
08 August 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Reduction for constrained variational problems on 3-dimensional null curves / Musso, Emilio; Nicolodi, L.. - In: SIAM
JOURNAL ON CONTROL AND OPTIMIZATION. - ISSN 0363-0129. - STAMPA. - 47:3(2008), pp. 1399-1414.
[10.1137/070686470]

Original

Reduction for constrained variational problems on 3-dimensional null curves

Publisher:

Published
DOI:10.1137/070686470

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1921028 since:

SIAM PUBLICATIONS



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. CONTROL OPTIM. c© 2008 Society for Industrial and Applied Mathematics
Vol. 47, No. 3, pp. 1399–1414

REDUCTION FOR CONSTRAINED VARIATIONAL PROBLEMS ON
3-DIMENSIONAL NULL CURVES∗

EMILIO MUSSO† AND LORENZO NICOLODI‡

Abstract. We consider the optimal control problem for null curves in de Sitter 3-space defined
by a functional which is linear in the curvature of the trajectory. We show how techniques based on
the method of moving frames and exterior differential systems, coupled with the reduction procedure
for systems with a Lie group of symmetries, lead to the integration by quadratures of the extremals.
Explicit solutions are found in terms of elliptic functions and integrals.
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1. Introduction. Let M3 be a 3-dimensional Lorentz space form and γ ⊂ M3

a null curve parametrized by the natural (pseudo-arc) parameter s which normalizes
the derivative of its tangent vector field. It is known that, in general, γ admits a
curvature kγ(s) that is a Lorentz invariant and that uniquely determines γ up to
Lorentz transformations. We consider the variational problem on null curves defined
by the Lorentz invariant functional

(1.1) L(γ) =

∫
γ

(m + kγ)ds, m ∈ R,

and ask how to determine the explicit form for the extremal trajectories. Motivations
are provided by optimal control theory and recent work on relativistic particle mod-
els associated with action functionals of the type above (cf. [19], [18], [17], [7], and
references therein).

From the Euler–Lagrange equation of the action it follows that the curvature of an
extremal trajectory either is constant or is an elliptic function (possibly degenerate)
of the natural parameter. In the first case, the extremals are orbits of 1-parameter
subgroups of the group of Lorentz transformations and can be described in terms of
elementary functions [6]. In the second case, we are led to a linear system of ODEs
whose coefficients are doubly periodic functions. By the Fuchsian theory of ODEs, and
in particular the results of Picard [20], the trajectories are then expressible in terms
of the Weierstrass elliptic functions ℘, σ, and ζ. Alternatively, we follow a general
scheme for the reduction of constrained variational problems on homogeneous spaces.
We will use techniques from optimal control theory based on the method of moving
frames and on Cartan’s exterior differential systems [4], [11], [8], [9], coupled with
the reduction procedure for systems admitting a Lie group of symmetries extended to
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1400 EMILIO MUSSO AND LORENZO NICOLODI

this setting [2]. For other applications of this general scheme of integration we refer
to [10], [15], [16].

In this article, we determine the explicit form of the extremal curves when the
target manifold is de Sitter 3-space. In this case, the functional (1.1) is invariant
under the group SL(2,C), which doubly covers the identity component of the isometry
group of de Sitter 3-space. The starting point of our study is the replacement of the
original variational problem on null curves in de Sitter 3-space by an SL(2,C)-invariant
variational problem for integral curves of a control system on M ∼= SL(2,C)×R defined
by a suitable Pfaffian differential ideal (I, ω) with an independence condition. This is
accomplished by proving the existence of a preferred SL(2,C)-invariant frame along
null curves without flex points (cf. section 2). We then follow a general construction
due to Griffiths [11] and carry out a calculation to associate to the variational problem
a Pfaffian differential system J , the Euler–Lagrange system, whose integral curves are
stationary for the associated functional. The Euler–Lagrange system is defined on the
momentum space Y ∼= SL(2,C) × R

3, which turns out to carry a contact structure,
whose characteristic curves coincide with the integral curves of J . As a matter of
fact, in the case at hand all extremal trajectories arise as projections of integral curves
of the Euler–Lagrange system. The theoretical reason for this is that all the derived
systems of (I, ω) have constant rank (cf. [1]). Further, we show that the characteristic
flow factors over a flow in an affine 3-dimensional subspace of sl(2,C) and find a Lax
formulation of its defining differential equation. This implies that the momentum map
induced by the Hamiltonian action of SL(2,C) on Y is constant on solution curves
of the Euler–Lagrange system, which leads to the integration by quadratures of the
extremals (cf. section 4).

The paper is organized as follows. Section 2 gives the details of the construction
of the canonical frame along null curves with no flex points by the method of moving
frames, and defines the Pfaffian differential system of such frames. Section 3 studies
the action functional (1.1), introduces the corresponding Euler–Lagrange system, and
proves the constancy of the momentum map on its integral curves. Section 4 focuses
on the integration procedure. It first outlines some facts from the theory of elliptic
functions and then carries out the explicit integration of the extremals in terms of
elliptic functions and elliptic integrals of the third kind.

2. Preliminaries.

2.1. The geometry of de Sitter 3-space. Let Herm(2) be the 4-dimensional
space of 2× 2 Hermitian complex matrices endowed with the Lorentz metric given by
the quadratic form 〈X,X〉 = −detX for all X ∈ Herm(2). De Sitter 3-space, S

3
1, can

be viewed as the set of 2 × 2 Hermitian matrices of determinant −1,

(2.1) S
3
1 = {X ∈ Herm(2) |detX = −1} ,

with the induced metric g. The special linear group SL(2,C) acts transitively by
isometries on S

3
1 via the action

A ·X = AXA∗,

where A∗ stands for the conjugate transpose of A. The stability subgroup at

J =

(
0 −i
i 0

)
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REDUCTION FOR VARIATIONAL PROBLEMS ON NULL CURVES 1401

is the group SL(2,R), and S
3
1 may be described as a Lorentzian symmetric space

S
3
1
∼= SL(2,C)/SL(2,R).

The projection

π : SL(2,C) � A �→ AJA∗ ∈ S
3
1

makes SL(2,C) into a principal bundle with structure group SL(2,R).
Let Ω = α + iβ be the Maurer–Cartan form of SL(2,C), where

(2.2) α =

(
α1

1 α1
2

α2
1 −α1

1

)
, β =

(
β1

1 β1
2

β2
1 −β1

1

)
.

Note that the matrix of 1-forms β is semibasic1 for the projection π, and that the
Lorentz metric g on S

3
1 is given by

g =
(
β1

1

)2 − β2
1β

1
2 .

The matrix α amounts to the Levi–Civita (spinor) connection of g. The Maurer–
Cartan equations of SL(2,C), or the structure equations, are given by⎧⎪⎨⎪⎩

dα1
1 = −α1

2 ∧ α2
1 + β1

2 ∧ β2
1 ,

dα2
1 = 2α1

1 ∧ α2
1 − 2β1

1 ∧ β2
1 ,

dα1
2 = −2α1

1 ∧ α1
2 + 2β1

1 ∧ β1
2 ,⎧⎪⎨⎪⎩

dβ1
1 = −β1

2 ∧ α2
1 + β2

1 ∧ α1
2,

dβ2
1 = 2β1

1 ∧ α2
1 − 2β2

1 ∧ α1
1,

dβ1
2 = −2β1

1 ∧ α1
2 + 2β1

2 ∧ α1
1.

2.2. The canonical frame along a null curve. A smooth parametrized curve

γ : I → S
3
1,

where I denotes any open interval of real numbers, is null (or light-like) if the velocity
vector field γ′ is null along γ, i.e., g(γ′(t), γ′(t)) = 0, for each t ∈ I. We will assume
throughout that γ has no flex points, i.e., γ′(t) and γ′′(t) are linearly independent,
for each t ∈ I, where γ′′ denotes the covariant derivative of γ′ along the curve.

A frame field along γ is a smooth map Γ : I → SL(2,C) such that γ = π ◦ Γ.
For any such frame, let Θ = Γ∗Ω denote the pullback of the Maurer–Cartan form of
SL(2,C) and write Θ = φ + iθ. Given a frame field along γ, any other is given by

Γ̃ = ΓX,

where X : I → SL(2,R) is a smooth map. If Θ̃ = Γ̃∗Ω = φ̃ + iθ̃, then

(2.3) Θ̃ = X−1ΘX + X−1dX.

1We recall that a differential form ϕ on the total space of a fiber bundle π : P → B is said to be
semibasic if its contraction with any vector field tangent to the fibers of π vanishes, or equivalently,
if its value at each point p ∈ P is the pullback via π∗

p of some form at π(p) ∈ B. Some authors call
such a form horizontal. A stronger condition is that ϕ is basic, meaning that it is locally the pullback
via π∗ of a form on the base B.
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A frame field Γ : I → SL(2,C) along γ is said to be of first order if

(2.4) θ1
1 = θ1

2 = 0, θ2
1 �= 0.

It is easily seen that first-order frame fields exist locally. If Γ : I → SL(2,C) is a first-
order frame along γ, then any other is given by Γ̃ = ΓX, where X : I → G1 ⊂ SL(2,R)
is a smooth map, and

G1 =

{(
a 0
c a−1

)
: a �= 0, c ∈ R

}
.

According to (2.3), one computes

(2.5) φ̃1
2 = a2φ1

2, θ̃2
1 =

1

a2
θ2
1.

Moreover, for first-order frames the form φ1
2 is semibasic. If the curve γ has no flex

points, then φ1
2 �= 0. We say that the curve has positive or negative spin according to

whether φ1
2 is a positive or negative multiple of θ2

1.
Under our assumption, it follows from the transformation formula (2.3) that there

always exist local first-order frames along γ such that

(2.6) φ1
2 = εθ2

1,

where ε = ±1, according to whether γ has positive or negative spin. A first-order
frame field is said to be of second order if it satisfies (2.6) on I.

A second-order frame field along γ is said to be a canonical frame if

(2.7) φ1
1 = 0.

Note that canonical frame fields exist on I, and that if Γ is a canonical frame, then
any other is given by ±Γ.

Summarizing, we have proved the following.
Proposition 2.1. Let γ : I ⊂ R → S

3
1 be a null curve with no flex points. Then

there exists a frame along γ, the canonical frame,

Γ : I → SL(2,C),

such that

(2.8) Γ−1dΓ =

(
0 ε

k + i 0

)
ω,

where ε = ±1, ω is a nowhere vanishing 1-form, the canonical pseudo-arc element,
and k : I → R is a smooth function, the curvature of γ. Moreover, if Γ is a canonical
frame field along γ, then any other canonical frame field is given by ±Γ.

Remark 1. Henceforth, we abuse the terminology and refer to the Z2-class [Γ] =
{±Γ} as the canonical frame Γ of a null curve γ.

Remark 2. Conversely, for a smooth function k : I → R, let H(k) : I → sl(2,C)
be

(2.9) H(k) =

(
0 ε

k + i 0

)
.
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Then by solving a linear system of ODEs, we see that there exists a unique (up to
left multiplication)

Γ : I → SL(2,C)

such that

(2.10) Γ−1Γ′ = H(k).

In particular, γ = ΓJΓ∗ : I → S
3
1 is a null curve without flex points and with

curvature k.
Remark 3 (null helices). The simplest examples are null helices, that is, null

curves with constant curvature. Such curves are orbits of 1-parameter subgroups of
SL(2,C) (cf. Remark 9) and have been described by elementary functions in [6].

2.3. The Pfaffian system of canonical frames. Let (I, ω) be the Pfaffian
differential system on M := SL(2,C)×R defined by the differential ideal I generated
by the linearly independent 1-forms{

η1 = β1
1 , η2 = β1

2 , η3 = α1
1 − εω,

η4 = α1
1, η5 = α2

1 − kω,

where

ω := β2
1

gives the independence condition ω �= 0.
Now, let γ : I → S

3
1 be a null curve without flex points. Then, by Proposition 2.1,

the curve g = (Γγ , kγ) : I → M , whose components are, respectively, the canonical
frame field along γ and the curvature of γ, is an integral curve of the Pfaffian system
(I, ω). Conversely, if g = (Γ, k) : I → M is an integral curve of the Pfaffian system
(I, ω), then γ = ΓJΓ∗ : I → S

3
1 defines a null curve with no flex points, Γ is the

canonical frame field along γ, and k is the curvature of γ. For this reason, null curves
without flex points in S

3
1 can be identified with the integral curves of the Pfaffian

system (I, ω).
Definition 2.2. The Pfaffian differential system (I, ω) will be referred to as the

canonical system.
Remark 4. A smooth curve g = (Γ, k) : I → M is an integral curve of the

canonical system if and only if Γ : I → SL(2,C) is a solution of the linear system

Γ−1(t)Γ′(t) = H(k(t)).

The function k plays the role of a control. Note that if we assign a smooth map
k : I → R and a point A0 ∈ SL(2,C), then there exists a unique integral curve
g = (Γ, k) of the control system satisfying the initial condition Γ(t0) = A0 for t0 ∈ I.

Exterior differentiation and use of the Maurer–Cartan equations give, modulo the
algebraic ideal generated by η1, . . . , η5, the quadratic equations of (I, ω):

(2.11)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dω ≡ 2(kη1 + η4) ∧ ω,

dη1 ≡ −(kη2 + η3) ∧ ω,

dη2 ≡ −2εη1 ∧ ω,

dη3 ≡ −2ε(kη1 + 2η4) ∧ ω,

dη4 ≡ (η2 − kη3 + εη5) ∧ ω,

dη5 ≡ −
(
dk + 2(1 + k2)η1

)
∧ ω.
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3. The variational problem and the Euler–Lagrange system.

3.1. The constrained variational problem. Let N be the space of null curves
in S

3
1 without flex points. We consider the action functional

(3.1) Lm : γ ∈ N �→
∫
Iγ

(m + kγ)ωγ , m ∈ R,

where Iγ is the domain of definition of the curve, kγ is its curvature, and ωγ the
canonical pseudo-arc element (cf. section 2). We refer to [18], [19], [17], [7], and the
references therein for a discussion on the particle model associated with this action
functional.

Definition 3.1. A curve γ ∈ N is said to be an extremal trajectory (or simply a
trajectory) in S

3
1 if it is a critical point of the action functional Lm when one considers

compactly supported variations. The constant m is called the Lagrange multiplier of
the trajectory.

Remark 5. As usual, by a compactly supported variation of γ ∈ N we mean a
mapping V : I × (−ε, ε) → S

3
1 such that (1) for all u ∈ (−ε, ε), the map γu := V (t, u) :

I → S
3
1 is a null curve without flex points; (2) γ0 = γ(t) for all t ∈ I; and (3) there

exists a closed interval [a, b] ⊂ I such that

(3.2) V (t, u) = γ(t) ∀t ∈ I \ [a, b], ∀u ∈ (−ε, ε).

Accordingly, a curve γ ∈ N is an extremal trajectory if, for every compactly supported
variation V , we have that

d

du

(∫ bV

aV

(m + kγu) dsu

)∣∣∣∣∣
u=0

= 0,

where [aV , bV ] is the support of the variation, i.e., the smallest closed interval for
which (3.2) holds, and dsu is the canonical pseudo-arc element of the curve γu.

In [7], the authors derive the Euler–Lagrange equation associated with (3.1) for
null curves with prescribed endpoints and the same canonical frame at each end.

By the preceding discussion (cf. Proposition 2.1 and section 2.3), a curve γ ∈ N
is an extremal trajectory if and only if the pair g = (Γγ , kγ) of its canonical frame
field and curvature function is a critical point of the variational problem on the space
V(I, ω) of all integral curves of (I, ω) defined by the functional,

(3.3) L̂ : g ∈ V(I, ω) �→
∫
Ig

g∗((m + k)ω),

when one considers compactly supported variations through integral curves of (I, ω).
Remark 6. The replacement of the original functional by the functional (3.3)

is the starting point in the application of the Griffiths formalism. This approach to
constrained variational problems with one independent variable provides conditions
for criticality in terms of Pfaffian differential systems and is particularly well suited
when one considers compactly supported variations among constrained curves. More
importantly, it furnishes the appropriate setting for the explicit integration of the
extremals (cf. [11], [1], [2], [12], and below).
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3.2. The Euler–Lagrange system. Associated to the functional L̂ we will in-
troduce, following Griffiths [11], the Euler–Lagrange system (J , ω) on a new manifold
Y , which will be made explicit below.

For this, let Z ⊂ T ∗M be the affine subbundle defined by

Z = (m + k)ω + I ⊂ T ∗M,

where I is the subbundle of T ∗M associated to the differential ideal I. The 1-forms
(η1, . . . , η5, ω) induce a global affine trivialization of Z, which may be identified with
M × R

5 by setting

M × R
5 � ((Γ, k);x1, . . . , x5) �→ ω|(Γ,k) + xjη

j
|(Γ,k) ∈ Z

(throughout we use summation convention). Thus, the Liouville (canonical) 1-form
of T ∗M restricted to Z is given by

μ = (m + k)ω + xjη
j .

Exterior differentiation and use of the quadratic equations (2.11) give

dμ≡ dk ∧ ω + 2(m + k)(kη1 + η4) ∧ ω + dxj ∧ ηj

−x1(kη
2 + η3) ∧ ω − 2εx2η

1 ∧ ω

−2εx3(kη
1 + 2η4) ∧ ω + x4(η

2 − kη3 + εη5) ∧ ω

−x5(dk + 2(1 + k2)η1) ∧ ω mod {ηi ∧ ηj}.

Next, we compute the Cartan system C(dμ) ⊂ T ∗Z determined by the 2-form dμ,
i.e., the Pfaffian system generated by the 1-forms

{iξdμ | ξ ∈ X(Z)} ⊂ Ω1(Z).

Contracting dμ with the vector fields of the tangent frame(
∂

∂ω
,
∂

∂k
,

∂

∂η1
, . . . ,

∂

∂η5
,

∂

∂x1
, . . . ,

∂

∂x5

)
on Z, dual to the coframe (

ω, dk, η1, . . . , η5, dx1, . . . , dx5

)
,

we find the 1-forms

η1, . . . , η5,(3.4)

π1 = (x5 − 1)dk,(3.5)

π2 = (1 − x5)ω,(3.6)

β1 = dx1 − 2
{
km + k2 − εx2 − εkx3 − x5(1 + k2)

}
ω,(3.7)

β2 = dx2 + (kx1 − x4)ω,(3.8)

β3 = dx3 + (x1 + kx4)ω,(3.9)

β4 = dx4 − {2(m + k) − 4εx3}ω,(3.10)

β5 = dx5 − εx4ω.(3.11)

We have proven the following.
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Lemma 3.2. The Cartan system (C(dμ), ω) associated to (I, ω) is the differential
ideal on Z ∼= M × R

5 generated by{
η1, . . . , η5, π1, π2, β1, . . . , β5

}
and with independence condition ω.

Definition 3.3. The involutive prolongation of (C(dμ), ω) on Z gives rise to a
Pfaffian differential system (J , ω) on a submanifold Y ⊂ Z, which is called the Euler–
Lagrange differential system associated to the variational problem. The submanifold
Y is called the momentum space. We refer the reader to the book of Griffiths [11] for
a discussion of how this system is derived and for more details on Pfaffian systems.

Lemma 3.4. The momentum space Y is the 9-dimensional submanifold of Z
defined by the equations

x5 = 1, x4 = 0, x3 =
ε

2
(m + k).

The Euler–Lagrange system (J , ω) is the Pfaffian differential system on Y with in-
dependence condition ω generated by the 1-forms⎧⎪⎪⎪⎨⎪⎪⎪⎩

η1
|Y , . . . , η

5
|Y ,

σ1 = dx1 +
(
k2 −mk + 2εx2 + 2

)
ω,

σ2 = dx2 + kx1ω,

σ3 = dk + 2εx1ω.

Moreover,

μ|Y =
1

2
(m− k)β2

1 − ε

2
k′β1

1 +
1

2

(
k′′

2
− εk(k −m) − 2ε

)
β1

2

+
ε

2
(m + k)α1

2 + α2
1.

Proof. Let V1(dμ) ↪→ P[T (Z)] → Z be the totality of 1-dimensional integral
elements of C(dμ). In view of (3.5) and (3.6), we find that

V1(dμ)|((Γ,k);x) �= ∅ ⇐⇒ x5 = 1.

Thus, the first involutive prolongation of (C(dμ), ω), i.e., the image Z1 ⊂ Z of V1(dμ)
with respect to the natural projection V1(dμ) → Z, is given by

Z1 = {((Γ, k);x) ∈ Z : x5 = 1}.

Next, the restriction of β5 to Z1 takes the form −εx4ω. Thus, the second involutive
prolongation Z2 is characterized by the equations

x5 = 1, x4 = 0.

Considering then the restriction of β4 to Z2 yields the equations

x5 = 1, x4 = 0, x3 =
ε

2
(m + k),

which define the third involutive prolongation Z3. Now, the restriction C3(dμ) to Z3

of C(dμ) is generated by the 1-forms η1, . . . , η5 and

σ1 = dx1 +
(
k2 −mk + 2εx2 + 2

)
ω,

σ2 = dx2 + kx1ω,

σ3 = dk + 2εx1ω.
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This implies that there exists an integral element of V1(dμ) over each point of Z3,
i.e., V1(dμ)p �= ∅, for each p ∈ Z3. Hence Y := Z3 and (J , ω) := (C3(dμ), ω) is the
involutive prolongation of the Cartan system (C(dμ), ω).

Remark 7. The importance of this construction is that the natural projection
πY : Y → M maps integral curves of the Euler–Lagrange system to extremals of
the variational problem associated to (M, I). The converse is not true in general.
However, it is known to be true if all the derived systems of (I, ω) are of constant
rank (cf. [1], [12]). In our case, one can easily check, using (2.11), that all the derived
systems of (I, ω) have indeed constant rank, so that all the extremals do arise as
projections of integral curves of the Euler–Lagrange system (see also section 3.3).

Remark 8. A direct calculation shows that

(3.12) μ|Y ∧ (dμ|Y )4 �= 0

on Y , i.e., the variational problem is nondegenerate.2 This implies that μ|Y is a
contact form and that there exists a unique vector field ζ ∈ X(Y ), the characteristic
vector field of the contact structure, such that μ|Y (ζ) = 1 and iζ dμ|Y = 0. In particu-
lar, the integral curves of the Euler–Lagrange system coincide with the characteristic
curves of ζ.

3.3. The natural equation of integral curves. Let V(J , ω) be the set of
integral curves of the Euler–Lagrange Pfaffian system (J , ω). If y = ((Γ, k);x1, x2) :
I → Y is in V(J , ω), then equations

η1 = η2 = · · · = η5 = 0

and the independence condition ω �= 0 tell us that Γ defines a canonical frame along
the null curve γ = ΓJΓ∗ and that k is the curvature of γ.

Next, for the smooth function k : I → R, let k′, k′′, and k′′′ be defined by

dk = k′ω, dk′ = k′′ω, dk′′ = k′′′ω.

Equation σ3 = 0 implies

x1 = −ε

2
k′.

Further, σ1 = 0 gives

x2 =
1

4
k′′ − ε

2
(k2 −mk + 2).

Finally, σ2 = 0 yields

(3.13) k′′′ − 6εkk′ + 2εmk′ = 0.

2A variational problem is said to be nondegenerate in the case when

dimY = 2m + 1 and μ|Y ∧ (dμ|Y )m �= 0.

Let V (J , ω) and V (C(dμ|Y ), ω) denote the set of integral elements of the Euler–Lagrange system
and of the Cartan system. For nondegenerate problems we have V (J , ω) = V (C(dμ|Y ), ω), whereas
in general we have only inclusion V (J , ω) ⊂ V (C(dμ|Y , ω) (cf. [11, p. 84]). For a discussion on the
relation between the classical Legendre transform and the construction of the Euler–Lagrange system
on the momentum space, with special attention to the nondegeneracy condition, we refer the reader
to [11, Chapter I, section e]).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1408 EMILIO MUSSO AND LORENZO NICOLODI

This is the Euler–Lagrange equation of the extremals of (3.1). It has been computed,
for example, in [7]. Thus, an integral curve of the Euler–Lagrange system projects to
an extremal trajectory in S

3
1.

Conversely, let γ : I → S
3
1 be a null curve without flex points, Γγ its canonical

frame, and kγ its curvature. Define the lift yγ : I → Y of γ to the momentum space
Y by

yγ(t) =

(
(Γγ , kγ);−ε

2
k′γ ,

1

4
k′′γ − ε

2
(k2

γ −mk + 2)

)
.

Then, yγ is an integral curve of the Euler–Lagrange system if and only if kγ satisfies
(3.13) if and only if γ is an extremal trajectory. Thus, the integral curves of the
Euler–Lagrange system arise as lifts of trajectories in S

3
1.

3.4. The Lax formulation. Introduce the reduced curvature

h :=
ε

2

(
k − m

3

)
and identify Y ∼= SL(2,C) × R

3, where R
3 has coordinates (h, h′, h′′). Then, the

Pfaffian equations defining the Euler–Lagrange system J are given by

(3.14)

⎧⎪⎪⎨⎪⎪⎩
ηj = 0, (j = 1, . . . , 5),
dh = h′ω,
dh′ = h′′ω,
dh′′ = 12hh′ω,

where ω �= 0 is the independence condition. Equation (3.13) becomes

h′′′ − 12hh′ = 0,(3.15)

H(h) =

(
0 ε

2εh + m
3 + i 0

)
(3.16)

and we also have

μ = −
(
εh− m

3

)
β2

1 − h′β1
1 +

ε

2

(
h′′ − 4h2 +

2

3
εmh +

2

9
m2 − 2

)
β1

2

+

(
h +

2

3
εm

)
α1

2 + α2
1.

Next, define the momentum associated with h, U(h) ∈ sl(2,C), by

(3.17)

(
ih′ 2iε

(
h− ε

(
m
3 + i

))
2
(
h + 2εm

3

)
− iε
(
h′′ − 4h2 + 2εmh

3 + 2m2

9 − 2
)

−ih′

)
.

A direct computation shows that (3.15) is equivalent to

U(h)
′
= [U(h), H(h)] .

The above discussion yields the following result.
Proposition 3.5. A map (A;h, h′, h′′) : I ⊂ R → Y is an integral curve of the

Euler–Lagrange system (J , ω) if and only if

(3.18)

{
A−1A′ = H(h),

U(h)
′
= [U(h), H(h)] .
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As a consequence, we have the following.
Corollary 3.6. The momentum map

Φ : Y → sl(2,C), (A;h, h′, h′′) �→ AU(h)A−1

is constant on integral curves of the Euler–Lagrange system.
Remark 9. The momentum space Y may be identified with SL(2,C) × a, where

a = span {U(h)} is an affine subspace of sl(2,C). The group SL(2,C) acts on (Y, μ)
by

g · (A;U(h)) = (gA;U(h)), for each g ∈ SL(2,C), U(h) ∈ a,

in a Hamiltonian way. Using the isomorphism of sl(2,C) with its dual Lie algebra
induced by the Killing form, one sees that the momentum map associated with this
action is given by Φ. Moreover, if y = (A(t), U(h)(t)) is an integral curve of the
characteristic vector field ζ, then U(h)(t) is an integral curve of the vector field

Xζ : U(h) �→ [U(h), H(h)]

and ζ can be written

ζ|y = H(h)|A + Xζ(U(h)),

for all y = (A,U(h)) ∈ Y . If as denotes the singular set of Xζ , then the integral
curves through (A,U(h)) ∈ SL(2,C) × as are orbits of the 1-parameter subgroups
generated by H(h). By (3.17), these project to curves with constant curvature (null
helices). Next, consider Φ : SL(2,C)×ar → sl(2,C), where ar denotes the complement
of as in a. For each regular value � ∈ sl(2,C) of Φ, the isotropy subgroup at �,
SL(2,C)�, is abelian and dim SL(2,C)� = rank SL(2,C)� = 2. The reduced space
Y� = Φ−1(�)/SL(2,C)� is then 1-dimensional. This implies that an integral curve y
with momentum � (i.e., Φ ◦ y = �) can be found by quadratures. Any other integral
curve with momentum � is given by b · y for some b ∈ SL(2,C)�.

Note that when the action of the symmetry group on the momentum space is
co-isotropic (as in the present case), the equation governing the flow of Xζ can always
be written in Lax form. See, for instance, [10].

4. Integration of the trajectories.

4.1. Preparatory material. From (3.15), it follows that the reduced curvature
h satisfies

(4.1) (h′)2 = 4h3 − g2h− g3

for real constants g2 and g3. Hence h is expressed by the real values of either a
Weierstrass ℘-function with invariants g2, g3, or one of its degenerate forms.

We call a solution to (4.1) a potential with analytic invariants g2, g3. Two po-
tentials are considered equivalent if they differ by a reparametrization of the form
s �→ s+ c, where c is a constant.3 For real g2 and g3, let Δ(g2, g3) = 27g2

3 − g3
2 be the

discriminant of the cubic polynomial

P (t; g2, g3) = 4t3 − g2t− g3.

3When invariants g2 and g3 are given, such that 27g2
3 �= g3

2 , the general solution of the differential

equation ( dy
dz

)2 = 4y3 − g2y − g3 can be written in the form ℘(z + α; g2, g3), where α is a constant
of integration.
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The study of the real values of the Weierstrass ℘-function with real invariants g2, g3

(and its degenerate forms) leads to primitive half-periods ω1, ω3 such that (see for
instance [14])

• Δ(g2, g3) < 0: ω1 > 0, ω3 = iνω1, ν > 0.
• Δ(g2, g3) > 0: ω1 > 0, ω3 = 1

2 (1 + iν)ω1, ν > 0.
• Δ(g2, g3) = 0 and g3 > 0: ω1 > 0, ω3 = +i∞.
• Δ(g2, g3) = 0 and g3 < 0: ω1 = +∞, −iω3 > 0.
• g2 = g3 = 0: ω1 = +∞, ω3 = +i∞.

Accordingly, denoting by D(g2, g3) the fundamental period-parallelogram spanned by
2ω1 and 2ω3, the only possible cases for the potential function h : I → R are

• Δ < 0: h(s) = ℘(s; g2, g3), I = (0, 2ω1).
• Δ < 0: h(s) = ℘3(s; g2, g3) = ℘(s + ω3; g2, g3), I = R.
• Δ > 0: h(s) = ℘(s; g2, g3), I = (0, 2ω1).
• Δ = 0, g3 = −8a3 > 0:

h(s) = −3a tan2
(√

−3as
)
− 2a, I =

(
− π√

−12a
,

π√
−12a

)
.

• Δ = 0, g3 = −8a3 < 0:

h(s) = 3a tanh2 (
√

3as) − 2a, I = R.

• g2 = g3 = 0: h(s) = s−2, I = (−∞, 0), or I = (0,+∞).
Let h be a Weierstrass potential with real invariants g2, g3, and let U(h) be the

corresponding momentum as given by (3.17). Then

detU(h) =

(
4

27
m3 − 4m− m

3
g2 − εg3

)
+ iε

(
4

3
m2 − g2 − 4

)
= P

(
ε
(m

3
+ i
)

; g2, g3

)
.

Let

ν(m,h) :=

√
P
(
ε
(m

3
+ i
)

; g2, g3

)
,

chosen once for all. Then ±ν(m,h) are the eigenvalues of the momentum U(h).
Next, define

(4.2) φ(m,h) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫

ν(m,h)

h− ε
(
m
3 + i

)ds, ν(m,h) �= 0,∫
1

h− ε
(
m
3 + i

)ds, ν(m,h) = 0.

These are elliptic integrals of the third kind. Let w(m,h) be the unique point in the
period-parallelogram D(g2, g3) such that

h(w) = ε
(m

3
+ i
)

and h′(w) = ν(m,h).

Denote by σh and ζh, respectively, the sigma and zeta Weierstrassian functions corre-
sponding to the potential h, i.e., the unique analytic odd functions whose meromorphic
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extensions satisfy ζ ′h = −h and σ′
h/σh = ζh. Under the above assumptions, we now

compute the elliptic integrals (4.2). Three cases are considered.
Case I. ν(m,h) �= 0. In this case,

φ(m,h) =

∫
h′(w)

h(s) − h(w)
ds = log

σh(s− w)

σh(s + w)
+ 2sζh(w) + const.

Case II. ν(m,h) = 0 and g2
2 + g2

3 �= 0. In this case, h(w) = ε
(
m
3 + i

)
is a root of

the cubic polynomial P , say e3. If e1, e2 denote the other two roots, we have

φ(m,h) =

∫
ds

h(s) − e3
=

∫
h(s + w) − e3

(e3 − e1)(e3 − e2)
ds

=
1

g2

4 − 3
(
m
3 + i

)2 {ζh(s + w) + ε
(m

3
+ i
)
s
}

+ const.

Case III. ν(m,h) = 0 and g2 = g3 = 0. In this case,

φ(m,h) =
1

3
s3 + const.

4.2. Explicit integration. We are now in a position to explicitly integrate the
extremal trajectories. This amounts to integrating by quadratures the reduced system
associated to the Hamiltonian action of SL(2,C) on Y (cf. Remark 9). The key to
explicit integration is the conservation of the momentum map along integral curves
of the Euler–Lagrange system.

Theorem 4.1. Let γ : I → S
3
1 be an extremal trajectory with Lagrange multiplier

m and reduced curvature h with real invariants g2, g3. Let Uγ(h) be the momentum
of h given by (3.17), and assume that γ is parametrized by the canonical parameter
s, i.e., ω = ds. According to whether detUγ(h) is zero or different from zero, we
distinguish two cases.

Case I. If detU(h) �= 0, then the canonical frame field Γ : I → SL(2,C) along γ
is given by

Γ(s) = A ·M(s),

where A ∈ SL(2,C) and M(s) takes the form

1√
−4iεν

(
eφ(m,h) 0

0 e−φ(m,h)

)
⎛⎜⎜⎜⎜⎜⎝

ih′ + ν√
h− ε

(
m
3 + i

) 2iε
√

h− ε
(
m
3 + i

)
−ih′ + ν√

h− ε
(
m
3 + i

) −2iε
√

h− ε
(
m
3 + i

)
⎞⎟⎟⎟⎟⎟⎠

Case II. If detU(h) = 0, then the canonical frame field Γ : I → SL(2,C) along γ
is given by

Γ(s) = A ·M(s),

where A ∈ SL(2,C) and M(s) takes the form

1√
−2iε

⎛⎝ 1√
h− ε(m3 + i)

−φ(m,h)

2i

0 1

⎞⎠⎛⎝ 1 0
−ih′√

h− ε(m3 + i)
−2iε

√
h− ε(m3 + i)

⎞⎠
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Proof of Case I. Let Γ = (C1, C2) : I → SL(2,C) be a canonical frame along γ
and Uγ(h) be the momentum of γ given by (3.17). Consider the eigenvalues ±ν(m,h)
of Uγ(h) and denote by L± the corresponding eigenspaces. From the definition of
Uγ(h), it follows that

L+ = −2iε
(
h− ε

(m
3

+ i
))

C1 + (ih′ − ν(m,h))C2 : I → L+,

L− = −2iε
(
h− ε

(m
3

+ i
))

C1 + (ih′ + ν(m,h))C2 : I → L−

are eigenvectors of Uγ(h) corresponding to ν(m,h) and −ν(m,h), respectively. Thus,
we must have

L′
+ = ρ1L+, L′

− = ρ2L−

for analytic functions ρ1, ρ2. Using the Maurer–Cartan equation Γ′ = ΓH(m,h), we
compute

L′
+ =

h′ + ν(m,h)

2
(
h− ε

(
m
3 + i

))L+, L′
− =

h′ − ν(m,h)

2
(
h− ε

(
m
3 + i

))L−.

We thus see that the two vectors

Λ1 := exp

(
−
∫

h′ + ν(m,h)

2
(
h− ε

(
m
3 + i

))ds)L+,

Λ2 := exp

(
−
∫

h′ − ν(m,h)

2
(
h− ε

(
m
3 + i

))ds)L−

are constant along γ. By (4.2), they become

Λ1 =
exp (−φ(m,h))√
h− ε

(
m
3 + i

)L+, Λ2 =
exp (φ(m,h))√
h− ε

(
m
3 + i

)L−.

Hence

Γ ·R(m,h) · S(m,h) = Λ = (Λ1,Λ2),

where

R(m,h) =

(
−2iε

(
h− ε

(
m
3 + i

))
−2iε

(
h− ε

(
m
3 + i

))
ih′ − ν(m,h) ih′ + ν(m,h)

)
and

S(m,h) =

⎛⎜⎜⎝
1√

h− ε(m3 + i)
0

0
1√

h− ε(m3 + i)

⎞⎟⎟⎠( exp (−φ(m,h)) 0
0 exp (φ(m,h))

)
.

From this, we obtain

Γ

⎛⎜⎜⎝ −2iε
√
h− ε(m3 + i) −2iε

√
h− ε(m3 + i)

ih′ − ν√
h− ε(m3 + i)

ih′ + ν√
h− ε(m3 + i)

⎞⎟⎟⎠( e−φ(m,h) 0

0 eφ(m,h)

)
= Λ,
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and hence

Γ = Λ̃

(
eφ(m,h) 0

0 e−φ(m,h)

)⎛⎜⎜⎜⎜⎝
ih′ + ν√

h− ε
(
m
3 + i

) 2iε
√

h− ε
(
m
3 + i

)
−ih′ + ν√

h− ε
(
m
3 + i

) −2iε
√

h− ε
(
m
3 + i

)
⎞⎟⎟⎟⎟⎠ .

Proof of Case II. Again, let Γ = (C1, C2) : I → SL(2,C) be a canonical frame
along γ and Uγ(h) be the momentum of γ. If ν(m,h) = 0, then

L1 = −2iε
(
h− ε

(m
3

+ i
))

C1 + ih′C2

belongs to the kernel of Uγ(h), and proceeding as in Case I, we see that the vector

(4.3) Λ1 =
1√

h− ε
(
m
3 + i

)L1

is a first integral. In order to find another first integral, we look for analytic functions
f and g such that

(4.4) Λ2 := gC2 + fL1

is a constant vector. Differentiating and using the Maurer–Cartan equation Γ′ =
ΓH(m,h), we obtain

g′C2 + gεC1 + f ′L1 = 0,

from which we compute

g =
1√

h− ε
(
m
3 + i

) , f =
1

2i

∫
ds

h− ε
(
m
3 + i

) =
1

2i
φ(m,h).

Now, from (4.3) and (4.4), we obtain

Γ

⎛⎜⎝ −2iε
√

h− ε(m3 + i) 0

ih′√
h− ε(m3 + i)

1

⎞⎟⎠
⎛⎜⎝ 1

1

2i
φ(m,h)

0
1√

h− ε(m3 + i)

⎞⎟⎠ = Λ = (Λ1,Λ2),

and hence the required result.
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