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A Comprehensive Mixed-Mode Time-Domain
Load- and Source-Pull Measurement System

Valeria Teppati, Member, IEEE, Andrea Ferrero, Senior Member, IEEE,
Marco Garelli, Member, IEEE, and Serena Bonino

Abstract—We present a novel test set devised for nonlinear
balanced device characterization using load-pull techniques. The
system is capable of measuring the voltage and current waveforms
at the calibration reference planes while independently tuning
the device under test (DUT) source and load differential- and
common-mode terminations. The test set is designed to address
present and future large-signal multiport measurement needs,
easing the characterization task while developing new multiport
active devices.

Index Terms—Balanced devices, differential load-pull, mixed-
mode load-pull, multiport calibration, time-domain waveform.

I. INTRODUCTION

DURING the past years, interest in high-frequency bal-
anced amplifiers has exponentially grown. These devices

have advantages for RF integrated circuits, such as balanced
low-noise front ends [1], [2] and balanced amplifiers [3], as well
as balanced line drivers for high-speed digital transmission [4].

The characterization of these high-frequency devices re-
quires rigorous calibration techniques and a multiport test set.

The solutions presented until now generally use balanced
passive tuners, making it very difficult, if not impossible, to
independently tune the differential- and common-mode loads
[5]–[7].

We propose a novel solution for both balanced load- and
source-pull based on the active-load technology. The major
advantages are the common- and differential-mode independent
tuning and great flexibility in performing harmonic load tuning.
Moreover, the test set is able to measure the time-domain
waveforms for both modes in real time, i.e., the waveforms are
displayed while changing the fundamental or harmonic loads.
With this system, the principles of waveform engineering can
be verified on balanced devices for the first time [8]–[10].

This paper is focused on the novel hardware solution and
also provides some measurement examples. Section II presents
the system hardware, whereas Section III details the calibration
steps. Measurement results are presented in Section IV, and
conclusions are drawn in Section V.
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II. SYSTEM DESCRIPTION

The four-port measurement system is shown in Fig. 1. It
consists of a four-port vectorial measuring system based on four
reflectometers [R1, R2, R3, and R4 in Fig. 1(a)] and a vecto-
rial receiver, which sequentially measures the reflectometers’
outputs with an SP8T RF switch [Fig. 1(b)]. The system has
two mixed-mode active loads, with one connected to the DUT
outputs (ports 3 and 4) and the other connected to the DUT in-
puts (ports 1 and 2). Each load is able to independently synthe-
size a common- and a differential-mode reflection coefficient.
This is accomplished by splitting the incident common- and
differential-mode signals with a 3-dB 180◦ hybrid, indepen-
dently processing each mode with two active loops and am-
plifiers, and, finally, recombining the signals with a second
hybrid [11].

The active loops consist of a variable attenuator, a phase
shifter, and a yttrium–iron–garnet tuned bandpass filter, which
is tuned at the frequency of interest (Fig. 2). The active loads
can easily be configured to tune the harmonic reflection coeffi-
cients: this requires the use of power splitters and additional
active loops tuned to the harmonic frequency, as shown in
Fig. 1(a) for loops 3 and 4. The advantage of this solution
resides in the perfect independent tuning of the harmonic and
fundamental loads. Moreover, the harmonic reflection coeffi-
cients can be raised up to near-unity magnitude, simulating any
highly reflective termination, which is almost impossible with
passive tuners. Closed-loop active load-pull systems could have
stability issues, as the loop may auto-oscillate, but these prob-
lems are greatly reduced by applying the solutions proposed in
[12]–[14]. So far, no instability was observed for the presented
mixed-mode version nor on its copy, which was implemented
in NXP Semiconductors [15].

Once the system is calibrated, the incident and reflected
waves at the DUT ports can be computed in both magnitude
and phase [16], [17]. In their simplest form, when reference
impedance Z0 is set to 50 Ω at all ports, the mixed-mode waves
are computed from the single-ended waves as [19]

aD1 =
1√
2
(a1 − a2) aC1 =

1√
2
(a1 + a2) (1)

bD1 =
1√
2
(b1 − b2) bC1 =

1√
2
(b1 + b2) (2)

aD2 =
1√
2
(a3 − a4) aC2 =

1√
2
(a3 + a4) (3)

bD2 =
1√
2
(b3 − b4) bC2 =

1√
2
(b3 + b4) (4)
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Fig. 1. Novel differential time-domain load-pull system. (a) Main measuring section, including the source and output mixed-mode active loads. The
reflectometers’ outputs are measured as shown in (b). (b) Detail of the VNA signal paths. The VNA is an HP8510C with an HP8511A test set, which is phase
locked on the signals coming from the custom-made comb generator in (c). (c) Custom-made comb generator block schematic. With an RF source frequency of
2 GHz, the useful harmonic content extends up to 10 GHz.

Fig. 2. Active loop configuration.

where bD2 and bC2 are the differential- and common-mode
reflected waves at the DUT outputs, respectively; aD2 and
aC2 are the incident waves; and (bD1, aD1) and (bC1, aC1) are
the differential- and common-mode waves at the DUT input,
respectively.

These definitions set the differential-mode reference im-
pedance ZD = 2Z0 = 100 Ω and the common-mode reference
impedance ZC = Z0/2 = 25 Ω. The general case, where the
reference impedances are unequal, is presented in [20], but, in
the following, we will adhere to a real single-ended reference
impedance Z0 = 50 Ω.

Finally, the differential- and common-mode voltages and
currents at the reference planes are computed as

VD1 =
√

ZD[aD1 + bD1] ID1 =
1√
ZD

[aD1 − bD1] (5)

VC1 =
√

ZC[aC1 + bC1] IC1 =
1√
ZC

[aC1 − bC1] (6)

VD2 =
√

ZD[aD2 + bD2] ID2 =
1√
ZD

[aD2 − bD2] (7)

VC2 =
√

ZC[aC2 + bC2] IC2 =
1√
ZC

[aC2 − bC2]. (8)

We now define a set of parameters of interest. The
differential- and common-mode DUT output powers (at the
fundamental or harmonic frequencies) are

PoutD ≡ |bD2|2 − |aD2|2 (9)

PoutC ≡ |bC2|2 − |aC2|2 (10)

and the DUT input powers are

PinD ≡ |aD1|2 − |bD1|2 (11)

PinC ≡ |aC1|2 − |bC1|2. (12)

whereas the differential- and common-mode load reflection
coefficients are defined as

ΓLD ≡ aD2

bD2
(13)

ΓLC ≡ aC2

bC2
. (14)

Finally, the power gains are given by

GD ≡ PoutD

PinD
(15)

GC ≡ PoutC

PinC
. (16)

In general, the DUT performances are dependent on ΓLD and
ΓLC at the fundamental and harmonics.
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Fig. 3. Example of multiport scattering parameter calibration. Three one-port standards (short–open–load) are used at port 1, and three known thru standards are
connected between 1 and 3, 1 and 4, and 2 and 4.

Fig. 4. Power and phase calibration. A thru standard is connected between ports 1 and 3, and short–open–load standards are used at auxiliary port 5.

III. CALIBRATION MODEL

The measurement system bases its error model on the multi-
port vector network analyzer (VNA) calibration model [21],
[22]. We define a set of error coefficients li, mi, hi, and ki for
each port i (i = 1, 2, 3, 4)

ai = libmi − hiami

bi = kibmi − miami (17)

where ai and ami are the actual and measured incident waves at
port i, respectively, and bi and bmi are the actual and measured
reflected waves, respectively (see Fig. 1).

In an n-port VNA without leakage, the scattering error terms
are 4n − 1, with one coefficient being used for normalization.
These unknowns need to be computed by a multiport scattering
calibration. The calibration problem can be solved by merging
together one- and two-port calibrations until all ports are cali-
brated. A four-port example is shown in Fig. 3, where a quick
short–open–load–thru (QSOLT) [23] is performed between
ports 1–3; then, the other ports are merged using thru standards.
Different multiport calibration schemes can also be employed,
and the QSOLT can be substituted by any common two-port
calibration type, such as thru–reflect–line, line–reflect–match,
short–open–load–thru, or short–open–load–reciprocal.

During the scattering calibration, the drive signal comes from
the VNA internal source and is routed by an SP4T switch
connected to external ports 5–8. The mixed-mode active loads
are disconnected, and the loop couplers are terminated.

The power and phase calibration is based on [24]. This
crucial step is needed to compute the normalization error co-
efficient in magnitude and phase for each frequency. We use

a power meter to measure the calibration signal power and
a microwave transition analyzer (MTA) to read the harmonic
phase information of a comb generator test signal (Fig. 4). Our
system uses the calibrated MTA to characterize the harmonic
phase content of an uncalibrated comb generator, thus avoiding
both the slower MTA readings during the DUT measurement,
as in [8], [25], and the transfer standard of any kind for the
phase reference, as in [16]–[18]. Thus, the final harmonic phase
accuracy for the time-domain waveform measurements is that
of the MTA.

The power and phase calibration steps take advantage of
an auxiliary port, e.g., port 5, configured to be directly con-
nected to the MTA channel 2 connector; thus, no calibrated
adapters are needed to mate the MTA to the measurement ports
(1, 2, 3, or 4), which is unpractical in on-wafer applications. A
short–open–load calibration is performed at this port, enabling
the computation of the Sx scattering matrix of the section from
port 3 to port 5, thus including any cables or adapters required
to mate the MTA connector [24].

During the power calibration, the power meter is connected
to port 5, and the CW signal source at port 7 is set, in turn, at
all the calibration frequencies. From the knowledge of Sx, the
power measurements at port 5 are then translated back to port 3,
and the magnitude of the normalization coefficient is computed.

For the phase calibration, as shown in Fig. 4, the MTA is
connected to port 5, and the CW source is substituted with
the comb generator signal [Fig. 1(c)], which also provides
the trigger signal to the MTA and the VNA phase lock, to
coherently measure the harmonic signals.

The comb signal is generated by a simple RF detector, which
is driven by a strong signal (+20 dBm) at the fundamental
frequency [Fig. 1(c)]. The detector’s dc output is closed by
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a 50-Ω resistor, which provides the dc current return needed
to increase the nonlinear effects. A directional coupler then
extracts the distorted reflected signal from the detector, and the
comb signal is properly amplified. This simple solution showed
to be very effective in generating the harmonic reference signals
but is not suitable for multitone DUT excitation, such as [26].
The frequency spacing is much larger, but this allows the
production of a significant signal up to 10 GHz.

Since the comb generator output is not supposed to vary over
time, the MTA information about the harmonic relative phases
can be translated to the VNA measurements, and the phase of
the normalization coefficient is computed. Therefore, the phase
calibration uniquely depends on the MTA accuracy, and the
calibration traceability is based on the MTA calibration and not
on transfer standards, such as golden diodes. In our case, the
MTA is assumed to be calibrated at its input connectors and not
to introduce any phase distortion up to 10 GHz.

It is fundamental that the VNA phase locks on the comb
generator output; otherwise, the harmonic signals will show
random phases. We used an HP8510C VNA coupled with
an HP8511A frequency converter. This 20-year-old instrument
still remains to be the affordable reference solution for such
complex microwave measurements, due to its great flexibility
and its analog phase-lock system.

After the calibration, the comb generator output is matched
with a 50-Ω load.

IV. MEASUREMENT RESULTS

A. Load-Pull Measurements

We measured the performances of an Agilent TC226P bal-
anced amplifier mounted on a connectorized evaluation board.
The device is intended for broadband linear operation, but we
investigated its behavior close to saturation.

The measurements were performed at 2 GHz, and the har-
monic content was measured up to 10 GHz. Fig. 5 shows the
results for the fundamental differential-mode load. The device
maximum output power is reached slightly off the ZD = 100 Ω
load condition, and interestingly, the common-mode content
drops down when reaching the optimum load condition. This
fact is confirmed by the power sweep performed at the optimum
load, as shown in Fig. 6. It is worth noting that the common and
differential modes of each harmonic frequency are interrelated:
One mode has a minimum close to the point of maximum
curvature of the other mode. These points differ for each
harmonic frequency. To the authors’ knowledge, this fact was
never reported before.

B. Waveform Measurements

Wave-shaping techniques are heavily used when design-
ing single-ended amplifiers. With balanced devices, the
differential-mode performances may be influenced by the
common-mode harmonic terminations if enough common-
mode output power is present. Even though, if the amplifier is
well balanced, it will perform like an equivalent single-ended
device for the differential mode.

Fig. 5. TC226 differential-mode load map at the fundamental. Shown
are the output powers at 1-dB compression of the differential-mode gain.
(a) Differential-mode output power versus ΓLD. (b) Common-mode output
power versus ΓLD.

The time-domain waveforms are computed from the N har-
monic phasors as a Fourier series

S(t) =
N∑

i=1

|si| cos(2πfi + ∠si) (18)

where fi are the harmonic frequencies, and si is the current
or voltage phasor of interest, as computed from the respective
incident and reflected de-embedded waves.

Fig. 7 shows the wave-shaping results obtained when tuning
the second harmonic differential load. In this case, the TC226
device was found to be very well balanced. An additional tuning
of the harmonic common-mode loads resulted in no signif-
icant changes in the performances. This was also confirmed
by analyzing the differential-mode voltage waveform, which
showed no effects. The reason is found in Fig. 6: the second
harmonic common-mode output power is 10 dB lower than the
differential-mode output power.

C. Performance Comparison Between Single-Ended
and True Balanced Loads

The mode-tuning independence of the mixed-mode active
loads is mostly due to the balance of the 3-dB 180◦ hybrids.
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Fig. 6. TC226 differential-mode power sweep at the fundamental. The load is
tuned to the optimum differential-mode reflection coefficient. The dashed line
indicates the 1-dB compression point.

In our implementation, we used 2–18-GHz hybrids, with max-
imum 5◦ unbalance and 0.5-dB ripple in the band. Good in-
dependence is important in such load-pull measurements and
greatly reduces the measurement time.

Anyway, the mixed-mode reflection coefficient indepen-
dence is not strictly required, as long as both ΓLD and ΓLC can
be tuned. The DUT responds to the reflected waves only and is
not able to distinguish the source of the reflections, e.g., passive
reflection, an externally injected signal, or conversion from the
other mode. In the design phase, if the measurement condi-
tions are reproduced by applying the same bias and the same
excitation and realizing two independent modal loads equal to
the measured ΓLD and ΓLC, the predicted performances will be
obtained.

As an example, an AD8351 balanced amplifier mounted on
its evaluation board was measured at 2 GHz with the following
two different load configurations:

1) mixed-mode load, as shown Fig. 1(a);
2) two-port load made of two independent single-ended ac-

tive loads (with the hybrids removed, as shown in Fig. 8).

Under both conditions, the fundamental differential- and
common-mode load reflection coefficients were tuned to the
same values, and the measured DUT performances are reported

Fig. 7. TC226 differential-mode second harmonic tuning map. The differen-
tial load at the fundamental is tuned to the maximum output power point.

Fig. 8. Experimental configuration with two independent single-ended
active loads.

TABLE I
PERFORMANCE COMPARISON BETWEEN TWO DIFFERENT

LOAD CONFIGURATIONS

in Table I. The performances are pretty unchanged in the
two cases, and the small differences are due to the imperfect
alignment of the two conditions.
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Fig. 9. Comb generator drift measurement for the third harmonic.
(a) Magnitude. (b) Phase.

This may suggest the feasibility of using simpler loads, such
as two independent passive tuners, but the time required to
manually set the load at a particular value would increase.
In addition, mixed-mode open-loop active load-pull solutions
would carry similar disadvantages since a careful phase syn-
chronization of the synthesized reflected waves to the actual
incident waves would be required.

D. Waveform Accuracy Considerations

The repeatability of our comb generator was verified by mon-
itoring its output harmonic content with the MTA. This way,
the results are affected by both the comb generator instability
and the MTA uncertainty, thus giving an estimate of the overall
uncertainty.

Repeated measurements were performed in three consecutive
days, with each measurement lasting about 2 h. The purpose
was to check for short-term drifts and day-to-day repeatability.
The results are plotted in Fig. 9. The harmonic drift was
measured up to the fifth component, but the third was found
to be the most affected by temperature.

The first trace refers to a small temperature drift, which was
achieved by raising the air conditioner temperature from 25 ◦C

to 26 ◦C. The third harmonic magnitude and phase show
measurable dependence on temperature.

The second and third traces refer instead to a steady room
temperature and show negligible drifts. In conclusion, the
performances are repeatable between two days, and a simple
air conditioning system can grant repeatable measurements,
provided that the measurement is performed after a warm-up
time of about 1 h.

V. CONCLUSION

A comprehensive test set, which was suitable for mixed-
mode time-domain load-pull, has been presented. The closed-
loop active-load technique has been found to be crucial in
obtaining high reflection coefficient magnitude while preserv-
ing the common- and differential-mode tuning independences.
This paper has presented a collection of measurement results
about high-speed differential amplifiers, showing part of the
system capabilities.

A key component for the waveform accuracy is the comb
generator. Its drifts have been characterized, and it has been
concluded that the generator is repeatable if proper thermal
stabilization is provided.

To the author’s knowledge, the presented system has unique
multiport load-pull capabilities with relatively low cost.
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