
23 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Low-Cost FPGA-Based Test and Diagnosis Architecture for SRAMs / DI CARLO, Stefano; Prinetto, Paolo Ernesto;
Scionti, A.; Figueras, J.; Manch, S.; Rodriguez Montanes, R.. - STAMPA. - (2009), pp. 141-146. (Intervento presentato al
convegno IEEE First International Conference on Advances in System Testing and Validation Lifecycle (VALID) tenutosi
a Lisbon, PT nel 20-25 Sept. 2009) [10.1109/VALID.2009.29].

Original

A Low-Cost FPGA-Based Test and Diagnosis Architecture for SRAMs

Publisher:

Published
DOI:10.1109/VALID.2009.29

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2286561 since: 2016-09-16T17:26:31Z

IEEE Computer Society

A Low-Cost FPGA-Based Test
and Diagnosis Architecture for
SRAMs
Authors: Di Carlo S., Prinetto P., Scionti A., Figueras J. Manich S., Rodriguez-Montanes R.,

Published in the Proceedings of the IEEE First International Conference on Advances in System

Testing and Validation Lifecycle (VALID), 20-25 Sept. 2009, Lisbon, PT.

N.B. This is a copy of the ACCEPTED version of the manuscript. The final
PUBLISHED manuscript is available on IEEE Xplore®:

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5279391

DOI: 10.1109/VALID.2009.29

© 2000 IEEE. Personal use of this material is permitted. Permission from IEEE must be

obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale

or redistribution to servers or lists, or reuse of any copyrighted component of this work in

other works.

!Politecnico di Torino

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5279391
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5279391
http://dx.doi.org/10.1109/VALID.2009.29
http://dx.doi.org/10.1109/VALID.2009.29

A Low-Cost FPGA-Based Test and Diagnosis
Architecture for SRAMs

Stefano Di Carlo, Paolo Prinetto, Alberto Scionti
Control and Computer Engineering Department

Politecnico di Torino
Torino, Italy

Email: {stefano.dicarlo,paolo.prinetto,alberto.scionti}@polito.it

Joan Figueras, Salvador Manich, Rosa Rodriguez-Montañés
Departament d’Enginyeria Electronica
Universitat Politècnica de Catalunya

Barcelona, Spain
Email: {figueras,manich,rosa}@eel.upc.es

Abstract—

1
The continuous improvement of manufacturing

technologies allows the realization of integrated circuits con-

taining an ever increasing number of transistors. A major part

of these devices is devoted to realize memory blocks. Test and

diagnosis of memory circuits are therefore an important challenge

for improving quality of next generation integrated circuits. This

paper proposes a flexible platform for testing and diagnosis of

static random access memories. The architecture is based on the

use of a low-cost FPGA based board allowing high diagnosability

while keeping cost at a very low level.

Keywords—Memory Diagnosis, Memory Testing, March Test.

I. INTRODUCTION

With the increasing of memories’ density and area, yield
of most System-On-Chip (SOC) is dominated by embedded
memories [1]. Manufacturing errors and defects should be
therefore detected, diagnosed, and localized, to improve mem-
ory quality, reliability, and yield [2] .

Although diagnosis has been widely used for Static Random
Access Memories (SRAMs), it is still considered an expensive
process due to long test time, and complex fault analysis
procedures. Efficient test and diagnosis algorithms, as well
as low-cost diagnosis platforms will play an ever increasing
role in the semiconductor industry.

While high-end Automatic Test Equipments (ATE) charac-
terized by high grade of automation, digital and analog test
capability, and high-speed test execution, are nowadays used
by manufacturers at the end of production, their high cost and
complex requirements in terms of setup make the introduction
of low-cost ATE systems mandatory during the preliminary
chip evaluation phase.

This paper proposes an efficient, easy-to-use, and flexible
solution for test and diagnosis of faults in SRAM circuits. Test
and diagnosis stimulus are applied through a low cost hardware
platform controlled by a FPGA soft core microprocessor. The
possibility of easily configuring the interface between the
microprocessor and the target circuit, as well as the flexibility
in terms of stimulus application and diagnostic data collection
that are actually managed by a software running on the soft

1This work was supported by the Integrated Actions Italy Spain project
IT09A142F3 ”DEFECT BASED TESTING AND DIAGNOSIS OF SRAM
MEMORIES”

core microprocessor make this system a viable solution for
preliminary chip evaluation.

The use of a modified March C- is proposed in this paper
to diagnose typical memory array fault models, and bus fault
models. Moreover, a very compact data structure to store
diagnostic data is proposed. The proposed platform has been
successfully applied in the diagnosis of a set of commercial
memory devices.

The paper is organized as follows: Section II overviews
related works in the field of memory test and diagnosis.
Section III describes the adopted diagnosis solution while
Section IV describes the main architecture of the proposed
hardware platform and presents experimental results. Finally
Section V concludes the paper.

II. RELATED WORKS

Among the different types of algorithms proposed for test-
ing SRAMs, march tests have proven to be faster, simpler and
regularly structured [2]. Several diagnosis march tests have
been proposed in the literature, e.g., [3], [4], [5], [6], [7], [8],
[9], [10]. Bergfeld et al. [5] proposed a 12N march test able
to distinguish single-cell faults from multiple-cell faults for a
N-bit memory. In [6], Niggemeyer et al. proposed a diagnosis
schema based on a combination of faults decomposition, and
output tracing of the memory outputs. In [7], Li et al. proposed
a three-phase diagnosis schema able to locate the aggressor
bit of coupling faults. In [4], a 12N march CL algorithm
for fault detection and partial diagnosis was reported. Also,
a 4N march-like algorithm is used to locate the aggressor
bits (words) of some CFs (inter-word CFs) in bit-oriented
(word-oriented) memories. However, this diagnosis schema
cannot achieve full diagnosis. In [8], a 15N march test, and
an adaptive 3N march-like test were proposed to achieve full
diagnosis on coupling faults. In [9], [10], the authors proposed
an efficient fault location and full diagnosis algorithm for
dynamic faults.

Even if the proposed solutions proved to provide high
diagnosability, due to their complexity, their integration into
low-cost test and diagnosis platforms is still challenging.

TABLE I
FAULTY DICTIONARY FOR SINGLE AND TWO-CELLS MEMORY ARRAY FAULTS: STUCK-AT-FAULTS (SAF), TRANSITION FAULTS (TF), STATE COUPLING

FAULTS (CFst), IDEMPOTENT COUPLING FAULTS (CFid), INVERSION COUPLING FAULTS (CFfin)

M0 M1 M2 M3 M4 M5 M6 M7 M8 M9

Fault type - - R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11

SAF(0) 0 0 0 1 1 1 0 0 0 1 1 1 0 0
TF(0) 0 0 0 1 1 1 0 0 0 1 1 1 0 0
SAF(1) 0 0 1 0 0 0 1 1 1 0 0 0 1 1
TF(1) v0=1 0 0 1 0 0 0 1 1 1 0 0 0 1 1
TF(1) v0=0 0 0 0 0 0 0 1 1 1 0 0 0 1 1
CFst0;0 - a < v 0 0 0 0 0 1 0 0 0 1 0 0 0 0
CFst0;0 - a > v 0 0 0 1 0 0 0 0 0 0 0 1 0 0
CFst0;1 - a < v 0 0 0 0 0 0 1 1 1 0 0 0 0 1
CFst0;1 - a > v 0 0 1 0 0 0 0 1 0 0 0 0 1 1
CFst1;0 - a < v 0 0 0 1 1 0 0 0 0 0 1 1 0 0
CFst1;0 - a > v 0 0 0 0 1 1 0 0 0 1 1 0 0 0
CFst1;1 - a < v 0 0 1 0 0 0 0 0 0 0 0 0 1 0
CFst1;1 - a > v 0 0 0 0 0 0 1 0 1 0 0 0 0 0
CFid0w1;1 - a < v 0 0 1 0 0 0 0 0 0 0 0 0 0 0
CFid0w1;0 - a < v 0 0 0 0 0 0 0 0 0 0 1 1 0 0
CFid1w0;1 - a < v 0 0 0 0 0 0 0 0 0 0 0 0 0 1
CFid1w0;0 - a < v 0 0 0 0 0 1 0 0 0 0 0 0 0 0
CFid0w1;1 - a > v 0 0 0 0 0 0 0 0 1 0 0 0 0 0
CFid0w1;0 - a > v 0 0 0 0 1 1 0 0 0 0 0 0 0 0
CFid1w0;1 - a > v 0 0 0 0 0 0 0 1 1 0 0 0 0 0
CFid1w0;0 - a > v 0 0 0 0 0 0 0 0 0 0 0 1 0 0
CFin0w1 - a < v 0 0 1 0 0 0 0 0 0 0 1 1 0 0
CFin1w0 - a < v 0 0 0 0 0 1 0 0 0 0 0 0 0 1
CFin0w1 - a > v 0 0 0 0 1 1 0 0 1 0 0 0 0 0
CFin1w0 - a > v 0 0 0 0 0 0 0 1 1 0 0 1 0 0

III. DIAGNOSIS ALGORITHM

Memory diagnosis involves fault detection, fault identifica-
tion in terms of fault models, and fault localization. March
tests [2] are widely used for fault detection and localization
due to their linear complexity with respect to the number of
memory cells.

A march test consists of a finite sequence of march elements
delimited by curly brackets. Each march element is composed
of a sequence of read (rd where d is the expected data value),
or write (wd, where d is the data value written in the cell)
operations, delimited by round brackets and applied to all
memory cells according to a predefined address order. Two
address orders are usually considered: the ascending order (*),
and the descending one (+).

If a fault f is detected by a march test containing k read
operations, the march syndrome for f is defined as a k-tuple:

Sf = (R0, R1, . . . , Rk) (1)

where Ri 2 {0, 1} is equal to 1 if the i

th read operation
of the march test detects f , and is equal to 0 otherwise. The
set of march syndromes for the detected faults represents the
fault dictionary of the test. A fault can be correctly diagnosed
if it is identified by a unique syndrome in the dictionary.

Diagnostic march tests are therefore constructed by adding
additional operations able to introduce distinct syndromes in
the fault dictionary. The Diagnosability Ratio (DR), defined
as the ratio between the number of faults that can be correctly
identified over the total number of faults in the dictionary,
measures the efficiency of the diagnosis.

In this work we consider the modified March C- algorithm
reported in Figure 1, first proposed in [7] and here extended.
While this algorithm was mainly considered for test and
diagnosis of single stuck-at and coupling faults, here its use
is extended to the diagnosis of bridging and data bus faults.

{* (w0);
M0

* (w0);
M1

* (r0, w1, r1);
M2

* (r1);
M3

* (r1, w0, r0);
M4

* (r0);
M5

+ (r0, w1, r1);
M6

* (r1);
M7

+ (r1, w0, r0);
M8

* (r0);
M9

}

Fig. 1. 18n diagnostic march test for cell-array faults, and bus faults

Table I shows the fault dictionary of the proposed march test
for typical memory cell array fault models. The test algorithm

can detect different types of coupling faults between two
different cells of the memory array, as well as transition and
stuck-at faults (see [11] for a complete definition of each fault
model). The second march element (M1) is useful to avoid
CFid and CFin caused by an unknown state (metastability)
of the memory circuit before the reset. Being all march
syndromes in Table I different except SAF(0) with TF(0)
and SAF(1) with TF(1) v0 = 1, this algorithm allows an
high diagnosability ratio on the considered fault dictionary.
Considering TF(1) two cases are possible, depending whether
the previous value of the faulty cell was 0 (v0 = 0) or 1
(v0 = 1). In the first case the fault is detected the first time by
R4 (w0 in M4 does not work correctly), while in the second
case by R0 since the cell is blocked at 1 (as in the case of a
SAF(1)).

Considering coupling faults, the location of both the aggres-
sor cell (a), and the victim cell (v), should be located. This
can be accomplished by running the additional 3n march test
proposed in [7], and reported in Figure 2.

At the end of the execution of the algorithm in Figure 1
the relative position of the aggressor cell w.r.t. the victim
cell is known, together with the address of the victim cell.
Loc(L) is selected when a < v, while Loc(H) is selected
when a > v. Let * and + denote here the application of
the memory operations from cell 0 to v � 1, and from n� 1
to v + 1, respectively, and As, V the aggressor state after
the execution of the diagnostic algorithm, and the fault free
state of the victim, respectively. Table II shows the relationship
between the value A of the aggressor used in the additional 3n

march test and the As state activating the coupling fault. The
procedure starts selecting the proper algorithm (i.e. Loc(L) or
Loc(H)) and the proper data value A. The first march element
initializes the content of the lower (higher) portion of the
memory in which the aggressor cell is present with value Ā

(wĀ), and then initializes the victim with value V (wv
V). The

second march element checks the changes in the victim cell
(rv

V) caused by writing the coupling fault activation state in
the aggressor cell (wA). The last address used in the second
march element, causing a change in the victim state, is the
location of the aggressor cell.

For example considering the CFid0w1;0 - a > v the aggres-
sor cell has an address higher than the victim one, thus the
Loc(H) is used to determine the address of the aggressor cell,
and the value A = 1 is selected.

Loc(L) : { * (wĀ);wv
V ; * (wA, r

v
V); }

or

Loc(H) : { + (wĀ); wv
V ; + (wA, r

v
V); }

Fig. 2. 3n march test for the identification of aggressor and victim cells in
a coupling fault.

TABLE II
RELATIONSHIP BETWEEN AGGRESSOR ACTIVATION STATE As AND THE

ADDITIONAL MARCH TEST VALUE A

Fault As A Fault As A

CFst 0 0 CFst 1 1
CFid " 1 CFid # 0
CFin " 1 CFin # 0

A. Bridging faults

By considering a single fault scenario, the proposed march
test can be extended to correctly diagnose bridging faults in
the cell-array. Bridging faults are caused by a short circuit
among two or more lines that manifests itself as a bidirectional
couplings between cells. Bridging faults are a common type
of faults in modern chips, and therefore represent a concern
also for memory devices.

Bringing faults can be categorized into: (i) AND Bridging
Faults (ABF), where the faulty behavior is given by the logic
AND among the faulty cells, i.e., if one of the cells is at
low level all the others are forced to a low level, (ii) OR
Bridging Faults (OBF), where the faulty behavior is given by
the logic OR among the faulty cells, i.e., if one of the cells
is at high level, all other cells are forced to the high level,
and (iii) defects where bridged nodes do not behave as ABF
or OBF. In this paper we consider the first two categories of
BFs, being these faults the most common in memory devices.

Considering 2-cells ABFs, similarly to SAF(0) faults are
detected by r1 operations, since it is not possible to force 1 in
a faulty cell with the second faulty cell initialized to 0. 2-cells
ABFs can be therefore identified by two concurrent SAF(0)
detected in the faulty cells. In a similar way, 2-cells OBFs are
detected similarly to a SAF(1) by r0 operations, since it is not
possible to write 0 in a faulty cell when the other faulty cell
is initialized to 1. 2-cells OBFs can be therefore identified by
two concurrent SAF(1) detected in the involved cells. There is
only one exception. If the previous value of the two cells is 0,
the R0 read operation on the first faulty cell works correctly
and the fault is detected only by the remaining operations,
similarly to a TF(1).

Table III summaries the fault dictionary for bridging faults.

B. Data and address bus faults

By considering a single fault scenario, the proposed march
test can also be applied to diagnose address bus faults (AF),
and data bus faults (I/OF). Faults on the address bus and on
the data bus lead to faulty behaviors involving several cells.

For example, a SAF(0) on the data bus affects all write and
read operations on the memory. In order to distinguish from
bridging faults (see Section III-A) it is enough to verify if more
than two consecutive cells manifest the fault. In particular,
when addressing the memory in ascending order, it is enough
to verify if the first three cells manifest the fault detected by
R1, R2, R3, and R8, and, on the other hand, when addressing
the memory in descending order, it is enough to verify if the

TABLE III
FAULT DICTIONARY FOR BRIDGING FAULTS (TWO FAULTS PER TEST)

M0 M1 M2 M3 M4 M5 M6 M7 M8 M9

Fault type - - R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11

ABF 0 0 0 1 1 1 0 0 0 1 1 1 0 0
OBF 0 0 0 (1) 0 0 0 1 1 1 0 0 0 1 1

last three cells manifest the same fault detected by R7, and
R9. In case of SAF (1) on the data bus the situation is similar,
but faults are detected by R0, R4, R5, and R11 for the first
three cells and R6, R10 for the last three cells.

To diagnose a SAF on the address bus we have to identify
when faults occur. For example, in a 4-bit memory with
a SAF(0) on the second bit of the address, by addressing
the memory in ascending order, the first fault occurs with
address 0010 (cell 0000 is erroneously addressed), and the
fault can be detected by R0 and R3. In a similar way, when
addressing the memory in descending order, the fault first
arises with address 1111 (cell 1101 is erroneously addressed),
and the fault is detected by R6 and R9. Unfortunately, it is not
possible to distinguish between SAF(0), and SAF(1). Similar
considerations can be applied to diagnose ABFs and OBFs
both on the address and on the data bus. Table IV summarizes
the fault dictionary for data and address bus faults.

IV. TEST PLATFORM ARCHITECTURE AND EXPERIMENTAL
RESULTS

The proposed test architecture consists of an hardware
platform based on a low-cost FPGA board. In particular the
board used in our experiments is a XilinxTM ML-403.

The FPGA, connected to a slave board used to accommodate
the SRAM circuit under test, is used to execute the diagnostic
algorithm proposed in Section III and to collect test informa-
tion. The board is accessible through different communication
channels including a 10/100 ethernet link allowing remote
testing sessions and an USB channel used to program the
FPGA for the specific test, and to collect diagnosis information
at the end of the test execution. The availability of these
communication channels provides a simple and fast facility
to manage all steps of the test and diagnosis process.

The connection between the main testing board and the
slave board is obtained using standard expansion connectors.
The use of a FPGA-based board allows an easy customization
according to target the DUT (Device Under Test) saving time
and money [12].

A Microblaze TM microprocessor mapped on the FPGA has
been used to implement all diagnosis processes. The Microb-
laze is a soft-core microprocessor based on a 32-bit Harvard
RISC architecture. It can access both internal FPGA resources
and external blocks. Having all test and diagnosis activities
implemented as software routines allows easy customization
to the target DUT and to the target set of experiments.

A. Test Slave Board

The slave board has been developed to support different
types of SRAM circuits. In particular, in our prototype, we
adopted a dual-in-line SRAM socket. The socket is connected
to the main testing board through a double communication
channel. One of the two channels is directly connected to the
expansion port, while the other one includes a bridge (e.g.,
resistors to simulate faults on the address or data buses) to
connect the socket with the main board. To reduce the level
of noise captured by the channels there is a pull-up resistor for
each single channel line, and a decoupling capacitor between
the voltage supply and the ground. Figure 3 depicts the slave
board prototype used during the experiments. The memory
power supply is provided through an external variable source
thus allowing to perform diagnosis under different supply
conditions.

!
"#! $%&'&'()*!)%&+*,'!

!!

!
! "-

!

!"#"$"% &'()*%+,--./0%1.)/2!

!

"#$! %&'()! *+,-$./! 0/$*! %,+! /#$! #(+12(+$! 030/$4! &0! /,! .+$(/$! (! 05**,+/! 6,(+1!

+$0*$./&'7!0*$.&%&.(/&,'0!('1!2&/#,5/!*+,6)$40!/#(/!2$!0(28!"#$!0,)5/&,'!&0!/#(/!/,!

1$0&7'!(!6,(+1!2&/#!(!.$'/+()!0,.9$/:!(0!/#$!%&+0/!*+,-$./:!/,!*5/!/#$!4$4,+3:!(!*5));

5*! +$0&0/('.$! ,%! <8=>?! ,'! $@$+3! *&'! .,''$./&,'! /,! 4,@$! &'*5/A,5/*5/! @,)/(7$!

)$@$)0:! (! 1$.,5*)&'7! .(*(.&/,+! 0,)1$+$1! 5'1$+! /#$! 6,(+1! /,! %&)/$+! ',&0$:! (!

.,445'&.(/&,'! 05**,+/$1! 63! %+,'/;4,5'/$1! B&7&)$'/! $C*('0&,'! .,''$./,+0! DEF! /,!

+$15.$! ',&0$! .(*/5+$1! 63! /#$!)&'$0! .,''$./&,'0! ('1! *+,@&1$! (! .,445'&.(/&,'! 63!

%)$C&6)$!%)(/!.(6)$:!45.#!4,+$!',&0$!+$0&0/('/!+$0*$./&'7!0#&$)1$1!.(6)$08!

"#&0!6,(+1!/5+'0!,5/!/,!6$!*$+%$./!%,+!,5+!$C*$+&4$'/(/&,':!6$.(50$!&/!*+,@&1$0!

.,445'&.(/&,'!6$/2$$'! /#$!$C*('0&,'!*,+/0!('1! /#$!4$4,+3!*&'0!4,5'/$1!,'! /#$!

0,.9$/!2&/#,5/!('3!',&0$8!!

!

!

G&75+$!<8HIJ!G&'()!05**,+/!6,(+1!

Fig. 3. Slave board for supporting DIP socket based SRAM circuits

B. Diagnosis software implementation

The full test introduced in Section III has been coded
into a C program running on the Microblaze processor, and
implemented resorting to four main test functions:

• WriteByteOnMemory(address,data): write a byte to the
specified address;

• WriteBitOnMemory(address,bit,data): write a single bit
value into a specific position in the memory byte specified
by address;

• ReadByteOnMemory(address): read a byte from the spec-
ified address;

• ReadBitOnMemory(address,bit): read a single bit value
from a specific position in the memory byte specified by
address.

The two functions WriteBitOnMemory and ReadBitOn-
Memory allow us to avoid the use of data background se-

TABLE IV
DATA AND ADDRESS BUS FAULT DICTIONARY (MORE THAN TWO FAULTS PER TEST)

M0 M1 M2 M3 M4 M5 M6 M7 M8 M9

Fault type - - R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11

SAF(0)addr 0 0 1 0 0 1 0 0 1 0 0 1 0 0
SAF(1)addr 0 0 1 0 0 1 0 0 1 0 0 1 0 0
ABFaddr 0 0 1 0 0 1 0 0 1 0 0 1 0 0
OBFaddr 0 0 1 0 0 1 0 0 1 0 0 1 0 0
SAF(0)data 0 0 0 1 1 1 0 0 0 1 1 1 0 0
SAF(1)data 0 0 1 0 0 0 1 1 1 0 0 0 1 1
ABFdata 0 0 0 1 1 1 0 0 0 1 1 1 0 0
OBFdata 0 0 1 0 0 0 1 1 1 0 0 0 1 1

quences, useful to detect intra-word coupling faults in word
oriented memories [13].

The execution of the diagnostic algorithm involves collect-
ing and storing data to be later analyzed. This represents a
main issue due to the limited amount of memory available on
the board. The proposed solution is to utilize an optimized data
structure composed of a six elements vector, defined according
to the C declaration in Figure 4.

struct Node

{

int add; // faulty cell address

int bit; // faulty cell bit

int signature; // fault signature

};

Fig. 4. Diagnosis data structure

Each node contains three fields used to store the address of
the faulty cell, the position of the faulty bit within the memory
word, and the march syndrome of the fault. The vector is
divided in two groups in order to reserve space both for the
first and for the second part of the test algorithm: the first
three cells are used to store the diagnostic information when
an ascending address order is used, while the other three cells
are reserved for the part of the diagnostic algorithm using
the descending addressing order. The signature field uses an
integer value to efficiently code the syndrome of the fault.
The i

th bit of this number is set to 1 if the i

th read operation
detects the fault.

The algorithm used to store the information into the vector
during the test execution is reported in Alg. 1. It is invoked
every time, during the test execution, a fault is detected by
a read operation. Four parameters (AO, full, position, and
exit) are considered to identify the correct vector element
where information has to be stored. The AO flag contains the
considered address order, the full flag is set if the first half of
the vector is full, position stores the first free entry in which
the information must be written, and exit is set if there is a
free entry. The algorithm checks for an existing entry in the
first three positions of the vector for the same faulty address
and faulty bit if the ascending address order is used or the
descending one is used but the full flag is disabled (lines 1-2).
If a valid position exists, i.e., variable entry contains a valid

position in the vector, the signature field is updated. Otherwise,
if an empty position is available, the information is stored
(lines 3-7). Similarly, if the descending address order is used
and the full flag is set, the same search is performed among
the last three entries of the vector (lines 8-15).

Algorithm 1 Algorithm for storing diagnosis information
1: if (AO = *) OR ((AO = +) AND (full = 0)) then

2: entry check first 3 positions(fault add, fault bit);
3: if ((entry < 0) AND (exit = 1)) then

4: store(position);
5: else

6: update(entry);
7: end if

8: else

9: entry check last 3 positions(fault add, fault bit);
10: if ((entry < 0) AND (exit = 1)) then

11: store(position);
12: else

13: update(entry);
14: end if

15: end if

The proposed data structure and allocation algorithm allow
us to use a single vector location for 23 different types of
memory array faults, two locations in case of BFs between
two cells of the memory array, and more than three cells in
case of SAFs or BFs into the address or data buses. This
allows to perform diagnosis, using very limited resources and
therefore low-cost hardware.

C. Experimental Results

In order to validate the proposed architecture, experiments
were performed for a set of different SRAM circuits character-
ized by different size and internal organization of the memory
array. The set is composed of 4 different SRAM circuits from
different manufacturers:

• Cypress CY7C128A-45PC: 2048 words of 8-bit organized
as an internal array of 128⇥ 16⇥ 8 cells;

• Cypress CY7C185-20PCX: 8192 words of 8-bit organized
as an internal array of 256⇥ 32⇥ 8 cells;

• Nec µPD43256BCZ-70LL: a CMOS SRAM circuit with
32768 words of 8-bit;

• Nec µPD431000ACZ-70LL: a CMOS SRAM circuit with
131072 words of 8-bit.

Each circuit was connected to the system through the slave
board, using a supply voltage equal to 5.00V. The FPGA has
been programmed to use 5 GPIO channels to access address,
control and data buses of the external SRAM circuit.

During the experiments all faults detectable by the modified
march test C- have been injected both via hardware injection
(address and data bus faults), and software injection (mem-
ory array faults). In this case, the faulty behavior has been
simulated forcing a wrong result during the read operations
according to the specific fault type. All faults have been cor-
rectly identified and diagnosed according to the specification
of the test algorithm.

In addition, using the same board, we performed a set
of experiments to test the memory behavior with decreased
voltage supply simulating stand-by conditions minimizing
power consumption. In fact, when the memory is not used,
it is not necessary to supply it with the nominal voltage. A
minimum voltage level is enough to retain the stored data.

By simply adding additional software functionalities the
proposed platform was efficiently exploited to identify suitable
voltage levels for stand-by conditions. Figure 5 summarizes the
performed experiments. The test is divided into three phases:
(i) using nominal voltage conditions a predefined pattern is
written into the memory (writing phase), (ii) the memory is
then forced into a stand-by phase where the voltage supply
decreases at a minimum level, and finally (iii) after resuming
to nominal voltage supply level the content of the memory is
checked (reading phase) to understand if data were lost during
the stand-by phase.

Fig. 5. Test with supply voltage variations

By running the proposed procedure on the four memory
models with different voltage conditions, we have been able
to identify the following minimum stand-by supply voltage for
the four considered memory models:

• Cypress CY7C128A-45PC: 1.30V;
• Cypress CY7C185-20PCX: 0.82V;
• Nec µPD43256BCZ-70LL: 0.53V;

• Nec µPD431000ACZ-70LL: 0.52V.

V. CONCLUSION

The continuous improving of the manufacturing process
poses several threats in the quality of integrated circuits, and
in particular of memory devices. In this paper a low-cost and
flexible architecture for SRAMs testing and diagnosis is de-
scribed. The architecture allows to perform test and diagnosis
of physical memory circuits storing diagnosis information in
terms of location and fault type. The architecture is based on
a reconfigurable hardware system which presents itself as an
efficient and flexible low cost architecture if compared with
standard ATE solutions. The flexibility of the platform has
been efficient exploited to test and diagnose different models
of commercial SRAMs, and to identify stand-by conditions
to allow reducing power consumption. Moreover, being the
full diagnosis process based on a software running on an
embedded processor the same approach can be reused when-
ever memories are embedded in complex systems including
a microprocessor, thus implementing Software-Based Self-
Diagnosis solutions.

REFERENCES

[1] International technology roadmap for semiconductors. [Online].
Available: http://www.itrs.net/ [Last Access: September 1, 2009]

[2] A. J. van de Goor, Testing Semiconductor Memories: theory and
practice. John Wiley and Sons, Inc, September 1991.

[3] G. Harutunyan, V. Vardanian, and E. Zorian, “A march-based fault
location algorithm with partial and full diagnosis for all simple static
faults in random access memories,” in IEEE Design and Diagnostics of
Electronic Circuits and Systems, 2007. DDECS ’07, 2007, pp. 1–4.

[4] V. Vardanian and Y. Zorian, “A march-based fault location algorithm
for static random access memories,” in Memory Technology, Design
and Testing, 2002. (MTDT 2002). Proceedings of the 2002 IEEE
International Workshop on, 2002, pp. 62–67.

[5] T. Bergfeld, D. Niggemeyer, and E. Rudnick, “Diagnostic testing of
embedded memories using bist,” in Design, Automation and Test in
Europe Conference and Exhibition 2000. Proceedings, 2000, pp. 305–
309.

[6] D. Niggemeyer and E. Rudnick, “Automatic generation of diagnostic
march tests,” in VLSI Test Symposium, 19th IEEE Proceedings on. VTS
2001, 2001, pp. 299–304.

[7] J.-F. Li, K.-L. Cheng, C.-T. Huang, and C.-W. Wu, “March-based
ram diagnosis algorithms for stuck-at and coupling faults,” in Test
Conference, 2001. Proceedings. International, 2001, pp. 758–767.

[8] J.-F. Li and C.-D. Huang, “An efficient diagnosis scheme for random
access memories,” in Test Symposium, 2004. 13th Asian, 2004, pp. 277–
282.

[9] G. Harutunyan, V. Vardanian, and Y. Zorian, “An efficient march-based
three-phase fault location and full diagnosis algorithm for realistic two-
operation dynamic faults in random access memories,” in VLSI Test
Symposium, 2008. VTS 2008. 26th IEEE, 27 2008-May 1 2008, pp.
95–100.

[10] A. Ney, A. Bosio, L. Dilillo, P. Girard, S. Pravossoudovitch, A. Virazel,
and M. Bastian, “A history-based diagnosis technique for static and
dynamic faults in srams,” in IEEE International Test Conference, 2008.
ITC 2008, Oct. 2008, pp. 1–10.

[11] A. J. van de Goor and Z. Al-Ars, “Functional memory faults: A formal
notation and a taxonomy,” in Proc. 18th IEEE VLSI Test Symposium
(VTS’00), Montreal, Canada, Apr.30–May3, 2000, pp. 281–289.

[12] C. Giaconia, A. Di Stefano, and G. Capponi, “Reconfigurable digital
instrumentation based on fpga,” in 3rd IEEE International Workshop on
System-on-Chip for Real-Time Applications, 2003, pp. 120–122.

[13] A. van de Goor and I. Tlili, “A systematic method for modifying march
tests for bit-oriented memories into tests for word-oriented memories,”
IEEE Trans. Comput., vol. 52, no. 10, pp. 1320–1331, 2003.

