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Step onset from an initial uniform distribution
of turbulent kinetic energy.

M. Iovieno, and D. Tordella

Diasp, Politecnico di Torino, 10129 Torino, Italy. michele.iovieno@polito.it

1 Introduction

We consider the time decay of a field with an initially uniform turbulent energy
distribution where the macroscale has been slightly varied in two adiacent
regions. The flow is studied by means of Direct Numeical Simulation carried
out in a parallepiped, see fig. 1 b. The interesting observation is that the
time evolution of the field shows the onset of a step of turbulent energy. It
is sufficient to introduce a slight dishomogeneity associated to the integral
scale that the nonlinear interaction is able to induce a dishomogeneity also in
the kinetic energy. We present here a set of results from experiments where
we actually follow the temporal decay of two isotropic turbulences (of initial
equal turbulent kinetic energy, but of different integral scales) that macth over
a thin region ∆(t). The two isotropic regions are characterized by a different
shape of the spectrum in the low wavenumber range, as shown in figure 1, see
, a thing which was obtained by means of a high-pass filter (see [5]).

2 Results and discussion

The present simulations are performed on a parallelepiped domain with peri-
odic boundary conditions in all directions, see the scheme in figure 1. The
Navier-Stokes equations are solved by means of a fully dealiased Fourier-
Galerkin pseudospectral method with explicit fourth order time integration
[7]. The initial conditions are obtained by matching two fields, coming from
simulations of homogeneous and isotropic turbulence, over a thin region by
means of a smoothing function [5]. The two fields are characterized by a
different shape of the spectrum in the low wavenumber range, as shown in
figure 1. The fields with a steeper spectrum in the low wave number range,
and thus a smaller integral scale, have been obtained by the application of a
high-pass filter to a same reference field, which produces a kα slope with α
between 2 and 4. As a conseuence, the integral scales of the two interacting
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isotropic turbulences are different and a scale gradient is present across the
initial matching layer. The Taylor microscale Reynolds number Reλ is 150.
The simulations show that the flows with a smaller integral scale decay faster
and have higher decay exponents, that range from 1.1 up to 1.65. The smaller
the macroscale, the higher is the exponent value. These different decay rates
are in agreement with previous literature [1, 2, 3, 4] which suggests that the
shape of the spectrum at low wavenumbers determines the decay rate at least
for low to moderate Reynolds numbers.
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Fig. 1. (a) Initial three-dimensional spectra E(k) normalized with the initial energy
E. Continuous line: homogeneous region (Reλ = 150) with the larger scale �1; other
lines: spectra of the other fields to be mixed, with integral scale �2 < �1; n is the
decay exponent found in the simulation. Reference k2 and k4 slopes are also shown.
(b) Scheme of the flow and of the kinetic energy distribution during the decay.

Another interesting point is that, due to the different decay, an energy
gradient, always concurrent to the integral scale gradient, soon emerges during
the decay. It is maximum after about one eddy-turnover time �/E1/2, then it
is gradually reduced while the ratio of kinetic energy between the two regions
still increases, see fig. 2 (a, c). The thickness of the induced kinetic energy layer
increases while the two flow interact, see fig. 2 (b). The scale and energy mixing
layer becomes immediately intermittent and the intermittency level is close
to the that found in the shearless mixings with imposed gradients discussed
in ref. [5, 6]. The instantaneous level of velocity skewness and kurtosis is
comparable with the one which can be seen in the shearless mixings with
higher energy ratios but uniform scale, see fig. 3 (a). The departure from the
almost gaussian initial conditions always follows the same path, see figure
3(b), which is shared not only by the present mixings but also by the mixings
with an imposed energy gradient.Another common aspect is the anisotropy
of the velocity moments in the mixing layer: for the second order moments
deviations of about a 10% of the isotropic value of 1/3 are visible, while
for the third order moments about half of the total kinetic energy flow was
contributed by the velocity fluctuations in the direction of the mixing. This
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property seems related to the behaviour of the pressure-velocity correlations
in absense of shear [6].
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Fig. 2. (a) Time evolution of energy ratio E1/E2, where E1 and E2 are the energy
of the homogeneous regions with the largest and smallest macroscale; τ is the initial
eddy turnover time. (b) Mixing layer thickness, conventionally defined as the dis-
tance between the points with normalized energy (E(x, t) − E2(t))/(E1(t) − E2(t))
equal to 0.75 and 0.25 [5, 6]. (c) Time evolution of the energy gradient.
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Fig. 3. (a) Maximum of the velocity skewness (filled symbols) and kurtosis (empty
symbols) in the mixing layer. (b) Comparison of the intermittency level with a
mixing with an initially uniform integral scale, each point corresponds to one time
instant.
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