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ESTIMATION OF MONOPOLAR EMG SIGNALS FROM SPHINCTER MUSCLES  

 

XVII Congress of the International Society of Electrophysiology & Kinesiology (ISEK), Niagara Falls, Ontario, Canada, June 18-21, 2008  

1. INTRODUCTION 
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3. RESULTS 

Luca Mesin 

 LISiN, Dept. of Electronics, Politecnico di Torino, Torino, Italy 

                                                          Surface electromyogram (EMG) is usually recorded by means of spatial filters with vanishing sum of weights. More information could be extracted from monopolar signals measured with 

respect to a reference electrode away from the muscle. Under some assumptions, surface EMG detected along a line parallel to the fiber path has zero mean value in space at any time. This property is a constraint which can 

be used to estimate monopolar signals from single differential (SD) EMG signals and is satisfied in the case of a circumferential electrode array surrounded by a circular muscle.  

SD signals  from an array of N electrodes can be expressed in terms of monopolar signals  as follows )()( tmAts
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2. METHODS The problem of estimating monopolar signals               from SD             is not well posed. Indeed, there are infinite solutions, as an arbitrary function of time               can be added to the  )(ts
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Matrix        cannot be inverted as it has a vanishing eigenvalue, associated to an eigenvector with constant entries.  A
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Figure 1  A) Example of simulation of monopolar SFAP, using a model of sphincter. B) SD signals 

obtained from the monopolar signals. C) SD signals with 15 dB white noise. D) Estimate of 

monopolar signals from perturbed SD signals. 
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Application to signals simulated by a planar model  

Figure 5 A) Simulated and reconstructed monopolar signals from 55 

channels detection, with the array covering the entire potential distribution 

B) Case of 15 channels detection, with the array between the innervation 

zone and one tendon. C) 15 channels in the same position as in B), but 

considering for the estimation all the 55 channels detection as in A).  

Example of simulated signals corresponding to Fibre 1 
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Figure 6 Lateral A), top B) and transversal C) views of the simulated configuration. 

D) Representative example of simulated monopolar signals and their reconstruction, 

in the case of 0° and 25° of misalignment between detection array and muscle fibres. 

E) Reconstruction error for each of the three simulated fibres at misalignment angles 

in the range 0° to 45°.  
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Example of simulated interference signal 

Estimation RMS error = 0.1 % 

Example of simulated MUAP 
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Figure 4  A) Application of the method to a MUAP (MU constituted by 154 fibers) and B) to an interference 

signal (60 MUs, force level 40% MVC). SD signals were obtained from the simulated monopolar signals, 

and then monopolar signals were reconstructed. 

                                                       Under the hypothesis of space invariance of the volume conductor, monopolar signals detected along the direction of the muscle 

fibres with an array covering the entire spatial support of the potential distribution have vanishing spatial mean at any time. This provides a constraint for estimating 

monopolar from SD signals from sphincter muscles.  
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Variation of the amplitude of 200 Hz interference 

Different angles between the detection array and the fibre direction The estimation error is the sum of the 

“approximation error” due to 

sampling and the “noise error” due to 

additive noise (supposed to be 

Gaussian with zero mean and 

standard deviation        ). 

The “approximation error” is the 

common mode present in the vector 

of sampled monopolar signal and 

reduces with increasing number of 

channels N 
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Figure 3 Performance of the method. Mean and STD of the RMS error in estimating monopolar from SD SFAP 

corresponding to 88 positions of simulated fibers (depth between 2 and 8 mm within the muscle with 1 mm step, 

distance of the fibres from the detection electrodes in the axial direction between 0 and 10 mm with 1 mm step ) 

Importance of covering the entire potential distribution  

Figure 7 A) Square “noise error” for realisations of Gaussian 

noise (mean 0, STD 1) compared to the theoretical expected 

value as a function of the number of channels N. B) RMS 

“approximation error”, “noise error” and estimation error 

normalised with respect to the square root of the energy of the 

monopolar signals of a representative SFAP (fibre located under 

the detection array, 1 mm deep in the muscle).  

Considerations on the estimation error 

4. CONCLUSIONS  

Sponsored by Projects TASI and TIFNI (Else Kroner-Fresenius-Stiftung, Compagnia di San Paolo, Regione Piemonte)  

Nevertheless, the pseudoinverse of matrix         can be evaluated and monopolar signals can be estimated as  A
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Application to simulated SFAPs 

Application to simulated noise free MUAPs and interference signals 

Figure 2 A) Sketchy representation of an impulse response. B) Section of the impulse response at the location of the 

detection system in the direction of muscle fibres and transmembrane current (source of the volume conductor problem). C) 

Surface potential along the direction of the muscle fibres expressed as a convolution of the source (tripole approximation) 

with the impulse response.  

Under the assumption that the volume conductor is space invariant, the monopolar surface EMG detected along a 

curve parallel to the fiber path has zero mean value in space at any time.  
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