequality between the

random frailties Θ1 and Θ2, called here ≤n−Lt−r, whose definition is the following.

Definition 1.1. Given two non-negative random variables Θ1 and Θ2 we say that Θ2 is

smaller than Θ1 in the n–Laplace transform–ratio order (shortly Θ2 ≤n−Lt−r Θ1), with

n ∈ N
+, iff the ratio

E[Θn−1
1 exp(−sΘ1)]

E[Θn−1
2 exp(−sΘ2)]

is decreasing in s ∈ R
+.

In Section 4 some of the relationships between the ≤n−Lt−r order and other well-

known univariate stochastic orders will be mentioned; for the moment just observe that

these orders do not imply, nor are implied by, the ≤st order, and that Θ2 ≤n−Lt−r Θ1
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holds iff the ratio
W

(n−1)
1 (s)

W
(n−1)
2 (s)

is decreasing in s, where

Wk(s) = E[exp(−sΘk)] =

∫ ∞

0

exp(−sθ)dHk(θ), s ∈ R
+, (1.2)

where W
(n−1)
k is the derivative of order n−1 of Wk (with W

(0)
k = Wk) and where Hk is the

cumulative distribution of Θk, k = 1, 2. Moreover, observe that, in particular, the order

≤1−Lt−r is equivalent to the Laplace transform ratio order (≤Lt−r) studied in Shaked and

Wong (1997), while ≤2−Lt−r is equivalent to the differentiated Laplace transform ratio

order (≤d−lt−r) recently defined and in Li et al. (2009).

Finally, in Section 3 we will describe a second application of the main result, providing

conditions for comparisons between vectors of residual lifetimes from the same vector X1,

i.e., providing conditions for comparisons X1,t ≤st X2,t+v, where v is a vector with non-

negative components.

Some conventions and notations that are used throughout the paper are given pre-

viously. Notation =st means equality in law. For any random variable (or vector)

X and an event A, [X |A ] denotes a random variable whose distribution is the con-

ditional distribution of X given A. Throughout this paper we write “increasing” in-

stead of “non-decreasing” and “decreasing” instead of “non-increasing”. Given two real

valued vectors x = (x1, . . . , xn) and y = (y1, . . . , yn), the notation x ≤ [<] y means

xi ≤ [<] yi ∀i = 1, . . . , n. A function φ : Rn → R is said to be increasing if x ≤ y im-

plies φ(x) ≤ φ(y). Finally, we will denote with X̃k,i the random variable whose survival

function is the baseline survival function Gk,i, for k = 1, 2 and i = 1, . . . , n.

2 Comparison of residual lifetimes

Let X1 and X2 be two random vectors having joint survival functions defined as in (1.1);

the main result of this section describes conditions for the usual stochastic order between

the corresponding vectors Xk,t = [Xk − t|Xk > t] for every vector t ∈ R
n.

Three preliminary results are needed. The proof of the first two easily follows from

standard Total Positivity techniques (see Karlin, 1968, for definitions, main properties

and details on Total Positivity theory).

Lemma 2.1. Let the survival functions Wk, with k = 1, 2, be defined as in (1.2). Then

W
(n−1)
k (s+ z)

W
(n−1)
k (s)

is increasing in s ∈ R
+ for every z ∈ R

+ and n ≥ 1.
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Proof. First observe that the assertion holds iff for every n ≥ 1 the ratio

W
(n−1)
k (s)

W
(n)
k (s)

(2.1)

is decreasing in s ∈ R
+. Denote

W
(n)
k (s) = (−1)nW̃

(n)
k (s) = (−1)n

∫ ∞

0

a(n, θ)b(s, θ)dHk(θ),

where a(n, θ) = θn and b(s, θ) = exp(−sθ). It is easy to verify that a(n, θ) is TP2

(totally positive of order 2 ), while b(s, θ) is RR2 (reverse regular of order 2 ). Thus by

the Basic Composition Formula it follows that W̃
(n)
k (s) is RR2 in (n, s), i.e., that the

ratio W̃
(n−1)
k (s)/W̃

(n)
k (s) is increasing in s. The assertion now follows observing that

W
(n−1)
k (s)

W
(n)
k (s)

= −
W̃

(n−1)
k (s)

W̃
(n)
k (s)

.

The second preliminary result describes the relationships among the ≤n−Lt−r orders.

Lemma 2.2. Let Θ2 ≤n−Lt−r Θ1. Then Θ2 ≤i−Lt−r Θ1 for every i = 1, . . . , n − 1, and,

in particular,

E[exp(−sΘ2)] ≥ E[exp(−sΘ1)] for all s ∈ R
+

Proof. Again using the Basic Composition Formula it is easy to verify that when the

ratio W
(i)
1 (s)/W

(i)
2 (s) is decreasing then also

∫∞
s

W
(i)
1 (z)dz

∫∞
s

W
(i)
2 (z)dz

=
W

(i−1)
1 (s)

W
(i−1)
2 (s)

is decreasing in s. In particular, also W1(s)/W2(s) is decreasing in s, thus

1 =
W1(0)

W2(0)
≥

W1(s)

W2(s)
=

E[exp(−sΘ1)]

E[exp(−sΘ2)]
.

The third preliminary result is stated as Theorem 6.B.4 in Shaked and Shanthikumar

(2007). For it, recall that a random vector Y = (Y1, . . . , Yn) is said to be conditionally

increasing in sequence (shortly CIS) if, for i = 2, . . . , n,

[Yi|Y1 = y1, . . . , Yi−1 = yi−1] ≤st [Yi|Y1 = y′1, . . . , Yi−1 = y′i−1]

for all yj ≤ y′j, j = 1, . . . , i−1, where [Yi|Y1 = y1, . . . , Yi−1 = yi−1] denotes the conditional

distribution of Yi given Y1 = y1, . . . , Yi−1 = yi−1 for all y1, . . . , yi−1 ∈ R.

3



Lemma 2.3. Let Y1 = (Y1,1, . . . , Y1,n) and Y2 = (Y2,1, . . . , Y2,n) be two random vectors

such that Y1, or Y2, is CIS. Then the stochastic inequality Y1 ≤st Y2 holds if:

(i) Y1,1 ≤st Y2,1;

(ii) [Y1,i|Y1,1 = t1, . . . , Y1,i−1 = ti−1] ≤st [Y2,i|Y2,1 = t1, . . . , Y2,i−1 = ti−1] ∀i =

2, . . . , n and tj ≥ 0, with j = 1, . . . , i− 1.

The following main result describes new conditions for the usual stochastic comparison

between two multivariate frailty models. Recall that X̃k,i denotes the random variable

whose survival function is the baseline survival function Gk,i.

Theorem 2.1. Let the n–dimensional vectors Xk, with k = 1, 2, have survival functions

defined as in (1.1). If:

(a) Θ2 ≤n−Lt−r Θ1;

(b) X̃1,i ≤st X̃2,i ∀i = 1, . . . , n,

then X1 ≤st X2.

Proof. Let us consider a vector Y = (Y1, . . . , Yn) having joint survival function

FY(t1, . . . , tn) = E
[(
Πn

i=1G2,i(ti)
)Θ1

]
, ti ∈ R.

First we prove that Y ≤st X2. For it, observe that the joint survival function of X2 can

be written as

FX2(t1, . . . , tn) = W2

(
−

n∑

i=1

lnG2,i(ti)

)
.

Observing that the survival functions of the margins X2,i are

FX2,i
(ti) = W2(− lnG2,i(ti)),

while their inverses are

F
−1

X2,i
(ui) = G

−1

2,i (exp(−W
−1
2 (ui))),

one can verify that the survival copula of X2 is Archimedean, i.e., that

FX2(F
−1

X2,1
(u1), . . . , F

−1

X2,n
(un)) = W2

(
n∑

i=1

W−1
2 (ui)

)

for all u1, . . . , un ∈ [0, 1].

It should observed that the survival copula of X2 does not depend on the baseline

distributions G2,i, but only on the random frailty Θ2. Similarly, the survival copulas of

vectors X1 and Y depend only on the random frailty Θ1, and therefore X1 and Y have

the same survival copula.

Since by Lemma 2.1 the ratioW
(n−1)
2 (s+z)/W

(n−1)
2 (s) is decreasing in s, we can apply

Theorem 2.8 in Müller and Scarsini (2005), which states that in this case X2 satisfies
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the CIS property1. Thus, in order to prove that Y ≤st X2 it suffices to verity that

assumptions (i) and (ii) in Lemma 2.3 are satisfied (letting Y := Y1 and X2 := Y2).

Note that, for all t1 ∈ R,

F Y1(t1) = E[G2,1(t1)
Θ1 ] = E[exp(Θ1 lnG2,1(t1))]

≤ E[exp(Θ2 lnG2,1(t1))] = E[G2,1(t1)
Θ2 ] = FX2,1(t1),

where the inequality follows from assumption (a) and Lemma 2.2. Thus (i) in Lemma

2.3 holds.

Moreover, for all i = 1, . . . , n and tj ∈ R, j = 1, . . . , i, it holds

F Yi|Y1=t1,...,Yi−1=ti−1
(ti) =

∫ ∞

ti

fYi|Y1=t1,...,Yi−1=ti−1
(u)du

=

∫ ∞

ti

∫∞
0

θig2,i(u)G
θ−1

2,i (u)
∏i−1

j=1 g2,j(tj)G
θ−1

2,j (tj)dH1(θ)
∫∞
0

θi−1
∏i−1

j=1 g2,j(tj)G
θ−1

2,j (tj)dH1(θ)
du

=

∫∞
0

θi−1G
θ

2,i(ti)
∏i−1

j=1 G
θ

2,j(tj)dH1(θ)
∫∞
0

θi−1
∏i−1

j=1 G
θ

2,j(tj)dH1(θ)

=
W

(i−1)
1 (− lnG2,i(ti)−

∑i−1
j=1 lnG2,j(tj))

W
(i−1)
1 (−

∑i−1
j=1 lnG2,j(tj))

≤
W

(i−1)
2 (− lnG2,i(ti)−

∑i−1
j=1 lnG2,j(tj))

W
(i−1)
2 (−

∑i−1
j=1 lnG2,j(tj))

= FX2,i|X2,1=t1,...,X2,i−1=ti−1
(ti),

where, again, the inequality follows from assumption (a). Thus, also assumption (ii) in

Lemma 2.3 is satisfied. We can then assert that Y ≤st X2.

Now observe that, by Theorem 6.B.14 in Shaked and Shanthikumar (2007), it holds

X1 ≤st Y, having the vectors X1 and Y the same copula (as mentioned before) and

stochastically ordered margins (by assertion (b) and closure of usual stochastic order

with respect to mixtures).

The main assertion now follows from X1 ≤st Y ≤st X2.

Under an assumption stronger than (b) of Theorem 2.1 it is possible to get a stronger

comparison between X1 and X2, which involves the vectors of their residual lifetimes.

Theorem 2.2. Let the vectors Xk, with k = 1, 2, have survival functions defined as in

(1.1). If:

(a) Θ2 ≤n−Lt−r Θ1;

(b) X̃1,i =st X̃2,i ∀i = 1, . . . , n;

then X1,t ≤st X2,t for every vector t = (t1, . . . , tn) ∈ R
n.

1Actually, the vector X2 also satisfies the stronger positive dependence notion MTP2, as follows from

Application 3.2 in Khaledi and Kochar (2001).
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Proof. Let u = (u1, . . . , un) be an arbitrary vector with non-negative components. Note

that

FXk,t
(u) =

F k(t+ u)

F k(t)
=

∫∞
0

(
Πn

i=1Gk,i(ti + ui)
)θ

dHk(θ)
∫∞
0

(
Πn

i=1Gk,i(ti)
)θ

dHk(θ)

=

∫∞
0

exp{θ[
∑n

j=1 lnGk,j(tj + uj)]}dHk(θ)∫∞
0

exp{θ[
∑n

j=1 lnGk,j(tj)]}dHk(θ)

=

∫ ∞

0

exp{θ[
n∑

j=1

ln(
Gk,j(tj + uj)

Gk,j(tj)
)]}

exp{θ[
∑n

j=1 lnGk,j(tj)]}dHk(θ)∫∞
0

exp{θ[
∑n

j=1 lnGk,j(tj)]}dHk(θ)

=

∫ ∞

0

exp{θ[
n∑

j=1

ln(
Gk,j(tj + uj)

Gk,j(tj)
)]}dH̃k(θ).

Thus, Xk,t has joint survival function which can be expressed as

FXk,t
(u) = E

[(
Πn

i=1Gk,i,ti(ui)
)Θ̃k

]

where

Gk,i,ti(ui) =
Gk,j(tj + uj)

Gk,j(tj)
(2.2)

and where Θ̃k has distribution H̃k defined as

H̃k(θ) =

∫ θ

0
exp{τ [

∑n

j=1 lnGk,j(tj)]}dHk(τ)∫∞
0

exp{τ [
∑n

j=1 lnGk,j(tj)]}dHk(τ)
.

Thus, also,

E[exp(−sΘ̃k)] =
E[exp(−(s+ t̃k)Θk)]

E[exp(−t̃kΘk)]
,

where t̃k = −
∑n

j=1 lnGk,j(tj). Note that t̃1 = t̃2 by assumption (b).

Let us now denote W̃k,t(s) = E[exp(−sΘ̃k)]. It holds

W̃
(n−1)
1,t (s)

W̃
(n−1)
2,t (s)

=
E[exp(−t̃2Θ2)]

E[exp(−t̃1Θ1)]
·
W

(n−1)
1 (s+ t̃1)

W
(n−1)
2 (s+ t̃2)

=
E[exp(−t̃2Θ2)]

E[exp(−t̃1Θ1)]
·
W

(n−1)
1 (s+ t̃1)

W
(n−1)
2 (s+ t̃1)

.

Since
W

(n−1)
1 (s+t̃1)

W
(n−1)
2 (s+t̃1)

is decreasing in s by assumption (a), it holds Θ̃2 ≤n−Lt−r Θ̃1. Moreover,

denoted with X̃k,i,ti the random lifetimes having survival functions defined as in (2.2),

from assumption (b) obviously follows that G1,i,ti(ui) ≤ G2,i,ti(ui) for all ui ∈ R
+ and

i = 1, . . . , n, i.e., X̃1,i,ti ≤st X̃2,i,ti ∀i = 1, . . . , n.

Thus one can apply Theorem 2.1 to X1,t and X2,t, getting the assertion.
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3 On negative aging of frailty models

In the literature one can find several characterizations of aging notions for univariate

non-negative variables by means of stochastic comparisons between the residual lifetimes

Xt = [X − t
∣∣X > t] (see, e.g, Barlow and Proschan, 1975). Among others, the following

negative aging notion is well–known: the random lifetime X is said to be Decreasing in

Failure Rate (shortly DFR) iff

Xt ≤st Xt+v for all t, v ≥ 0. (3.1)

Different multivariate generalizations of this aging property have been suggested.

Some of them are based on alternative characterizations of univariate DFR distributions

(see, e.g., Bassan and Spizzichino, 2005, or Shaked and Shanthikumar, 1991), while

others have the shortcoming that they do not order the lifetime vectors in the sense

of usual stochastic order ≤st as (3.1) does in one dimension (see Barlow and Proschan,

1975, or Block and Savits, 1981). On the other hand, the following natural multivariate

generalization of inequality (3.1) has been considered in Mulero and Pellerey (2009): a

vector of lifetimes X is said to be multivariate DFR if

Xt ≤st Xt+v (3.2)

holds for all vectors t and v having non-negative components. It should be pointed out

that such a notion is actually weaker than the multivariate DFR notion considered in

Arjas (1981) and further studied in Shaked and Shanthikumar (1988), whose definition

is based on more general conditioning.

Using arguments similar to those in the proof of Theorem 2.2 it is possible to prove

the following result, which describes conditions for inequality (3.2). Here the vector X1

does not need to have non-negative components.

Theorem 3.1. Let the n–dimensional vector X1 have joint survival function defined as

in (1.1). Then X1,t ≤st X1,t+v holds for every t = (t1, . . . , tn) ∈ R
n and every non-

negative v = (v1, . . . , vn) if for all i = 1, . . . , n the variable X̃1,i has decreasing hazard

rate, i.e., if X̃1,i,ti ≤st X̃1,i,ti+vi ∀ti ∈ R and vi ∈ R
+.

Proof. Let u = (u1, . . . , un) be any vector with non-negative components. Note that, as

shown in the proof of Theorem 2.2,

FX1,t(u) = E

[(
Πn

i=1G1,i,ti(ui)
)Θ̃t

]
and FX1,t+v

(u) = E

[(
Πn

i=1G1,i,ti+vi(ui)
)Θ̃t+v

]

where Θ̃t and Θ̃t+v have distribution H̃t and H̃t+v, respectively, defined as

H̃t(θ) =

∫ θ

0
exp{τ [

∑n

j=1 lnG1,j(tj)]}dHt(τ)∫∞
0

exp{τ [
∑n

j=1 lnG1,j(tj)]}dHk(τ)

7



and

H̃t+v(θ) =

∫ θ

0
exp{τ [

∑n

j=1 lnG1,j(tj + vj)]}dHt+v(τ)∫∞
0

exp{τ [
∑n

j=1 lnG1,j(tj + vj)]}dHk(τ)
.

Thus

E[exp(−sΘ̃t)] =
E[exp(−(s+ t̃)Θ1)]

E[exp(−t̃Θ1)]

and

E[exp(−sΘ̃t+v)] =
E[exp(−(s+ t̃v)Θ1)]

E[exp(−t̃vΘ1)]
,

where t̃ = −
∑n

j=1 lnGk,j(tj) and t̃v = −
∑n

j=1 lnGk,j(tj + vj).

Let us denote with

W̃1,t(s) = E[exp(−sΘ̃t)] and W̃1,t+v(s) = E[exp(−sΘ̃t+v)]

the Laplace transforms of H̃t and H̃t+v, respectively.

It holds
W̃

(n−1)
1,t (s)

W̃
(n−1)
1,t+v

(s)
=

E[exp(−t̃vΘ1)]

E[exp(−t̃Θ1)]
·
W

(n−1)
1 (s+ t̃)

W
(n−1)
1 (s+ t̃v)

.

It is easy to verify that the ratio
W

(n−1)
1 (s+t̃)

W
(n−1)
1 (s+t̃v)

is decreasing in s because of Lemma 2.1 and

inequality t̃ ≤ t̃v. Thus Θ̃t+v ≤n−Lt−r Θ̃t.

Moreover, from the assumption on the variables X̃1,i easily follows that X̃1,i,ti ≤st

X̃1,i,ti+vi , i.e., that G1,i,ti(ui) ≤st G1,i,ti+vi(ui) for all ui ∈ R
+ and i = 1, . . . , n.

Thus the assertion follows applying Theorem 2.1.

This result is not surprising, in particular if compared with similar conditions reported

in literature for other notions of negative multivariate aging (see, e.g., Spizzichino and

Torrisi, 2001).

4 The Laplace transform – likelihood ratio order

The ≤n−Lt−r orders have been never considered before in general in the literature. How-

ever, the particular case ≤1−Lt−r is equivalent to the Laplace transform ratio order ≤Lt−r

defined and studied in Shaked and Wong (1997), and further considered in Bartoszewicz

(1999), who derived some of its characterizations and established inequalities for negative

moments of ordered random variables. Also, the ≤2−Lt−r order is the same as the differ-

entiated Laplace transform ratio order recently defined and in Li et al. (2009), where a

complete study on its properties and applications is provided.

Like the orders mentioned above, the orders ≤n−Lt−r do not imply the usual stochastic

order ≤st. To prove it, it suffices to consider the variables Θ1 and Θ2 having discrete
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densities fΘk
defined as

fΘ1(t) =





0.2 if t = 1

0.4 if t = 2

0.4 if t = 2.9

0 otherwise

and fΘ2(t) =





0.3 if t = 1

0.4 if t = 2

0.3 if t = 3

0 otherwise.

With some straightforward calculation it is easy to verify that Θ2 ≤2−Lt−r Θ1, while the

usual stochastic order between Θ1 and Θ2 is not satisfied, since their survival functions do

intersect. Moreover, the usual stochastic order does not imply the n–Laplace transform–

likelihood ratio orders, since it does not imply the ≤Lt−r order (see Shaked and Wong,

1997).

A second example of variables that are ordered in 2-Lt-r sense but not in usual

stochastic order is for Θ1 ∼ U [0, 3] and Θ2 ∼ U [1, 2]. These two variables are not

ordered in usual stochastic order because their survival functions do intersect (and neither

are ordered in the stronger likelihood ratio order, as one can verify), however it holds

Θ2 ≤2−Lt−r Θ1 being the ratio

W
(1)
1 (s)

W
(1)
2 (s)

=
−3e−3ss+ (1− e−3s)

3[(e−s − 2e−2s)s+ (e−s − e−2s)]

decreasing in s ≥ 0.

An example where two non-negative variables are ordered in ≤n−Lt−r order for every

value of n is described in the following proposition. Here, Ga(α, λ) denotes the gamma

distribution with shape parameter α and scale parameter λ.

Proposition 4.1. Let Θ1 ∼ Ga(α1, λ1) and Θ2 ∼ Ga(α2, λ2). Then Θ2 ≤n−Lt−r Θ1 for

every n ≥ 0 whenever α1 ≥ α2 and λ1 ≤ λ2.

Proof. It is well-known that if Θ ∼ Ga(α, λ), its associated Laplace transform is given

by

W (s) = λα(λ+ s)−α,

and that its derivative of order n is given by

W (n−1)(s) = (−1)n−1
(α + n− 1)!

(α− 1)!
λα(λ+ s)−(α+n−1)

= −(α + n− 1)(λ+ s)−1W (n−2)(s) (4.1)

Therefore,

W
(n−1)
1 (s)

W
(n−1)
2 (s)

= Cα1,α2,λ1,λ2,n

(λ1 + s)−α1−n

(λ2 + s)−α2−n

= Cα1,α2,λ1,λ2,n(λ2 + s)α2−α1

(
λ2 + s

λ1 + s

)n+α1

, (4.2)

where Cα1,α2,λ1,λ2,n does not depend on s. It is easy to see that this ratio is decreasing in

s if and only if α1 ≥ α2 and λ1 ≤ λ2.
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