
20 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

The Generalized Bin Packing Problem / Baldi, MAURO MARIA; Crainic, Teodor; Perboli, Guido; Tadei, Roberto. - In:
TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW. - ISSN 1366-5545. -
STAMPA. - 48:(2012), pp. 1205-1220. [10.1016/j.tre.2012.06.005]

Original

The Generalized Bin Packing Problem

Publisher:

Published
DOI:10.1016/j.tre.2012.06.005

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2293548 since: 2017-12-04T19:45:47Z

ELSEVIER



The Generalized Bin Packing Problem

Mauro Maria Baldia,∗, Teodor Gabriel Crainicc,b, Guido Perbolia,b, Roberto Tadeia

aPolitecnico di Torino, Turin, Italy
bCIRRELT, Montreal, Canada

cSchool of Management, UQAM, Montreal, Canada

Abstract

In the Generalized Bin Packing Problem (GBPP), given two sets of compulsory and non-compulsory items charac-
terized by volume and profit and a set of bins with given volume and cost, we want to select the subset of profitable
non-compulsory items to be loaded together with the compulsory ones into the appropriate bins in order to minimize
the total net cost. Lower and upper bounds to the GBPP are given. The results of extensive computational experiments
show that the proposed procedures are efficient and the bounds are tight.
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1. Introduction

In this paper, we introduce the Generalized Bin Packing Problem (GBPP). In this new bin packing problem, given
two sets of compulsory and non-compulsory items characterized by volume and profit and a set of bins with given
volume and cost, we want to select the subset of profitable non-compulsory items to be loaded together with the
compulsory ones into the appropriate bins in order to minimize the total net cost. The total net cost is given by the
difference between the total cost of the selected bins and the total profit of the loaded items.

We refer to the GBPP to address problems in the field of logistics, where changes arising in the supply chain and
fleet management due to cross-continental fleet flows and multi-modal and green logistics have forced researchers and
practitioners to redefine their processes [3, 21]. Our paper is a contribution in this direction, as it defines a packing
problem that is able to simultaneously consider bin costs and item profits and takes into account restrictions on the
bin availability and their heterogeneity in terms of cost and volume. The GBPP also brings innovation in the area of
airfreight transportation, where items are loaded according to their volume [15]. Here the GBPP is able to describe
the fundamental role played by the trade-off between shipping costs and item profits, which arises in all transportation
settings.

The GBPP generalizes the following problems addressed by the bin packing literature: the Bin Packing Problem
(BPP) [16], the Variable Size Bin Packing Problem (VSBPP) and the Variable Cost and Size Bin Packing Problem
(VCSBPP) [4, 17, 5]. Whilst in the BPP all bins have the same capacity, in the VSBPP they have different capacities
and in the VCSBPP they differ in both capacity and cost. The GBPP also generalizes the following knapsack prob-
lems: the Knapsack Problem (KP), the Multiple Knapsack Problem (MKP) and the Multiple Knapsack Problem with
identical capacities (MKPI) [16].

We present two mixed integer programming formulations of the GBPP. The first is based on item-to-bin assign-
ment decisions and requires a polynomial number of variables and constraints. This formulation is useful to discuss
how the GBPP generalizes the packing and knapsack problems mentioned above, but it is not computationally effi-
cient. It is, however, the starting point for computing our first lower bound to the GBPP. We thus introduce a second
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model based on feasible loading patterns and set covering ideas. Despite requiring an exponential number of variables,
this formulation is much more efficient. We thus present several procedures to compute lower and upper bounds to
the GBPP and show their accuracy and efficiency through extensive computational experiments. A large number of
instance sets for the GBPP are introduced. The instance sets are designed to challenge the proposed procedures and
thus provide insight into the impact of different parameters on the optima.

The paper is organized as follows: Section 2 gives a literature review of the problems the GBPP generalizes. The
two GBPP formulations are introduced in Section 3, whilst lower and upper bounds are presented in Sections 4 and
5, respectively. Instance sets and computational results are presented and discussed in Section 6. Finally, in Section 7
our conclusions are drawn.

2. Literature Review

The problem settings most immediately generalized by the GBPP are the BPP and the VCSBPP. Here we briefly
recall the literature related to these problems.

The objective of the BPP is to load all items while minimizing the number of used bins. The problem has been
extensively studied in the past decades, producing several exact and heuristic methods [16]. The first bounds were
proposed by Martello and Toth [16]. New lower bounds were developed by Fekete and Schepers [9] by means of
dual feasible functions. On the basis of this paper, Crainic et al. [7, 6] developed fast and more accurate lower
bounds, able to reduce the optimality gap for a number of hard instances. A different approach was defined in [22],
where the author proposed a formulation with an exponential number of variables and a column generation lower
bound procedure for the Bin Packing and the Cutting Stock problems. Several heuristics were also proposed, e.g.,
the polynomial-time approximation schemes of de la Vega and Lueker [8] and Karmarkar and Karp [13] allowing to
approximate an optimal solution within 1 + ε, for any fixed ε > 0. However, these results are difficult to apply in
practice, due to the enormous size of the constants characterizing the polynomials. The literature shows that the most
commonly used methods to achieve computing efficiency together with solution quality are the First Fit Decreasing
(FFD) and Best Fit Decreasing (BFD) heuristics, sometimes combined with local improvement heuristics [19].

The VCSBPP is a generalization of the BPP, where all items must be loaded, but bins can be chosen among
several types differing in volume and cost. The total accommodation cost, computed as the total cost of the used bins,
must be minimized. A number of studies have recently been dedicated to the VCSBPP. Correia et al. [4] proposed a
formulation that explicitly included the bin volumes occupied by the corresponding packings, together with a series of
valid inequalities improving the quality of the lower bounds obtained from the linear relaxation of the proposed model.
The authors also introduced a large set of instances with up to 1000 items and used them to analyze the quality of the
lower bounds. Crainic et al. [5] proposed tight lower and upper bounds, which can be computed within a very limited
computing time, and were able to solve to optimality all the instances proposed in [4]. The authors also presented a
first computational study of the sensitivity of the optimal cost with respect to the cost definition [5].

A special case of the VCSBPP is the Variable Size Bin Packing Problem (VSBPP) where bin costs are equal to
their associated volumes. The aim of the VSBPP is then to minimize the wasted volume. Monaci [17] presented a
series of lower bounds and solution methods (both heuristic and exact) for the VSBPP. The author also introduced
instance sets for the problem considering up to 500 items. His exact method was able to solve most instances to
optimality. Kang and Park [12] developed two greedy algorithms for another special case of the VSBPP, where the
unit cost of each bin does not increase as the bin volume increases, and analyzed their performances on instances with
and without divisibility constraints. Seiden et al. [20] proposed upper and lower bounds for the on-line version of the
problem.

As we mentioned in the introduction, the GBPP is also able to generalize three knapsack problems: the KP, the
MKP, and the MKPI. One bin only, called the knapsack, is given in the KP and the goal is to select appropriate items
in order to maximize the overall profit while satisfying capacity constraints. The MKP is a generalization of the KP
due to the presence of more than one knapsack. Finally, the MKPI is a particular case of the MKP, where all the
knapsacks have the same capacity. All these problems are thoroughly discussed in [16, 18, 14].
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3. Problem Definition and Formulation

The GBPP considers a set of items characterized by volume and profit and sets of bins of various types character-
ized by volume and cost. A subset of the items which we call compulsory must be loaded, while a selection has to be
made among the non-compulsory ones. The objective is to select the non-compulsory items to load and the bins into
which to load the compulsory and the selected non-compulsory items in order to minimize the total net cost. This is
given by the difference between the total cost of the used bins and the total profit of the loaded items.

We start this section with a formal description of the GBPP and then we introduce two formulations of the problem.
The first formulation extends to the GBPP the assignment model of the BPP [16]. Even though this type of formulation
is not often used in practice, we exploit it to derive a first lower bound. Then, we consider a set covering formulation
of the problem, which is the starting point for a column generation procedure able to derive a second lower bound.
Moreover, by exploiting the patterns created through the column generation procedure, accurate upper bounds can
also be computed.

3.1. Notation

Let I denote the set of items and wi and pi be the volume and profit of item i ∈ I. Define IC ⊆ I the subset of
compulsory items and INC = I \ IC the subset of non-compulsory items. Let J denote the set of available bins and
T be the set of bin types. For any bin j ∈ J , let σ( j) = t ∈ T be the type t of bin j. Define for each bin type t ∈ T ,
the minimum Lt and the maximum Ut number of bins of that type that may be selected, as well as the cost Ct and the
volume Wt of the bin. Finally, denote U ≤

∑
t∈T Ut the total number of available bins of any type.

The item-to-bin accommodation rules of the GBPP are stated as follows:
• All items in IC must be loaded;
• For all used bins, the sum of the volumes of the items loaded into a bin must be less than or equal to the bin

volume;
• The number of bins used for each type t ∈ T must be within the lower and upper availability limits Lt and Ut;
• The total number of used bins cannot exceed the total number of available bins U.
Infeasibility may arise when the available bins are not sufficient to load all compulsory items. To address this

issue, we add a special bin v of volume Wv =
∑

i ∈ IC wi, thus able to load all compulsory items, and set its cost Cv to
a value much higher than the costs of the remaining bins in order to discourage its use, e.g., Cv �

∑
t ∈ T Ct.

3.2. Assignment formulation of the GBPP

Consider the following decision variables:
• Bin selection binary variables y j equal to 1 if bin j ∈ J is used, 0 otherwise;
• Item-to-bin assignment binary variables xi j equal to 1 if item i ∈ I is loaded into bin j ∈ J , 0 otherwise.
An assignment model of the GBPP can then be formulated as follows:

3



Minimize
∑
j∈J

C jy j −
∑
j∈J

∑
i∈INC

pixi j (1)

Subject to
∑
i∈I

wixi j ≤ W jy j j ∈ J (2)∑
j∈J

xi j = 1 i ∈ IC (3)∑
j∈J

xi j ≤ 1 i ∈ INC (4)∑
j∈J :σ( j)=t

y j ≤ Ut t ∈ T (5)∑
j∈J:σ( j)=t

y j ≥ Lt t ∈ T (6)∑
j∈J

y j ≤ U (7)

y j ∈ {0, 1}, j ∈ J (8)
xi j ∈ {0, 1}, i ∈ I, j ∈ J (9)

The objective function (1) minimizes the total net cost of the packing, given by the difference between the total
cost of the used bins and the total profit of the selected non-compulsory items. The profit of the compulsory items
is not considered in the objective function because it is a constant. Regarding the type of optimization, we choose to
present the minimization version to follow the tradition of packing problems. The equivalent formulation obtained by
maximizing the total net profit (total profit minus total cost) would recall the knapsack problem setting.

Constraints (2) have the double effect of linking the usage of bins to the accommodation of items and bounding the
capacity of each used bin. Constraints (3) and (4) ensure that each compulsory and not-compulsory item is loaded into
exactly one and at most one bin, respectively. Constraints (5) and (6) enforce the maximum and minimum number
of available bins of each type, while Constraints (7) limit the total number of selected bins. Constraints (8) and
(9) enforce the integrality nature of the decision variables. Notice that, Constraints (5) and (6) could be implicitly
managed, the former by limiting the number of y j variables to Ut for type t (i.e., defining the appropriate number of
bins only), and the latter by setting y j = 1 for j = 1, . . . , Lt. We prefer to keep the constraints in the formulation,
however, for consistency with the set covering model of Section 3.4.

The assignment model (1)-(9) is named AM and its continuous relaxation R − AM. AM involves a polynomial
number of variables and constraints. It is not suitable for developing efficient algorithms, however, due to the signifi-
cant solution-space symmetry of the item-to-bin assignment variables, which is typical of these packing models. Yet,
as mentioned above, AM is the starting point to compute our first lower bound named LB1. Furthermore, AM is also
suitable to show how the GBPP generalizes some classic packing and knapsack problems. This issue is addressed
next.

3.3. Generalization of classic packing and knapsack problems
The assignment formulation of the GBPP (1)-(9) generalizes a number of classic packing problems, including the

BPP [16], which may be obtained by considering a single bin type with C j = 1, j ∈ J and INC = ∅, i.e., all items
must be loaded. Constraints (4) - (6) are then redundant and the objective function becomes the minimization of the
number of bins, which is characteristic of the BPP.

Allowing several bin types and INC = ∅ yields the VCSBPP, where the total cost of the selected bins
∑

j∈J C jy j is
minimized (Constraint (4) becomes redundant) [17, 5]. Notice that, an equivalent formulation for the VCSBPP can be
obtained by imposing IC = ∅ and setting the item profit higher than the cost of any bin type, pi > max j∈J C j, which
makes any bin profitable even when only one item is loaded into it.

The GBPP can similarly generalize a number of knapsack problems. Specifically, the GBPP reduces to the KP by
setting |T | = 1, |J| = 1, and IC = ∅. The MKP can be modeled by setting |T | > 1, |J| = m, where m is the number
of knapsacks, and IC = ∅. Finally, the MKPI is addressed by setting |T | = 1, |J| = m, and IC = ∅.
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3.4. Set Covering formulation of the GBPP

We introduce a set covering formulation of the GBPP based on feasible loading patterns for the bins.
A feasible loading pattern kt for a bin of type t ∈ T is a set of items that may be loaded into the bin while satisfying

all dimension restrictions and accommodation rules. Let Kt = {kt} be the set of all feasible loading patterns for bin
type t ∈ T . A feasible loading pattern kt is described by a vector akt of indicator functions ai

kt
, i ∈ I, kt ∈ Kt, t ∈ T ,

such that ai
kt

= 1 if item i is packed into pattern kt, 0 otherwise. The cost of pattern kt is then the difference between
the cost of the bin type t and the total profit of non-compulsory items in that pattern:

ckt = Ct −
∑

i∈INC

piai
kt
. (10)

We define the bin loading pattern selection variables λkt equal to 1 if pattern kt ∈ Kt is used, 0 otherwise. The set
covering formulation of the GBPP may then be written as follows:

Minimize
∑

t∈T
∑

k∈Kt
cktλkt (11)

Subject to
∑

t∈T
∑

k∈Kt
ai

kt
λkt = 1 i ∈ IC (dual variable µi free) (12)∑

t∈T
∑

k∈Kt
ai

kt
λkt ≤ 1 i ∈ INC (dual variable νi ≤ 0) (13)∑

k∈Kt
λkt ≤ Ut t ∈ T (dual variable αt ≤ 0) (14)∑

k∈Kt
λkt ≥ Lt t ∈ T (dual variable βt ≥ 0) (15)∑

t∈T
∑

k∈Kt
λkt ≤ U (dual variable ε ≤ 0) (16)

λkt ∈ {0, 1}, kt ∈ Kt, t ∈ T (17)

The objective function (11) minimizes the total cost of the selected bin loading patterns. Since the feasibility of
the item-to-bin accommodation is guaranteed by the feasibility of the loading patterns, the constraints equivalent to
(2) in the model AM are not required anymore. Constraints (12)-(16) have the same meaning as (3)-(7), and (17) are
the integrality constraints.

The set covering model (11)-(17) is named SC and its continuous relaxation R − S C. SC, when compared to AM,
has the advantage to separate the feasibility phase from the optimality one. The feasibility phase is already addressed
by the pattern generation, whilst the model is only devoted to find an optimal combination of patterns.

Whilst of course models AM and SC have the same optimum, the optima of R − AM and R − S C are generally
different. In the following, we prove that the lower bound to the GBPP obtained by optimizing R − S C is not weaker
than that obtained by optimizing R − AM.

Property 1. Given any solution x2 of R − S C (which is feasible by construction), a corresponding feasible solution
x1(x2) of R − AM can be built as follows. For any λkt = 1 of x2 assign in R − AM the items of pattern kt to bin jkt by
putting in the solution x1(x2) xi jkt

= ai
kt
λkt . The two solutions have the same value.

Proof. Trivial.

Theorem 1. Let LR − AM = optimum(R − AM) and LR − S C = optimum(R − S C), then LR − AM ≤ LR − S C .

Proof. By contradiction, let us suppose that an instance of R − AM such that LR − AM > LR − S C there exists. Let x2 be
the optimal solution associated to LR − S C . By using Property 1, we can build a solution x1(x2) of R − AM with value
LR − S C , which contradicts the optimality of LR − AM .
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4. Lower bounds

We introduce two lower bounds that can be computed starting from each of the two problem formulations. The
assignment model AM is the basis for a lower bound which can be calculated by solving an Aggregate Knapsack
Problem (AKP). We show how to derive the AKP from the model AM in Section 4.1.

The second lower bound is derived from the set covering formulation SC and is calculated by applying a column
generation technique where, at each step, a new feasible pattern (i.e., a new column for the restricted master problem)
is found by solving a knapsack problem (see Section 4.2).

4.1. Lower bound through the Aggregate Knapsack Problem

To derive an Aggregate Knapsack Problem from the assignment model AM presented in Section 3.2, we aggregate
Constraints (2) into a unique inequality by summing them up. We thus consider an aggregate knapsack, which may
be thought of as a unique large bin with volume equal to the total volume of the bins. We have∑

j ∈ J

∑
i ∈ I

wixi j ≤
∑
j ∈ J

W jy j =⇒
∑

i ∈ IC

wi

∑
j ∈ J

xi j +
∑

i ∈ INC

wi

∑
j ∈ J

xi j ≤
∑
j ∈ J

W jy j.

Note that, by (3), for any compulsory item i,
∑
j ∈ J

xi j = 1, whilst, for any non-compulsory item i, the variable xi j can

be reduced to xi, which states whether item i is put into the aggregate knapsack or not. Therefore, we have∑
i ∈ IC

wi +
∑

i ∈ INC

wixi ≤
∑
j ∈ J

W jy j. (18)

We drop Constraints (5) and (6) by managing them implicitly as indicated in Section 3.2. Constraints (7) are kept,
as one cannot implicitly manage them. A first lower bound, named LB1, can then be found by solving the following
AKP

Minimize
∑
j∈J

C jy j −
∑

i∈INC

pixi (19)

Subject to
∑

i ∈ IC

wi +
∑

i ∈ INC

wixi ≤
∑
j ∈ J

W jy j (20)∑
j∈J

y j ≤ U (21)

y j ∈ {0, 1}, j ∈ J (22)
xi ∈ {0, 1}, i ∈ I (23)

Since LB1 comes from the resolution of the AKP, we also refer to it as an aggregate knapsack lower bound. Note
that, when all items are compulsory, one can use bounds from the literature. In this case, (19)-(23) reduces to

Minimize
∑
j∈J

C jy j (24)

Subject to
∑

i ∈ IC

wi ≤
∑
j ∈ J

W jy j (25)∑
j∈J

y j ≤ U (26)

y j ∈ {0, 1}, j ∈ J (27)

which is the model used by Crainic et al. [5] to compute lower bounds to the VCSBPP.

6



4.2. Lower bound through column generation
This lower bound is computed from the R − S C model through column generation and is named LB2. It is widely

used in packing problems [1, 22] and provides the means to implicitly deal with a large number of variables.
The column generation approach applied to the R − S C model consists in starting with a relatively small set of

feasible patterns P, which correspond to a restricted problem named R−S CR. First we solve R−S CR and then attempt
to generate new feasible patterns with negative reduced cost. If successful, these are added to P and the procedure is
restarted. Otherwise, we have found an optimal solution of R − S C and the procedure stops with a lower bound to the
GBPP.

The main steps of the procedure are as follows:
1. Find an initial feasible solution of the GBPP and the corresponding set P;
2. Solve to optimality R − S CR and let LR − S CR be its optimum;
3. For each bin type t ∈ T

(a) Find the pattern variable λkt
, kt ∈ Kt with the smallest reduced cost rkt

, among all non-basic pattern
variables λkt of the optimal solution of R − S CR;

(b) If rkt
< 0, P = P ∪ {λkt

};
4. If rkt

≥ 0 for all bin types t, then stop and LR − S CR is the lower bound to the GBPP, otherwise, go to 2.
Note that, in Step 3, the procedure adds at most |T | columns to P at each iteration.
The main issue is how to find negative reduced cost feasible patterns. Consider the dual variables associated

to the constraints of the R − S CR model (see (11)-(17)). The reduced cost rkt of a given pattern variable λkt is

ckt −
[
µT νT

]
akt −

[
αT βT ε

]
1t , where akt = [ai

kt
] and 1t is a vector of size 2|T | +1, with 1 in the rows corresponding

to bin type t and in the last row, 0 otherwise. By (10), we expand this expression as follows

rkt = Ct −
∑

i∈INC

pi ai
kt
−

[
µT νT

]
akt −

[
αT βT ε

]
1t

= Ct −
∑

i∈INC

pi ai
kt
−

∑
i∈IC

µi ai
kt
−

∑
i∈INC

νi ai
kt
− αt − βt − ε

= Ct −
∑

i∈INC

(pi + νi) ai
kt
−

∑
i∈IC

µi ai
kt
− αt − βt − ε. (28)

We now define a column generation subproblem. Given a bin of type t ∈ T , this subproblem finds the non-basic
pattern with the minimum reduced cost. Note that, the vector akt defining a not-yet-generated pattern kt ∈ Kt is not
known, but it may be expressed in terms of the item-to-bin assignment variable xi, which is equal to 1 if item i ∈ I
belongs to the pattern, 0 otherwise. Since the dual variables αt, βt, and ε, as well as the bin cost Ct, are constant for
any given bin type t ∈ T , then finding the feasible pattern with the minimum reduced cost for bin type t ∈ T becomes
the following knapsack problem

Maximize

 ∑
i∈INC

(pi + νi) xi +
∑
i∈IC

µi xi

 (29)

Subject to:
∑
i∈I

wixi ≤ Wt t ∈ T (30)

xi ∈ {0, 1} i ∈ I (31)

Any feasible solution may be used to initialize the procedure, including the trivial solution obtained by loading
each compulsory item into a different bin. More accurate heuristics are presented in Section 5.

Finally, note that a better lower bound can be obtained by taking the maximum between the two previous lower
bounds. We call this new lower bound LB3 = max{LB1, LB2}.

5. Upper bounds

We derive several upper bounds to the GBPP 1) through constructive heuristics; 2) by making feasible some of
the GBPP lower bounds; 3) through column generation-based heuristics.
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5.1. Upper bounds through constructive heuristics

We propose constructive heuristics to load items into bins based either on the First Fit Decreasing (FFD) or the
Best Fit Decreasing (BFD) heuristics for the BPP, with different sorting rules for items and bins. We briefly recall
how FFD and BFD work. Starting with items sorted by non-increasing volume, FFD loads items one after the other
into the first bin where they fit. BFD attempts to load each item into the “best” bin, usually the bin with the minimum
free volume after loading the item. The free volume is defined as the bin volume minus the total volume of the loaded
items. Both heuristics create a new bin when an item cannot be accommodated into the existing ones. Despite their
simplicity, the FFD and BFD heuristics offer good performances for the BPP [16].

Note that, whilst in the BPP items are sorted by non-increasing volume, many item and bin sorting rules are
possible for the GBPP, due to the presence of multiple attributes. We exploit this characteristic in building our
heuristics.

Given the sorted lists of items and bins, SIL and SBL (see Section 5.1.1 for deriving these lists), our heuristics are
composed of three main components displayed in Algorithms 1, 2, and 3. Given a list S of selected bins (initially
empty), for each item belonging to SIL, Algorithm 1 (the main procedure) looks for the first or the best bin in S able
to load such an item by using FFD or BFD, respectively. If this bin exists, the item is loaded into it, otherwise a new
bin is possibly selected. Actually, a new bin is selected when the item is compulsory otherwise, we evaluate whether
to select a new bin or not. This evaluation is performed by Algorithm 2 (the profitable procedure), which measures
the profitability of the current item. In particular, a new bin will be selected and the item will be loaded into it if the
profit of this item plus the profits of the remaining non-compulsory items in SIL is greater than the cost of the new bin.
Finally, the post-optimization procedure of Algorithm 3 attempts to improve the final solution by evaluating possible
bin swaps that replace loaded bins with available cheaper bins of sufficient capacity.

Algorithm 1 The main procedure
S := ∅
for all i ∈ SIL do

Identify the bin b ∈ S into which item i can be loaded:
• FF: the first bin with enough empty volume to accommodate item i
• BF: the bin with the minimum free volume after loading item i

if b exists then
Load item i into bin b
S := S ∪ {b}

else
if i ∈ IC then

Identify the first bin b ∈ SBL \ S such that wi ≤ Wb.
Load item i into bin b
S := S ∪ {b}

else
Identify the bin b ∈ SBL \ S such that profitable(i, b) returns true
if b exists then

Load item i into bin b
S := S ∪ {b}

else
reject item i

end if
end if

end if
end for
post-optimization

8



Algorithm 2 The profitable procedure for new bin selection
SILi : sublist of SIL starting from the item i;
Load i into b and initialize the bin profit Pb = pi;
for all i′ ∈ SILi do

if i′ can be loaded into b then
Load i′ into b and update the bin profit Pb = Pb + pi′ ;

end if
if Pb > cb, return true else return false.

end for

Algorithm 3 The post-optimization procedure
for all j ∈ S do

for all k ∈ J \ S do
U j =

∑
i loaded into j wi

if Wk ≥ U j and Ck < C j then
Move all the items from j to k
S = S \ { j} ∪ {k}

end if
end for

end for

5.1.1. Building the sorted lists of items and bins
We define four sorting rules to embed, and test, into the constructive heuristics we propose. All the rules have in

common that compulsory items are sorted at the top of the item list by non-increasing volume. The four rules are:
1. Bins: Non-decreasing C j/W j and non-decreasing volumes W j;

Non-compulsory items: Non-increasing pi/wi and non-increasing volumes wi;
2. Bins: Non-decreasing C j/W j and non-decreasing volumes W j;

Non-compulsory items: Non-increasing volumes wi and non-increasing pi/wi;
3. Bins: Non-decreasing C j/W j and non-increasing volumes W j;

Non-compulsory items: Non-increasing pi/wi and non-increasing volumes wi;
4. Bins: Non-decreasing C j/W j and non-increasing volumes W j;

Non-compulsory items: Non-increasing volumes wi and non-increasing pi/wi.

5.2. Upper bounds through the lower bound LB1

To derive an upper bound from LB1, introduced in Section 4.1, we apply our constructive heuristics to the two
ordered lists of bins and items. We name this approach lower bound-based constructive heuristics. We refer to the
FFD- (L-FFD) or BFD-based lower bound (L-BFD) when the constructive heuristics implements the FFD or the BFD
principle, respectively.

The ordered lists of items and bins are obtained as follows. An optimal solution of the AKP model (20)-(23)
consists in a set of non-compulsory items, Iagg, and a set of bins, Jagg. Iagg contains the non-compulsory items
associated to the variables xi equal to 1 in the optimal solution of the AKP. Similarly,Jagg contains the bins associated
to the variables y j equal to 1 in the optimal solution of the AKP. We then extract two subsets I′agg andJ ′agg by selecting
δi % of items in Iagg and δb% of bins in Jagg, respectively. We then randomly select a particular sorting rule s among
the four ones, and order the item and bin lists as follows:
• Order the items in I′agg according to s and put them at the top of the item list, before any non-compulsory item.

Then, order the remaining item I \ I′agg according to s;
• Order the bins in J ′agg according to s and put them at the top of the bin list. Then, order the remaining bins
J \ J ′agg according to s.

To state that L-FFD and L-BFD are characterized by δi, δb, and s, we write L-FFD
(
δi, δb, s

)
and L-BFD

(
δi, δb, s

)
.

The values of δi and δb are obtained by calibration (see Section 6.3 for details), whilst s ∈ {1, 2, 3, 4}, according to
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the four sorting strategies presented in Section 5.1.1.

5.3. Upper bounds through column generation-based heuristics
We present two approaches to compute upper bounds starting from the column generation-based solution of the

relaxation R − S C of the set covering model SC (11)-(17).
The first approach is to solve SC exactly, e.g., by branch-&-bound, considering only the columns obtained by the

column-generation procedure while computing the lower bound. This may still be quite time consuming, however.
Consequently, we might stop with the branch-&-bound after a given computing time and name ZS C the resulting value
of the objective function, which is an upper bound to the GBPP.

The second approach is based on diving, a well-known method for finding good quality integer solutions from
the optimal continuous solutions [2]. The working principle is to iteratively round up variables and re-optimize the
continuous relaxation.

The diving heuristics assumes that the optimal bin loading patterns of the GBPP are in the restricted set corre-
sponding to the R − S CR, and iteratively slightly perturbs the optimal continuous solution by fixing to integer some
pattern-selection variables. The key feature is how to choose the variables to be fixed. Two strategies are obtained
by selecting among the non-integral pattern variables the ones which maximize the expressions (32) and (33) This
generates two diving heuristics named Diving1 and Diving2, which are included in the final comparative experiments
of Section 6: ∑

i∈INC

νi ai
kt

+
∑
i∈IC

µi ai
kt

(32)

(1 − λkt )

 ∑
i∈INC

νi ai
kt

+
∑
i∈IC

µi ai
kt

 (33)

6. Computational results

The goal of the numerical experiments is to explore the performance of the proposed lower and upper bound
procedures. Section 6.1 introduces the instance sets, whilst detailed results of different variants of the lower and upper
bound procedures are given in Sections 6.2 and 6.3. We study the impact of a number of problem parameters on our
best bounds in Section 6.4.

6.1. Instance classes
No instances are present in the literature for the GBPP. We generated instances, partially based on those for the

VSBPP and the BPP [17, 22, 4, 5]. The instances are grouped into 5 classes:
• Class 0: 300 instances by Monaci [17]. We chose Monaci’s instances because they are more challenging than

Correia’s [4], as shown in [5]. Since these instances were conceived for the VSBPP, all items of each instance
are compulsory. Ten instances were randomly generated for each combination of number of items, item profit,
item volume, and bin type for a total of 300 instances. For the sake of completeness, we report here the details
of Monaci’s instances:

– Number of items: 25, 50, 100, 200, and 500;
– Item volume: I1: [1, 100]; I2:[20, 100]; I13:[50, 100];
– Item profit: not defined because all items are compulsory;
– Bin type:
∗ 3 types of bins, with volumes 100, 120, and 150, respectively, and costs equal to volumes;
∗ 5 types of bins, with volumes 60, 80, 100, 120, and 150, respectively, and costs equal to volumes.

For each bin type t, Lt = 0 and Ut = dVtot/Vte, where Vtot is the total item volume. No values for the total
number of available bins U are given.

• Class 1: same instances of Class 0, but with all items non-compulsory and item profits generated according to
the pi ∈ dU(0.5, 3)wie uniform distribution.

• Class 2: same instances of Class 0, but with all items non-compulsory and item profit generated according to
the pi ∈ dU(0.5, 4)wie uniform distribution.
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• Class 3: a selection of 12 large instances (500 items) from Class 1 and Class 2 with a representative mix of
characteristics in terms of item volume, item profit, and bin types. For each instance, we randomly derived five
more instances with 0%, 25%, 50%, 75%, and 100% of compulsory items, for a total of 60 instances.

• Class 4: the aim of this class is to study the behavior of Constraints (7) and (16) on the total number of available
bins U. Thus, we select 24 instances from Class 1 and Class 2. For each instance, we first computed the number
of bins U employed by the BFD constructive heuristics. We then solved the GBPP varying the value of U as a
percentage of U

U = U(1 − X), X ∈ {0, 0.1, 0.2, 0.3}, (34)

All these combinations make up Class 4 with 96 instances.
The algorithms were coded in C++ and the models implemented with CPLEX 12.1 [11]. The upper bound ZS C was

computed using Gurobi 4.0, due to its efficiency in finding good feasible solutions within a quite limited computing
time (20 seconds) [10]. Experiments were made on a Pentium IV 3.0 GHz workstation with 4 GB of RAM.

6.2. Lower bounds

Table 1 shows the lower bound results, comparing the performance of the three proposed lower bounds, LB1, LB2,
and LB3), relative to ZS C , the best upper bound (Section 5.3) or to the known optimum solution [Class 0 instances,
named in the following Monaci optima 17]. Columns 1 to 3 display the instance class, number of bin types, and
number of items, respectively. Columns 4 and 5, 6 and 7, and 8 and 9 display the mean percentage gap to ZS C or the
known optimum, and the number of optima achieved by LB1, LB2, and LB3, respectively. Each row of Table 1 gives
the results of 30 instances (3 item volume types, I1, I2, and I3, times 10 repetitions). For each class and globally,
the table also displays the respective average gaps and the total number of optima attained (and the corresponding
percentage with respect to the total number of instances).

Table 1 reports very promising results. The overall percentage gap for LB3 is quite tight (0.08%) and almost half
(46%) of the instances are solved to optimality.

6.3. Upper bounds

Table 2 displays comparative results for the constructive heuristics upper bounds. The first three columns display
the same type of information as previously. Columns 4 to 7 and 8 to 11 display relative-gap results with respect to
LB3 (except for Class 0 instances with Monaci optima) for the FFD and the BFD procedures, respectively, using the
four item and bin sorting rules of Section 5.1.1.

The results summed up in Table 2 show that BFD offers slightly better results than FFD. Furthermore, we see that
BFD(3) is the best performing constructive heuristics.

We compare the remaining upper bounds, i.e., those obtained through the lower bound LB1 (Section 5.2) and
those derived from the column generation-based heuristics (Section 5.3) in Table 3. Column 1 shows the instance
class, Column 2 the number of bin types, and Column 3 the number of items. For the remaining columns of Table 3,
we have:

BFD(3): BFD heuristics with the third sorting rule;
L-BFD(1, 0.1, 3): Upper bound obtained from the lower bound LB1 with the constructive heuristics BFD(3) and
δi = 1, δb = 0.1. The values of δi and δb were obtained by calibration performed by running L-BFD

(
δi, δb, 3

)
on a number of selected instances, and varying δi and δb from 0.1 to 1 with a step of 0.1. The pair

(
δi, δb

)
which

gave the minimum mean gap was then selected;

C-BFD(3)= min
{

BFD(3), min
δi∈∆i,δb∈∆b

{
L-BFD

(
δi, δb, 3

)}}
, where ∆i = ∆b = {0.1, 0.2, 0.3}; These value combina-

tions provided low mean gaps during the calibration phase;
ZSC : Upper bound obtained through the column generation-based heuristics;
DIVE(1), DIVE(2): Upper bounds obtained through the column generation-based heuristics using the diving

strategies Diving1 and Diving2, respectively (Section 5.3);
B-DIVE(1)= Minimum {BFD(3), DIVE(1) };
B-DIVE(2)= Minimum {BFD(3), DIVE(2) }.
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LB1 LB2 LB3

CLASS BINS ITEMS % GAP OPT % GAP OPT % GAP OPT
25 1.21 10 0.31 13 0.18 21
50 0.65 12 0.21 5 0.13 16

3 100 0.51 16 0.07 8 0.04 22
200 0.31 19 0.04 5 0.02 23

0 500 0.31 20 0.03 3 0.01 23
25 0.80 10 0.20 13 0.12 20
50 0.51 15 0.12 9 0.05 21

5 100 0.49 18 0.07 6 0.02 22
200 0.27 20 0.04 6 0.01 24
500 0.25 20 0.01 6 0.00 24

0.53 160 (53%) 0.11 74 (25%) 0.06 216 (72%)
25 2.16 4 0.27 16 0.19 20
50 0.86 1 0.17 6 0.15 5

3 100 0.72 2 0.12 3 0.11 5
200 0.45 1 0.13 6 0.12 7

1 500 0.33 0 0.10 3 0.10 3
25 1.42 5 0.18 13 0.13 16
50 0.75 3 0.10 12 0.09 13

5 100 0.57 5 0.04 10 0.03 13
200 0.29 4 0.03 6 0.02 9
500 0.29 2 0.08 6 0.07 8

0.78 27 (9%) 0.12 81 (27%) 0.10 99 (33%)
25 1.31 5 0.18 14 0.16 17
50 0.61 4 0.12 4 0.10 8

3 100 0.41 3 0.06 7 0.06 8
200 0.30 1 0.10 5 0.10 5

2 500 0.26 0 0.08 4 0.07 4
25 0.98 4 0.12 14 0.09 16
50 0.52 8 0.06 8 0.05 15

5 100 0.40 6 0.04 6 0.03 11
200 0.18 4 0.05 5 0.04 9
500 0.19 1 0.05 5 0.05 6

0.52 36 (12%) 0.09 72 (24%) 0.07 99 (33%)
OVERALL 0.61 223 (25%) 0.11 227 (25%) 0.08 414 (46%)

Table 1: Lower bound results
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CLASS BINS ITEMS FFD(1) FFD(2) FFD(3) FFD(4) BFD(1) BFD(2) BFD(3) BFD(4)
% GAP % GAP % GAP % GAP % GAP % GAP % GAP % GAP

25 12.80 12.80 3.68 3.68 12.80 12.80 3.47 3.47
50 13.25 13.25 2.44 2.44 13.25 13.25 2.36 2.36

3 100 12.21 12.21 1.66 1.66 12.21 12.21 1.62 1.62
200 10.28 10.28 1.28 1.28 10.28 10.28 1.25 1.25

0 500 8.97 8.97 1.08 1.08 8.97 8.97 1.07 1.07
25 10.49 10.49 1.93 1.93 10.49 10.49 1.93 1.93
50 11.59 11.59 1.79 1.79 11.59 11.59 1.78 1.78

5 100 10.63 10.63 1.27 1.27 10.63 10.63 1.26 1.26
200 10.82 10.82 0.83 0.83 10.82 10.82 0.82 0.82
500 10.44 10.44 0.65 0.65 10.44 10.44 0.63 0.63

11.15 11.15 1.66 1.66 11.15 11.15 1.62 1.62
25 13.18 17.03 4.07 8.89 12.89 16.67 3.96 8.72
50 13.62 17.93 3.22 7.59 13.57 17.87 3.20 7.54

3 100 12.67 16.60 2.18 7.36 12.55 16.52 2.16 7.34
200 11.30 15.08 1.47 7.15 11.26 15.05 1.45 7.13

1 500 9.83 13.44 0.94 6.58 9.81 13.46 0.94 6.58
25 9.74 14.86 3.38 8.40 9.79 14.54 3.33 8.37
50 10.56 16.12 3.49 7.60 10.56 15.88 3.46 7.56

5 100 9.53 14.41 1.99 6.41 9.49 14.32 1.97 6.39
200 9.57 14.84 1.48 6.28 9.55 14.77 1.49 6.27
500 9.36 14.68 1.00 6.32 9.36 14.65 1.00 6.32

10.93 15.50 2.32 7.26 10.88 15.38 2.30 7.22
25 9.50 10.25 3.45 4.63 9.48 10.22 3.17 4.49
50 10.91 11.99 2.39 4.58 10.85 11.93 2.32 4.54

3 100 9.42 10.83 1.43 3.54 9.35 10.79 1.41 3.53
200 8.35 9.57 1.20 3.37 8.31 9.58 1.20 3.33

2 500 7.37 8.81 0.77 3.30 7.33 8.82 0.77 3.29
25 7.18 9.36 3.28 3.86 7.18 9.26 3.35 3.86
50 7.45 9.65 2.47 3.33 7.47 9.57 2.31 3.32

5 100 6.77 9.11 1.73 3.59 6.75 9.08 1.70 3.58
200 6.78 9.30 1.13 3.26 6.77 9.25 1.12 3.25
500 6.56 9.16 0.77 3.13 6.56 9.16 0.77 3.13

8.03 9.80 1.86 3.66 8.00 9.77 1.81 3.63
OVERALL 10.04 12.15 1.95 4.19 10.01 12.10 1.91 4.16

Table 2: Constructive heuristics upper bounds
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CLASS BINS ITEMS BFD(3) L-BFD(1, 0.1, 3) C-BFD(3) ZSC DIVE(1) DIVE(2) B-DIVE(1) B-DIVE(2)
% GAP % GAP % GAP % GAP % GAP % GAP % GAP % GAP

25 3.47 3.35 1.94 0.26 1.95 2.02 1.31 1.54
50 2.36 2.55 1.84 0.19 1.29 1.39 0.95 1.05

3 100 1.62 1.53 1.15 0.16 1.85 1.45 0.84 0.66
200 1.25 1.34 1.02 0.18 1.75 1.15 0.59 0.51

0 500 1.07 0.85 0.68 0.31 2.12 1.04 0.59 0.51
25 1.93 2.49 1.75 0.13 1.27 0.88 0.68 0.60
50 1.78 2.56 1.68 0.06 0.79 0.55 0.63 0.52

5 100 1.26 1.84 1.17 0.03 0.59 0.45 0.42 0.39
200 0.82 1.57 0.82 0.06 0.64 0.45 0.34 0.28
500 0.63 1.25 0.63 0.05 0.76 0.41 0.16 0.14

1.62 1.93 1.27 0.14 1.30 0.98 0.65 0.62
25 3.96 3.85 2.95 0.19 1.30 1.42 0.87 0.89
50 3.20 2.98 2.46 0.15 1.05 0.94 0.88 0.82

3 100 2.16 2.37 1.98 0.11 0.81 2.18 0.66 0.68
200 1.45 1.77 1.37 0.12 1.57 2.28 0.55 0.61

1 500 0.94 1.14 0.92 0.10 1.89 2.79 0.40 0.55
25 3.33 3.67 2.42 0.12 0.74 0.76 0.55 0.58
50 3.46 3.85 2.92 0.09 0.37 0.52 0.37 0.52

5 100 1.97 2.47 1.83 0.03 0.53 0.52 0.35 0.36
200 1.49 1.92 1.45 0.02 0.55 1.11 0.28 0.32
500 1.00 1.21 0.97 0.07 0.73 1.18 0.15 0.18

2.30 2.52 1.93 0.10 0.95 1.37 0.51 0.55
25 3.17 3.10 2.09 0.16 1.99 2.07 1.05 0.95
50 2.32 2.70 2.09 0.10 0.83 1.25 0.77 0.84

3 100 1.41 1.67 1.32 0.06 0.98 1.64 0.38 0.48
200 1.20 1.49 1.15 0.10 1.37 2.12 0.41 0.52

2 500 0.77 0.94 0.75 0.07 1.36 2.50 0.24 0.40
25 3.35 3.52 2.71 0.09 0.48 0.66 0.43 0.61
50 2.31 2.86 2.07 0.05 0.47 0.46 0.37 0.31

5 100 1.70 1.96 1.53 0.03 0.21 0.43 0.21 0.30
200 1.12 1.50 1.07 0.04 0.36 0.87 0.25 0.28
500 0.77 1.01 0.76 0.05 0.46 1.20 0.13 0.17

1.81 2.08 1.56 0.07 0.85 1.32 0.42 0.49
OVERALL 1.91 2.18 1.58 0.11 1.04 1.22 0.53 0.55

Table 3: Upper bound comparisons
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The results displayed in Table 3 gain being analysed with respect to the computing times of the upper bound
procedures. Detailed results, available from the authors, show that they are generally insignificant for small-size
instances. For larger instances (500 items), BFD(3), L-BFD(1, 0.1, 3), and C-BFD(3) require computing times of less
than 0.1 seconds. DIVE(1) and DIVE(2) require computing times of 1 second, while B-DIVE(1) and B-DIVE(2) take
about 0.3 seconds. ZS C is the most time consuming heuristics with a computing time that may go to the time limit of
20 seconds. We further discuss computing-time issues for ZS C in Section 6.4.

Fast solutions can thus be obtained through the BFD(3) heuristics,but the quality is not very good, the overall
average gap being 1.91%. L-BFD(1, 0.1, 3) is, in principle, worse than BFD(3), with a gap of 2.18%. But, if exploited
to compute the C-BFD(3) heuristics, the quality improves, the gap reducing to 1.58%. The best results are yielded by
ZS C with an overall gap of 0.11%. Nevertheless, as mentioned before, this is also the most time consuming heuristic. A
good compromise between accuracy and efficiency is offered by the diving strategies (DIVE(1), DIVE(2), B-DIVE(1),
and B-DIVE(2), with average gaps varying between 0.53% and 1.22%.

6.4. Sensitivity analysis

This subsection is dedicated to the analysis of the impact on the performance of best bound procedures on a
number of important problem parameters: the percentage of compulsory items, the total number of available bins. and
the variability of item volumes and profits.

6.4.1. Percentage of compulsory items
We consider the instances of Class 3, where 12 large instances (500 items) taken from Class 1 and Class 2 are

selected for each percentage of compulsory items set at 0%, 25%, 50%, 75%, and 100%. Table 4 display comparative
results for three GBPP upper bounds:

BEST BFD: Best among the constructive heuristics BFD(3), L-BFD(1, 0.1, 3), and C-BFD(3);
ZSC : Our best upper bound;
BEST DIVING: Best between the diving heuristics B-DIVE(1) and B-DIVE(2).

Table 4a displays the mean percentage gap between these upper bound and the lower bound LB1 over the 12 instances,
while Table 4b lists the corresponding computing times in seconds.

The results clearly show a trend. The most difficult instances for all the upper bounds are those where compulsory
and non-compulsory items are more or less of equal quantity. All upper bounds perform better when one type of items
(compulsory or non-compulsory) dominates the other. The ranking among the different upper bounds previously
observed is confirmed by these results: the best constructive heuristics is extremely fast but yields worse results than
the best diving method, which is outperformed by the ZS C .

6.4.2. Total number of available bins
The analysis of the impact of the total number of available bins on the accuracy of the proposed bounds, we

computed the relative gaps between our best upper bound ZS C and the lower bounds LB1, LB2, and LB3. Computations
were performed on the 24 instances of Class 4. Recall that these instances were selected from Classes 1 and 2 for
which we reduced the total number of available bins U by a percentage ranging from 0% up to 30%, with a step of
10%.

Figure 1 displays the gaps after 20 seconds of computing time. The behaviour illustrated by the figure is that the
tighter the constraint on the total number of available bins, the more the accuracy of the gap degrades. The question
then is whether this degradation follows from inaccuracies in the values of the upper bounds or from the tightness
of the constraints on the bin supply. To start answering this question, we need ZS C to be as close as possible to the
optimal solution for most instances; 20 seconds is too short for most cases, however. We therefore let computations
continue until a time limit of 1000 seconds. The corresponding gaps between ZS C and the three lower bounds are
displayed in Figure 2.

The trend is similar to that of Figure 1 with just a small reduction (0.3%) in the gap values. As the values of the
upper bound ZS C are now close or equal to the optimal ones, we conclude that the gap degradation is not due to the
accuracy of ZS C , but to the impact of the constrains on the total number of available bins.
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% COMPULSORY ITEMS BEST BFD ZSC BEST DIVING
% GAP % GAP % GAP

0 0.77 0.12 0.37
25 1.73 0.51 1.00
50 12.21 2.72 7.52
75 2.04 0.52 1.15
100 0.85 0.16 0.51

MEAN 3.52 0.81 2.11
(a)

% COMPULSORY ITEMS BEST BFD ZSC BEST DIVING
(seconds) (seconds) (seconds)

0 < 0.01 11.37 0.39
25 < 0.01 11.94 0.55
50 < 0.01 13.95 0.42
75 < 0.01 13.41 0.33

100 < 0.01 13.42 0.25
MEAN < 0.01 12.82 0.39

(b)

Table 4: Impact of the percentage of compulsory items on the best upper bounds

Figure 1: Class 4 gaps between ZS C and LB1, LB2, and LB3 for varying U with a time limit of 20 seconds
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Figure 2: Class 4 gaps between ZS C and LB1, LB2, and LB3 for varying U with a time limit of 1000 seconds

6.4.3. Impact of item volumes and profits
The last set of experiments had a double objective. First, to inquire whether longer computation times may improve

the accuracy of ZS C , the best GBPP upper bound we propose. Second, to evaluate the impact of the variability in item
volumes and profits on the performance of the same upper bound procedure.

Experiments were thus performed by extending the time limit of the ZS C procedure to 10000 seconds. All instances
with up to 200 items were solved to optimality in at most 60 seconds, independently of the parameters used to generate
the instance data. The behaviour changed when the number of items was increased to 500, the time required to reach
the best solutions and the rate of improvement varying with the problem characteristics.

Figures 3a and 3b plot the evolution of the mean percentage gap between ZS C and LB1, when the computing time
is increased. Instances are grouped by item volume (I1, I2, and I3) in Figure 3a, whilst the item profit taken from
Classes 0, 1, and 2 is used to group instances in Figure 3b.

The results indicate that the most challenging instances are characterized by a large variance in item volume (I1),
the method achieving very rapidly extremely good results on all other problem instances. In this case, see Figure 3a,
the Zsc heuristics achieves rapidly (around 100 seconds) a gap of less than 0.2%, requires four time to drop to 0.1%,
and then, until the 10000 seconds time limit, continues to drop slowly to a gap of less than 0.1%. After this time
limit, the convergence process slows down considerably. This behaviour is partially explained by the fact that the
column generation generates a large number of patterns when there is significant variation in item volumes. Then,
the general-purpose branch & bound software used has to consider a large number of variables, causing the reduction
of its convergence rate. Moreover, a wide choice in terms of patterns also degrades the lower bound precision. This
behaviour points to the interest of developing a particular exact exact method for the GBPP taking advantage of the
peculiarities of this new class of problems.

Not surprisingly, see Figure 3b, ZS C is most challenged by problem instances not displaying the characteristics the
bounding procedures were developed for. In our case, these instances are in Class 0 where all items are compulsory
and for which the procedure requires about 300 seconds on average to reach a gap of less than 0.1%. It is very
encouraging, however, to observe that, not only is the procedure performing very well on GBPP problem instances,
but its behaviour is also good on instances lacking the characteristics it was designed for.

7. Conclusions

We introduced the Generalized Bin Packing Problem, a new bin packing problem of great interest to the fields
of packing as well as freight transportation and logistics. The contribution of the paper to the literature is of two
orders. First, it generalizes many existing packing problems by introducing a generalized formulations that jointly
considers transportation costs, profits derived from orders, and constraints on order shipments. Second, it presents
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Figure 3: Mean ZS C - LB1 gap versus computing time for 500-item instances
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several lower and upper bound procedures, analyses them in depth, and proposes a solution method that is both very
efficient computationally and offers very high-quality solutions.

In the GBPP, given two sets of compulsory and non-compulsory items characterized by volume and profit and
a set of bins with given volume and cost, one aims to select the subset of profitable non-compulsory items to be
loaded together with the compulsory ones into the appropriate bins in order to minimize the total net cost defined
as the difference between the total cost of the selected bins and the total profit of the loaded items. We presented
two formulations of the problem, based on item-to-bin assignment decisions and set covering, respectively. The set
covering formulation proved to be the most interesting in algorithmic terms, and led to an efficient column generation-
based lower bound method. We also presented first fit, best fit and column generation-based upper bound procedures.
The paper introduced a large number of instances for this new problem. The analysis of the extensive computational
results showed that the procedures proposed are very efficient and the bounds are tight.
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