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Abstract

In this paper we give a geometric proof of the Karpelevich’s theorem that asserts that a
semisimple Lie subgroup of isometries, of a symmetric space of non compact type, has a totally
geodesic orbit. In fact, this equivalent to a well-known result of Mostow about exixtence of
compatible Cartan decompositions.

1. Introduction.

In this paper we address the problem of giving a geometric proof of the following theorem
of Karpelevich.

Theorem 1.1. (Karpelevich [7]) Let M be a Riemannian symmetric space of non positive
curvature without flat factor. Then any connected and semisimple subgroup G ⊂ Iso(M) has
a totally geodesic orbit G.p ⊂M .

It is well-known that Karpelevich’s theorem is equivalent to the following algebraic theorem.

Theorem 1.2. (Mostow [8, Theorem 6]) Let g′ be a real semisimple Lie algebra of non
compact type and let g ⊂ g′ be a semisimple Lie subalgebra. Let g = k⊕ p be a Cartan
decomposition for g. Then there exists a Cartan decomposition g′ = k′ ⊕ p′ for g′ such that
k ⊂ k′ and p ⊂ p′.

The proof of the above theorems is very algebraic in nature and uses delicate arguments
related to automorphisms of semisimple Lie algebras.

For the real hyperbolic spaces, i.e. when g′ = so(n, 1), there are two geometric proofs of
Karpelevich’s theorem [4], [2]. The proof in [4] is based on the study of minimal orbits of
isometries subgroups, i.e. orbits with zero mean curvature. The approach in [2] is based on
hyperbolic dynamics. It is interesting to note that both proofs are strongly based on the fact
that the boundary at infinity of real hyperbolic spaces has a simple structure.
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The only non-trivial algebraic tool that we will use is the existence of a Cartan decomposition
of a non compact semisimple Lie algebra. But this can also be proved geometrically as was
explained by S.K. Donaldson in [5].

Here is a brief explanation of our proof of Theorem 1.1. We first show that a simple
subgroup G ⊂ Iso(M) has a minimal orbit G.p ⊂M . Then, by using a standard totally geodesic
embedding M ↪→ P, where P = SL(n,R)/SO(n), we will show that G.p is, actually, a totally
geodesic submanifold of M .

2. Preliminaries.

The results in this section are well known and are included to orient the non-specialist reader.

The equivalence between Theorems 1.1 and 1.2 is a consequence of the following Elie Cartan’s
famous and remarkable theorem.

Theorem 2.1. (Elie Cartan) Let M be a Riemannian symmetric space of non positive
curvature without flat factor. Then the Lie group Iso(M) is semisimple of non compact type.
Conversely, if g is a semisimple Lie algebra of non compact type then there exist a Riemannian
symmetric space M of non positive curvature without flat factor such that g is the Lie algebra
of Iso(M).

The difficult part of the proof of the above theorem is the second part. Namely, the
construction of the Cartan decomposition g = k⊕ p, where k is maximal compact subalgebra
of g and the Killing form B of g is positive definite on p. The standard and well-known proof
of the existence of a Cartan decomposition is long and via the classification theory of complex
semisimple Lie algebras, i.e. the existence of a real compact form (see e.g. [6]). There is also a
direct and geometric proof of the existence of a Cartan decomposition [5].

On the other hand, when g = Lie(Iso(M)), where M is a Riemannian symmetric space of
non positive curvature without flat factor, a Cartan decomposition of g can be constructed
geometrically. Namely, g = Lie(Iso(M)) = k⊕ p where k is the Lie algebra of the isotropy group
Kp ⊂ Iso(M) and p := {X ∈ Lie(Iso(M)) : (∇X)p = 0}.

It is well-known that the Riemannian symmetric spaces P = SL(n,R)/SO(n) are the
universal Riemannian symmetric space of non positive curvature. Namely, any Riemannian
symmetric space of non compact type M = G/K can be totally geodesically embedded in
some P (up to rescaling the metric in the irreducible De Rham factors). A proof of this fact
follows from the following well-known result (c.f. Theorem 1 in [5]).

Proposition 2.2. Let g ⊂ sl(n,R) be a semisimple Lie subalgebra and let g = k⊕ p be
a Cartan decomposition. Then there exists a Cartan decomposition sl(n,R) = A⊕ S such
that k ⊂ A and p ⊂ S. Thus, if G ⊂ SL(n) is semisimple, G has a totally geodesic orbit in
P = SL(n)/SO(n). Indeed, any Riemannian symmetric space of non positive curvature M ,
without flat factor, can be totally geodesically embedded in some P = SL(n)/SO(n).

Proof. Notice that any Cartan decomposition of sl(n,R) is given by the anti-symmetric A
and symmetric matrices S w.r.t. a positive definite inner product on Rn. Since g∗ := k⊕ ip is
a compact Lie subalgebra of sl(n,C), there exists a positive definite Hermitian form ( | ) of Cn
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invariant by g∗. By defining 〈 , 〉 := Real( | ) it follows that k ⊂ A and p ⊂ S. �

Let S∞(M) be the sphere or boundary at infinity of M , i.e. S∞(M) is the set of equivalence
classes of asymptotic geodesics rays (see [5] or [3, Chapter II.8] for details).

Here is another corollary of the existence of the totally geodesic embedding M ↪→ P.

Corollary 2.3. Let M be a Riemannian symmetric space of non positive curvature
without flat factor. Then a connected and semisimple Lie subgroup G ⊂ Iso(M) of non compact
type has no fixed points in S∞(M).
This corollary is false see Corrigendum in http://arxiv.org/abs/1104.0892

We include the following proposition.

Proposition 2.4. Let M be a Riemannian symmetric space of non positive curvature
without flat factor. Let S = RN ×M be a symmetric space of non positive curvature with flat
factor RN . If G ⊂ Iso(S) is a connected non compact simple Lie group then G ⊂ Iso(M).

Proof. Let g be the Lie algebra of G. Then the projection π : g 7→ Lie(Iso(RN )) is injective
or trivial i.e. π ≡ 0. If π is injective then a further composition with the projection to so(N)
gives that g must carry a bi-invariant metric. So, g can not be simple and non compact. �

Let G be a semisimple Lie group and let g = k⊕ p be a Cartan decomposition. A subspace
T ⊂ p is called a Lie triple system if [T, [T, T ]] ⊂ T . It is well-known that there is a 1-1
correspondence between Lie triple systems T of p and totally geodesic submanifolds through
the base point [K] ∈ G/K (see [6]).

3. Minimal and totally geodesic orbits.

We will need the following proposition (see Lemma 3.1. in [4] or Proposition 5.5. in [1]).

Proposition 3.1. Let M be a Riemannian symmetric space of non positive curvature
without flat factor and let G ⊂ Iso(M) be a connected group of isometries. Assume that G
has a totally geodesic orbit G.p. Then any other minimal orbit G.q is also a totally geodesic
submanifold of M . Moreover, if G is semisimple then the union of totally geodesic G-orbits TG
is a totally geodesic submanifold of M which is a Riemannian product TG = (G.p)×A where
A is a totally geodesic submanifold of M .

Proof. Let G.p be the totally geodesic orbit and let G.q 6= {q} be another orbit. Let γ be a
geodesic in M that minimizes the distance between q and G.p (such geodesic do exists since
totally geodesic submanifolds of M are closed and embedded). Eventually by changing the
base point p by another in the orbit we may assume that γ(0) = p and γ(1) = q. A simple
computation using the Killing equation shows that γ̇(t) is perpendicular to Tγ(t)(G.γ(t)), for
all t.

Let X be a Killing field in the Lie algebra of G such that X.q 6= 0 and let φXs be the one-
parameter group of isometries generated by X. Define h : I × R→M by hs(t) := φXs .γ(t).
Note that X.hs(t) = ∂h

∂s and that, for a fixed s, hs(t) is a geodesic.

http://arxiv.org/abs/1104.0892
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Let Aγ̇(t) be the shape operator, in the direction of γ̇(t) of the orbit G.γ(t). Define
f(t) := −〈Aγ̇(t)(X.γ(t)), X.γ(t)〉 = 〈 D∂s

∂h
∂t , X.hs(t)〉 |s=0. Now a computation as in Lemma

3.1. in [4] or Proposition 5.5. in [1] implies that d
dtf(t) ≥ 0. Since f(0) = 0, due to the

fact that G.p is totally geodesic, we obtain that f(1) = −〈Aγ̇(1)(X.q), X.q〉 ≥ 0. Hence
Aγ̇(1) is negative semidefinite. Since G.q is minimal, trace(Aγ̇(1)) = 0, we get that f(t) ≡ 0.
Thus, 〈R(γ̇(t), X.γ(t))γ̇(t), X.γ(t)〉 ≡ 0 and ∇γ̇(t)(X.γ(t)) ≡ 0. Notice that the tangent spaces
Tγ(t)G · γ(t) are parallel along γ(t) in M . So the normal spaces νγ(t)G · γ(t) are also parallel
along γ(t) in M . Since M is a symmetric space of non positive curvature the condition
〈R(γ̇(t), X.γ(t))γ̇(t), X.γ(t)〉 ≡ 0 implies R(γ̇(t), X.γ(t))(·) ≡ 0. Let η(t) ∈ νγ(t)G.γ(t) be a
parallel vector along γ(t) and let X,Y two Killing vector fields in the Lie algebra of
G. Then d

dt 〈∇XY, η(t)〉 = 〈∇γ̇(t)∇XY, η(t)〉 = 〈∇X∇γ̇(t)Y, η(t)〉+ 〈R(γ̇(t), X.γ(t))(Y ), η(t)〉 ≡
0. Since 〈∇XY, η(0)〉 = 0 we get that the G-orbits G.γ(t) are totally geodesic submanifolds of
M . This show the first part.

For the second part let K ′ := Iso(M)p be the isotropy subgroup at p ∈M and let k′ its Lie
algebra. Let p′ ⊂ Lie(Iso(M)) be such that X ∈ p′ iff (∇X)p = 0. Thus, Lie(Iso(M)) = k′ ⊕ p′

is a Cartan decomposition of Lie(Iso(M)). Let g = k⊕ p be a Cartan decomposition of the
Lie algebra g = Lie(G). Since G.p is totally geodesic in M we get that k ⊂ k′ and p ⊂ p′. Let
α := {Y ∈ p′ : Y ⊥ p and [Y, p] = 0} which is a Lie triple system of p′. Moreover, n := p⊕ α is
also a Lie triple system of p′. So, N := expp(n) = expp(p)× expp(α) is a G-invariant totally
geodesic submanifold of M . Notice that (by construction) N ⊂ TG.

Let G.q any other totally geodesic G-orbit. From the computation in the first part we get
R(γ̇(t), X.γ(t))(·) ≡ 0 which implies γ′(0) ∈ α. This shows TG ⊂ N . Then N = TG = (G.p)×A
where A := expp(α) is a totally geodesic submanifold of M associated to the Lie triple system
α. �

4. Karpelevich’s Theorem for G a simple Lie group.

Here is the first step to prove Theorem 1.1.

Theorem 4.1. Let M be a Riemannian symmetric space of non positive curvature without
flat factor. Then any connected, simple and non compact Lie subgroup G ⊂ Iso(M) has a
minimal orbit G.p ⊂M .

Proof. Let g = k⊕ p be a Cartan decomposition of the Lie algebra g := Lie(G) and let
K ⊂ G be the maximal compact subgroup associated to k. Let Σ be the set of fixed points
of K. Notice that Σ 6= ∅ by Cartan’s fixed point theorem. Since G is simple all G-orbits
G.x through points in x ∈ Σ are homothetic i.e. the Riemannian metric induced on G.x
and G.y differ from a constant multiple for x, y ∈ Σ. Let x0 ∈ Σ be a point in Σ and let
g0 be the Riemannian metric on G.x0 = G/K induced by the Riemannian metric g = 〈, 〉 of
M . So if y ∈ Σ the Riemannian metric gy on G.y is given by g = λ(y) · g0. Notice that if
X ∈ p is unitary at x0 (i.e. g0(X(x0), X(x0)) = 1) then λ(y) = g(X(y), X(y)) = ‖X(y)‖2. We
claim that λ(y) has a minimum in Σ. Indeed, if yn →∞ ∈ S∞(Σ) ⊂ S∞(M) (yn ∈ Σ) and
λ(yn) ≤ const then the monoparametric Lie group ψXt ⊂ G associated to any unitary X ∈ p
at x0 ∈ Σ must fix ∞ ∈ S∞(Σ) ⊂ S∞(M). Thus, since X ∈ p is arbitrary and p generate g we
get that ∞ ∈ S∞(Σ) ⊂ S∞(M) is a fixed point of G. This contradicts Corollary 2.3. So there
exist y0 ∈ Σ such that λ has a minimum. Notice that the volume element V oly of an orbit G.y
is given by λ

n
2 V olx0 , where n = dim(G/K). Now a simple computation shows that the mean

curvature vector of G.y0 vanish and we are done. �
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Now we are ready to prove Karpelevich’s Theorem 1.1 for G a simple non compact Lie
subgroup of Iso(M).

Theorem 4.2. Let M be a Riemannian symmetric space of non positive curvature. Then
any connected, simple and non compact Lie subgroup G ⊂ Iso(M) has a totally geodesic orbit
G.p ⊂M .

Proof. According to Proposition 2.4 we can assume thatM has no flat factor. Let i : (M, g) ↪→
(P, h) be a totally geodesic embedding as in Proposition 2.2. Notice that the pull-back metric
i∗h can eventually differ (up to constant factors) from g on each irreducible De Rham factor
of M . Anyway, totally geodesic submanifolds of (M, g) and (M, i∗h) are the same since totally
geodesic submanifolds are defined in terms of the same Levi-Civita connection ∇g = ∇i∗h.
Notice that G also acts by isometries on (M, i∗h). Indeed, G can be also regarded as a subgroup
of Iso(P). Now Proposition 2.2 implies that G has a totally geodesic orbit G.p in P. The above
proposition shows that G has a minimal orbit G.y0 in (M, i∗h). Since the embedding M ↪→ P
is totally geodesic we get that the G-orbit G.y0 is also a minimal submanifold of P. Then
Proposition 3.1 implies that G.y0 is a totally geodesic submanifold of P. Thus, G.y0 is a
totally geodesic submanifold of (M, i∗h) and so G.y0 is also a totally geodesic submanifold of
(M, g). �

5. Karpelevich’s Theorem.

Let G ⊂ Iso(M) be a semisimple, connected Lie group. Then the Lie algebra g = Lie(G) =
g1 ⊕ g2 is a sum of a simple Lie algebra g1 and a semisimple Lie algebra g2. Due to Cartan’s
fixed point theorem we can assume that each simple factor of g is non compact. We are going to
make induction on the number of simple factors of the semisimple Lie algebra g. Let G1 (resp.
G2) be the simple Lie group associated to g1 (resp. the semisimple Lie subgroup associated
to g2). Let TG1 ⊂M be the union of the totally geodesic orbits of the simple subgroup G1

acting on M . Notice that Theorem 4.2 implies that TG1 6= ∅ and Proposition 3.1 implies that
TG1 = (G1 · p)× A is a totally geodesic submanifold of M , where G1 · p is a totally geodesic
G1-orbit. Notice that G2 acts on TG1 = (G1 · p)× A. Then g2 (or eventually a quotient g2/ ∼
of it) acts on A. Since A is symmetric space of non positive curvature we get (by induction)
that the semisimple subgroup G2 (or eventually a quotient G2/ ∼ of it) has a totally geodesic
orbit S ⊂ A. Then (G1 · p)× S is a totally geodesic orbit of G and this finish our proof of
Karpelevich’s Theorem 1.1.
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