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ABSTRACT 
 
Ordinal measures are frequently encountered in travel behavior research. This paper presents a 

new method for combining them when a hierarchical structure of the data can be presumed. This 

method is applied to study the subjective assessment of the amount of travel by different 

transportation modes among a group of French clerical workers, along with the desire to 

increase or decrease the use of such modes. Some advantages of this approach over traditional 

data reduction technique such as factor analysis when applied to ordinal data are then 

illustrated. In this study, combining evidence from several variables sheds light on the observed 

moderately negative relationship between the personal assessment of the amount of travel and 

the desire to increase or decrease it, thus integrating previous partial (univariate) results. We 

find a latent demand for travel, thus contributing to clarify the behavioral mechanisms behind the 

induced traffic phenomenon. Categorizing the above relationship by transportation mode shows 

a desire for a less environmental-friendly mix of modes (i.e. a greater desire to use heavy 

motorized modes and a lower desire to use two-wheeled modes), whenever the respondents do 

not feel to travel extensively. This result, combined with previous theoretical investigations 

concerning the determinants of the desire to alter trips consumption levels, shows the 

importance of making people aware of how much they travel. 

 

KEYWORDS 
 

Subjective mobility, Travel desires, Ordinal variables, Factor analysis, Multidimensional scaling 
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1 INTRODUCTION 

Transportation engineering and planning processes traditionally make use of large amounts of 

information gathered through either mobility surveys (trip length and duration, cost etc.) or field 

measurements campaigns (traffic counts, odometer readings, air pollutants monitoring, etc.). 

These data essentially quantify one or more physical features of the transportation system, and 

are then used to feed a wide range of models postulated to support the decision making 

processes of public authorities. However, it now is widely acknowledged that mobility has deep 

roots also in personal attitudes, preferences and intentions, which are, thus, strong determinants 

of the observable behaviors and choices. Affective factors play in fact crucial role in the personal 

preferences for the alternatives (Steg et al., 2001; Anable and Gatersleben, 2005) and in 

subsequent transportation choices. A deeper study of the evaluation processes at the individual 

level clearly is one of the most promising ways to improve our understanding of the mobility 

phenomenon and, thus, to set up planning tools that can more effectively pursue a stated 

objective. 

Intensive research has been performed to identify some self-related factors that seem to be 

most predictive of travel behavior, such as individual differentiations or market segments (TRB, 

1977; Dobson and Tischer, 1978; Tardiff, 1979; Gensch and Torres, 1980; Salomon and 

Mokhtarian, 1998; Outwater et al., 2003; Anable, 2005) and habits (see for example Verplanken 

et al., 1994; Verplanken et al., 1997; Aarts and Dijksterhuis, 2000; Gärling et al., 2001; Garvill et. 

al., 2003; Bamberg et al., 2003; Thøgersen, 2006). However there are other factors equally 

worth considering. In particular, individual representation and subjective assessment of personal 

mobility are important in determining individual choices and ultimately the characteristics of the 

demand for transportation. On the other hand, investigating the personal desire to change the 

amount of travel of a given kind can be of great help for example in projecting transportation 

trends. Mokhtarian and Salomon (2001) study these two concepts by introducing the factors 

Subjective Mobility (SM) and Relative Desired Mobility (RDM), whose main determinants are 

investigated in more details by Collantes and Mokhtarian (2007) and Choo et al. (2005). 

Integrating SM and RDM is the main objective of the present paper. Understanding the 

relationship between SM and RDM can be in fact very important to better know the self-related 

mechanisms that underlie the travel behaviors and choices we observe. For example, it would 

be interesting to understand if being “fed up” with a particular transportation mode can induce a 

desire to decrease the total amount of transportation by decreasing the use of that particular 
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mode, or to maintain overall transportation levels by shifting to alternative modes. That the SM 

and RDM concepts are related is something intuitive, but analytically determining the functional 

relationship between these factors is not trivial, since they are highly sensitive to the particular 

mobility segment (i.e. the group of travelers) under consideration, but also to the way the 

mobility concept is specified, for example in terms of transportation modes. Some preliminary 

results regarding the SM-RDM relationship are already available in the published literature 

concerning these two main sources of variability. Diana and Mokhtarian (2007, 2009) study the 

effect of individual differences and define different user segments based on their objective, 

subjective, and relative desired travel amounts through different transport means. On the other 

hand, Choo et al. (2005) found empirical evidence of a negative relationship between RDM and 

SM within many categories of trips. It is however difficult to draw more general conclusions from 

these findings. 

The dependency of the SM-RDM relationship on the experimental context is perhaps the main 

obstacle to generalizing the available partial results, i.e., to draw a more systematic picture. SM 

and RDM are in fact customarily measured through a survey asking something like “How much 

do you think you travel?” and “Would you like to travel more, the same or less?” to assess SM 

and RDM respectively (see the pioneering study of Mokhtarian and Salomon, 2001). However 

those questions are not to be directly posed in such general terms, since they could be rather 

baffling for the respondent. To have reliable responses it is instead necessary to formulate 

questions with reference to a more specific context, for example by categorizing them by 

transportation mode or purpose, hence asking the same questions for each category of trip we 

want to study. This fragmentation of the observations explains the tendency of having partially 

valid and context-specific results concerning the SM-RDM relationship. While investigating such 

relationship in specific contexts is something useful to formulate a theory that can explain the 

empirical observations, being able to aggregate results can be quite important, both from a 

practical and from a policy viewpoint. For instance, it could be important to assess the global 

desire to use transit and non motorized means, so that RDM across public transportation 

categories, bikes and feet needs to be accounted for. It could also be valuable to understand if 

making people more aware of the amount of their travel is overall limiting their desire to travel 

more, irrespective of the transport mean or trip category.  

The precondition to study the SM-RDM relationships in such general terms is then to find a 

method that effectively combines several related, but distinct responses. This problem is 

exacerbated by the difficulty to express SM and RDM through metric (interval-scaled) variables, 
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since they are based on ordinal rating scales. For addressing the SM-RDM relationship in a 

specific context, where an individual observable variable suffices, non-parametric methods, such 

as Spearman rank-correlation and the Mann-Whitney u-test can be used, but, until recently, non-

parametric methods to deal with multivariate data were lacking. Wittkowski et al. (2004) 

developed on a statistical technique for integrating several ordinal variables and applied it to the 

diagnosis and the treatment of psoriasis. This method is useful whenever some ordinal 

information has to be treated, and it is increasingly being used in different fields. Other published 

applications range from cancer treatment (Paczesny et al., 2004) and animal studies on 

addiction (Spangler et al. 2005) to machine learning (Sapir et al., 2005). In the field of 

economics, this technique was recently applied by Cherchye and Vermeulen (2006, 2007) to 

score life-time achievements of Tour-de-France cyclists. We argue that such method could be a 

valuable addition to the repertoire of analysis tools in the transport research field as well, where 

ordinal variables are routinely encountered in many travel surveys, e.g., when income brackets 

or educational levels are asked for or when subjective measures of involvement, desire, 

appreciation, etc. are to be dealt with. Even if measures are technically on an interval scale, 

such as frequency of using a given mode or going to a place, they often do not have a linear 

relationship with the underlying latent factor of interest, so that methods for ordinal data are 

often more appropriate. 

In the present paper we also propose an extension of the method for situations, where some 

variables are more interrelated than others. In our case, for example, buses and trams are 

“public transportation” modes. To take advantage of such study characteristics, we will extend 

the above works to situations where a hierarchical structure among the variables can be 

presumed, thereby improving the dispersion (information content) of the resulting measure. We 

will then use the information content of the scores resulting from various hierarchical models as 

a criterion to select a particular model. This new technique is then applied for the first time in the 

published literature to study the SM-RDM relationship through the combination of several SM 

and RDM observations within different trip categories (by mode). Finally, a brief discussion 

compares the outcome of our analysis with that of a traditional data reduction technique such as 

factor analysis. 
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2 CASE STUDY AND SM-RDM CORRELATIONS WITHIN CATEGORIES 

A Web-based survey among staff working at INRETS (the French National Institute for Transport 

and Safety Research) was implemented in 2004 to investigate personal attitudes and feelings 

regarding mobility (see Diana, 2005 for details). A total of 164 subjects were questioned on their 

SM and RDM levels regarding 14 different transportation modes. A 10 point ordinal scale was 

used for SM, ranging from “I feel I do not travel at all” to “I feel I travel a lot” (by that particular 

mode). The RDM scale had 11 points, ranging from “I would like to travel much less” to “I would 

like to travel much more”, passing through the neutral point “I would like to travel the same 

amount as now” (with that particular mode). 

Table 1 shows the Spearman rank-order correlations between SM and RDM by transportation 

mode in ascending order, with modes for which SM and RDM are almost unrelated in the center. 

Correlations vary widely; in particular, negative correlations are observed for many heavily used 

motorized modes and positive correlations are more typical of less space-consuming and more 

“leisurely” modes, which are also likely to be much less frequently used, at least for “compulsory” 

trips.  

The SM-RDM correlations within categories may be useful in itself to address individual aspects. 

Several comments could be made on these results, that are however beyond the scope of the 

paper; their interpretation is thus left to the interested reader. In the following we propose a 

novel method to combine these ordinal measures to study a unique SM and RDM index and 

draw some general conclusions. The remainder of this paper is devoted to the presentation of 

the method and its application to this problem. 

 

Table 1. Spearman correlations r and corresponding p-values between SM and RDM measures 

 Car 
driver Metro Bus Car 

pax. Plane Tram Feet Interc. 
train 

Suburb 
train Taxi Boat Moped 

motorc Cycle Roller

r -0.310 -0.295 -0.215 -0.162 -0.154 -0.073 -0.054 -0.004 0.024 0.139 0.140 0.182 0.197 0.378
p <0.001 <0.001 0.006 0.042 0.053 0.366 0.499 0.957 0.768 0.086 0.082 0.027 0.013<0.001

Note: Correlations significant at the 5% level are reported in bold. 
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3 A METHOD TO COMBINE HIERARCHICAL ORDINAL DATA 

The procedure that will be used to compute a global SM and a RDM index for each respondent 

is a generalization of the methodology described by Wittkowski et al. (2004), which we will briefly 

recall before showing how it can be improved by allowing for hierarchically structured data. 

Let k index m subjects, each characterized by L variables. A partial order among the subjects xk 

= (xk1, …, xkL)' can easily be defined. Subject k' is “superior” to (or better than) subject k if k' is 

higher in at least one variable and lower in none: 

1, , 1, ,{ }k k L k k L k kx x x x x′ ′= =< ⇔ ∀ ≤ ∧ ∃ <l K l l l K l lx ′ .  (1) 

With untied univariate observations, i.e when all the observations are different and L = 1, the 

order (1) is complete, since all the m(m – 1) / 2 pairwise orderings can be decided. With several 

variables, a pairwise ordering can be ambiguous if subject k is higher than subject k' in some 

variable(s), but lower in others. Still, all subjects can be scored. Wittkowski et al. (2004) define 

the µ- (multivariate u-) score of a subject u(xk) as the number of subjects being worse minus the 

number of subjects being better (with respect to the partial ordering (1)). We refer the interested 

reader to their paper for the study of the statistical properties of this index. 

A simple example computing the µ-score for 4 subjects A, B, C and D, characterized by 4 ordinal 

variables x1, …, x4, is shown in Figure 1. The top table shows the initial ordinal measures. 

Pairwise orderings are shown in the four central matrices, each matrix comparing the four 

subjects among each other with respect to one variable. When the row i subject has a higher, 

lower, or equal value for a particular variable than the column j subject, the (i, j) element is “+1”, 

“-1”, or “0”, respectively. If either subject is “NA” (missing), the (i, j) element reports a “?”. Hence 

those four matrices are antisymmetric by construction. The bottom table shows the aggregated 

partial ordering and the computation of the resulting µ-scores. Cell (i, j) is set to  

• “+1” if subject i is “superior” to subject j according to (1) (i.e., no (i, j) cell among the four 

central matrices contains a “-1” and at least one contains a “+1”),  

• “-1” if it is inferior,  

• “0” if the two vectors of variables are identical and  

• “?” in case of ambiguity (that is, when at least one cell in the group reports a “-1” and also 

at least one reports a “+1”).  
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The µ-scores of the four subjects are then simply the algebraic sum of the elements of each row 

in the bottom table.  

The above example illustrates a limitation of this method. When the variables are less than 

perfectly correlated, which is often the case, e.g., with SM or RDM measures pertaining to 

different transportation means, the risk for pairwise orderings to become ambiguous increases 

with the number of variables included. The number of pairwise orderings that can be decided for 

a given subject defines this score’s information content. In the extreme, all pairwise orderings for 

a given subject could become ambiguous, rendering the resulting score for this subject non-

informative, i.e, be in effect “missing”. 

The situation can be improved when clusters of variables can be formed on the basis of 

empirical considerations or prior knowledge. Considering the set of 14 transportation modes 

upon which SM and RDM measures were taken, it is possible to assume that some perceptions 

and desires related to some modes are more related than others, as we discuss in the next 

section when we apply the methodology to our case study. Then, it is possible to extend the 

x2

A
 →

 20 
B

 →
 20 

C
 →

 10 
D

 →
 10 

A → 20 0 0 +1 +1
B → 20 0 0 +1 +1
C → 10 -1 -1 0 0 
D → 10 -1 -1 0 0 

Dataset x1 x2 x3 x4

A 1 20 3 II 
B 2 20 3 I 
C NA 10 2 I 
D 2 10 2 I 

x1
A

 →
 1 

B
 →

 2 
C

 →
N

A
 

D
 →

 2 

A → 1 0 -1 ? -1 
B → 2 +1 0 ? 0 
C→NA ? ? ? ? 
D → 2 +1 0 ? 0 

A B C D 
A 0 ? +1 ? 
B ? 0 +1 +1 
C -1 -1 0 0 
D ? -1 0 0 

µ-score 
A 1 
B 2 
C -2 
D -1 

x3

A
 →

 3 
B

 →
 3 

C
 →

 2 
D

 →
 2 

A → 3 0 0 +1 +1
B → 3 0 0 +1 +1
C → 2 -1 -1 0 0 
D → 2 -1 -1 0 0 

x4

A
 →

 II 
B

 →
 I 

C
 →

 I 
D

 →
 I 

A →II 0 +1 +1 +1
B → I -1 0 0 0 
C → I -1 0 0 0 
D → I -1 0 0 0 

Figure 1. Example of µ-score computation according to Wittkowski et al. (2004): 
letters A to D represent the observations and x1 to x4 are the ordinal variables 
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A B C D 
A 0 +1 +1 +1 
B -1 0 +1 +1 
C -1 -1 0 0 
D -1 -1 0 0 

A B C D 
A 0 -1 +1 ? 
B +1 0 +1 +1 
C -1 -1 0 0 
D ? -1 0 0 

x2

A
 →

 20 
B

 →
 20 

C
 →

 10 
D

 →
 10 

A → 20 0 0 +1 +1
B → 20 0 0 +1 +1
C → 10 -1 -1 0 0 
D → 10 -1 -1 0 0 

Dataset x1 x2 x3 x4

A 1 20 3 II 
B 2 20 3 I 
C NA 10 2 I 
D 2 10 2 I 

x1

A
 →

 1 
B

 →
 2 

C
 →

N
A

 
D

 →
 2 

A → 1 0 -1 ? -1 
B → 2 +1 0 ? 0 
C→NA ? ? ? ? 
D → 2 +1 0 ? 0 

A B C D 
A 0 ? +1 +1 
B ? 0 +1 +1 
C -1 -1 0 0 
D -1 -1 0 0 

µ-score 
A 2 
B 2 
C -2 
D -2 

X3

A
 →

 3 
B

 →
 3 

C
 →

 2 
D

 →
 2 

A → 3 0 0 +1 +1
B → 3 0 0 +1 +1
C → 2 -1 -1 0 0 
D → 2 -1 -1 0 0 

x4

A
 →

 II 
B

 →
 I 

C
 →

 I 
D

 →
 I 

A →II 0 +1 +1 +1
B → I -1 0 0 0 
C → I -1 0 0 0 
D → I -1 0 0 0 

Figure 2. Example of µ-score computation in presence of a hierarchical data structure: 
the additional step in computing µ-scores is shown in the dotted rectangle

method of µ-scores to utilize information about a hierarchical structure among the variables to 

avoid ambiguities and, thus, to increase information content of the scores by separately applying 

the second step of the above described method within each cluster, and then to apply it again to 

combine different clusters, iteratively if necessary. 

Recalling the previous example of Figure 1, we now assume that the variables x1 and x2 are 

related, as are x3 and x4. We separately apply the method for those two groups, and then repeat 

the analysis to combine the two groups themselves (see Figure 2). As a result, the number of 

ambiguities in the final table has been halved compared to Figure 1 (from 4 to 2), so that the 

new scores are more dispersed and, thus, more informative. The gain can be even more 
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substantial when analyzing datasets of realistic size and more complex patterns among the 

variables. 

With programming languages like S or R, which are particularly suited for statistical algorithms, 

this method is easily implemented. The open-source package muStat of R (http://cran.r-

project.org) has been used in the application described in section 5. 

 

4 HIERARCHICAL CLASSIFICATIONS OF THE TRANSPORT MODES 

Before we can apply the hierarchical method to our problem, we need to define the classification 

of the ordinal measures. We preliminarily performed two multidimensional scaling analyses from 

the correlation matrices of the SM and the RDM measures, respectively. The resulting two-

 
 
 

Dimension 1 

 
 
 

Dimension 1 
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Figure 3. Multidimensional scaling for SM and RDM measures 
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dimensional perceptual maps are reported in Figure 3. The transportation modes are arranged 

so that the distance between two items fits as closely as possible their dissimilarity, measured as 

the “inverse” ( 21 r− ) of their correlation r. Although different clusters of modes could be 

defined on the basis of these plots, the only possible cluster definition common to both SM and 

RDM measures consists of splitting the 14 modes into long-distance (including suburban and 

intercity train, boat, plane and taxi) and short-distance or urban modes (the remaining nine 

modes), as indicated by the two diagonal lines. We see here a confirmation of the importance of 

the territorial factors for the study of travel behaviors, that can also affect attitudes and desires 

related to different modes. 

In the following we focus our attention on the above defined nine “urban transportation modes”, 

for which complementarity, i.e., the possibility of using one instead of another, is much higher 

than for intercity travel, where the choice of the mode is often dictated by “hard” external 

constraints. Mode choice for long-distance travel is also more grounded on objective information, 

as a subject is more likely to objectively compare the performances of the available means and 

to make a rational choice, consistent with the random utility theory. We also exclude feet and 

rollers since they are usually not at the core of transportation policy plans and can less easily 

substitute the other modes. 

Several ways to hierarchically classify the remaining seven modes can be envisaged. A 

technology-driven approach could suggest to group the modes primarily on the basis of the 

infrastructure they use (e.g. road versus rail). However, we should keep in mind that the 

variables considered (SM and RDM) are linked to individual evaluations and desires, so that a 

criterion that better suits the personal representation of different transportation modes should be 

more appropriate. In particular, previous research (Flamm, 2003, pp. 42-44) has shown that it is 

possible to define a classification of the transportation modes that is relevant from the travelers’ 

point of view by considering the “implicit constraints” in their use (for example, need to respect 

schedules for transit services or availability of parking spaces), beyond their performances in 

terms of travel times and costs, as it is done in transportation models. 

Our “Classification 1” (C1, see Figure 4) ranks transportation modes by increasing use 

constraints. Bicycles are the least constrained transport mode (no need of driver’s licence or 

dedicated parking space, loosened circulation rules etc.). Moped and motorcycles share some 

constraints with cars, but consume less space, which can be extremely important in congested 

urban areas. Thus, the C1 top level classifies transportation modes as “bicycle”, 
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“moped/motorcycle”, “car” and “transit”. Below that, the mode “car” is subdivided into “car driver” 

and “car passenger” (pax.), while mode “transit” is subdivided into “metro”, “bus,” and “tram”. 

Alternatively, we could derive the modes “bicycle” and “moped/motorcycle” from an intermediate 

level mode “two-wheeled”, giving the typological classification “C2” (Figure 5). This is consistent 

with previous research that underlined the common characteristics on a subjective point of view 

between these two modes (Flamm, 2003, p. 95), although on a policy viewpoint it is surely more 

appropriate to keep them separate, for example because of their different environmental 

performances.  

Finally, we could take an entirely different approach, starting by classifying the modes with 

respect to autonomy, ie, splitting the modes first based on whether the traveller is a driver or 

passenger. The active modes are then subdivided into “bicycle”, “moped/motorcycle”, and “car 

driver”, the passive modes into “car pax.”, “bus”, “tram”, and “metro, giving “C3” (Figure 6). 

 By performing the same analyses with all these classifications of the modes we can better 

assess the stability of the results concerning the SM-RDM relationship. In the following, these 

same classifications will be retained for both SM and RDM measures. 
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Urban modes 

Bicycle Car Transit 

MetroTram Bus Car pax.Car driver

Moped / 
motorcycle 

Urban modes 

Bicycle 

Car Transit 

MetroTram Bus Car pax.Car driverMoped / 
motorcycle 

Two-wheeled 

Figure 4. “C1” constraint driven hierarchical structure of transportation modes

Figure 5. “C2” typology driven hierarchical structure of transportation modes

Urban modes 

 
Figure 6. “C3” autonomy driven hierarchical structure of transportation modes

Bicycle MetroTram Bus Car pax.Car driver

Driver Passenger 

Moped / 
motorcycle 
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5 COMPUTATION AND ANALYSIS OF THE OVERALL SM AND RDM INDICES 

We now study the relationship between subjective and desired mobility (SM and RDM), as 

measured by interviewing the INRETS staff, through the above defined C1 classification of the 

transportation modes, and compare the results to those using C2 and C3. We start by analysing 

the correlations between SM and RDM µ-scores of the above four C1 “intermediate level” modes 

(table 2). Pearson correlations are used, because it is essential to account for the distance 

among the different µ-scores. Obviously, the first two diagonal elements report the same values 

as table 1. The two lower diagonal elements confirm the negative relationship between SM and 

RDM both for cars and for public transport. 

Table 2. Correlations matrix among the four “top-level” modes 

RDM 

Bicycle Moped/ 
motorcycle Car Transit 

Bicycle 0.197 0.006 -0.157 -0.086 
Moped/ 

motorcycle 0.109 0.182 0.024 0.047 

Car -0.006 -0.152 -0.192 0.006 

SM
 

Transit -0.035 -0.063 0.150 -0.240 
 

Off-diagonal elements show some interesting patterns. For example, those who feel to use 

bicycles a lot tend to have a lower desire to use public transport and cars in the future. Neither 

frequent car users1 nor frequent transit users are satisfied with their mode usage. In addition, 

frequent car users also do not desire to use moped or motorcycle, whereas transit users find car 

use attractive. These different SM-RDM relationships across the modes considered may indicate 

deeper differences at a more personal level, so that a market segmentation technique based on 

the perceived and desired use of different transportation modes could be an effective way to set 

up transportation management policies targeted to the different groups of travellers, thus 

increasing the effectiveness of such policies (Diana and Mokhtarian, 2007). 

In the next step, we compute both hierarchical and non-hierarchical global scores for SM and 

RDM for all the respondents. Figures 7 and 8 show the cumulative distribution functions for the 

SM and RDM indices respectively, i.e., for each possible score between -163 and 163, the value 

                                                 
1 For simplicity, “frequent users (of a given mode)” from here on reflects Subjective Mobility, i.e., “those who think 
to use (a given mode) a lot”, rather than the amount of travel that is actually done. 
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on the y-axis indicates the proportion of scores that are smaller or equal. Only the hierarchical 

scores C1 and C3 are reported, since C2 turned out to be an intermediate case. The inserts in 

these two figures represent the scatter plots of the hierarchical against the non hierarchical (NH) 

scores for each observation in the dataset. 

As expected, the hierarchical scores are more dispersed and, thus, more informative. For the 

non-hierarchical SM score, for instance, all except two subjects are cramped into the range (-

80,50) with the median 50% of all score values falling into the narrow range (-5,10). The 

hierarchical SM indices differentiate better, because their values are more evenly distributed 

across the range (-160,100), with the center 50% spread across the range (-30,40). As a result, 

they are less subject to random errors (see inserts of Figures 7 and 8). The total number of pairs 

of individuals with an ambiguous pairwise ordering (as among the n(n – 1) / 2 = 13366 pairs) 

was decreased from 325 for NH to 62 for C1, 63 for C2 and 70 for C3.

Similar results were found for RDM, although the gains are less impressive, as can be seen by 

comparing Figure 8 to Figure 7. The reduction of the number of ambiguously ordered pairs of 

individuals is in fact less marked (from 200 pairs to 143, 138 and 134 respectively for C1, C2 

and C3). This is partly due to the fact that 12 individuals indicated they would like to travel 

exactly as they actually do by all the seven considered transportation modes, so that they 

receive the same score, irrespective of the method used (they are represented by the long 

vertical segments in the left part of Figure 8). These 12 individuals thus represent the neutral 

point in the ideal RDM scale encompassing the seven transportation modes. Individuals whose 

score is below this threshold (thus lying at the left of the vertical traits of Figure 8) express a 

global desire to travel less, whereas at the right end of the figure we have those who would like 

to overall travel more. Although some individuals may fall above or below the neutral point 

according to the classification of the transport means being considered, it is rather evident from 

Figure 8 than the majority of the respondents would globally like to travel more, and only few 

would like to travel less. Our results then constitute a quantitative confirmation of the existence 

of a latent travel demand, an assumption that is at the base of the abundant literature 

concerning the induced traffic (see for example Denvil, 1996; Abelson and Hensher, 2001; 

Noland and Lem, 2002). 

C3 outperforms C1 and C2 since it differentiates best. This points at the importance of the fact of 

driving the vehicle or simply being carried by other and its relevance for the individual 

representation of different transport means, consistently with previous studies that put into 

evidence the importance of feeling in control of the travel experience (see for example Stradling 
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et al., 2000; Anable and Gatersleben, 2005). 

It is also interesting to note that SM and moreover RDM scatter plots of Figures 7 and 8 show 

two distinct clusters of respondents. One cluster lies along a straight line and the other forms an 

S-shaped curve. A closer inspection of the data indicates that this has to do with the way in 

which the respondents rated their SM and RDM for the different transport means. Some tend to 

give the same rating to every transportation mode. In this case, the score that is obtained by 

combining the different ordinal measures is insensitive to the aggregation method (NH, C1, C2, 

C3). Hence these users will form a diagonal line across the scatter plot. This straight line is less 

evident in Figure 7 than in Figure 8, as fewer subjects gave the same response to all SM 

questions than to all RDM questions. 

On the other hand, a different group of respondents gives ratings that are quite differentiated 

across the different modes. In this case, the number of ambiguous pairwise orderings increases 

and the combined score tends to be flattened around the zero value when the NH method is 

used. Here the information gain in using a hierarchical procedure is maximised, so that C1 and 

C3 scores will be rather different than the NH one. Hence those subjects will align along an S-

shaped curve. Comparing the two scatter plots of Figure 8, we can have a confirmation that C3 

differentiates better than C1, since more subjects “belong” to the C3 versus NH S-shaped curve. 

We now turn our attention to the global SM-RDM relationships. The correlation between the 

global SM and RDM µ-scores was -0.091 when considering C1, and similar for C2 (-0.160) and 

C3 (-0.115). The correlation between the non-hierarchical SM and RDM scores was -0.072. 

Combining the ordinal measures by considering a classification of the modes consistent with the 

subjective point of view of the travellers allows then to draw more general conclusions. Our 

results could possibly indicate some dissatisfaction tampered by fatalism, and are consistent 

with previous research reporting a negative relationship between SM and RDM for many 

categories of trips (Choo et al., 2005). This rather weak correlation is the outcome of 

contradictory trends at the single mode level (table 1). We offer an interpretation of such results 

and we prospect the related policy implications in the concluding section. 
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6 DISCUSSION: µ-SCORES VERSUS FACTOR ANALYSIS 

In the preceding sections we combined several mobility-related ordinal measures by using 

multidimensional scaling first to separate a suitable group of “urban” transportation modes. Then 

we computed µ-scores for several potential factor structures (“constraint”, “typology”, and 

“autonomy”) to select the factor structure resulting in the most informative SM and RDM indices. 

We would like now to compare this non-parametric methodology to traditional factor analyses, 

which have been widely used in travel and other behaviour research. 

Factor analysis uses pairwise correlations among a set of n variables to postulate some 

underlying factors that could adequately describe the observed data and should be easily 

interpreted. The number of factors to be extracted k represents a compromise between the 

contrasting goals of reproducing the observed correlation patterns as close as possible with a 

saturated model (k = n) and of having a maximally parsimonious model (k = 1). Despite some 

widely used guidelines and rules of thumb, the researcher must basically rely on his/her own 

judgement in some key passages such as the selection of the number of factors to consider, the 

definition of a significance threshold for the factor loadings, or the choice of a rotation method to 

aid with interpretation of the results. Moreover, as a parametric method based on the linear 

model, factor analysis relies heavily on the assumption that the importance (e.g., in terms of 

policy implications) of an increase by one unit is the same across the whole scale of this 

variable. When this assumption of linearity can be reasonably justified, factor analyses can 

provide useful results. Concerning SM, however, the importance of “not at all” vs “rarely” or 

“often” vs “very often” cannot reasonably be assumed to be the same, even though the order 

“not at all” < “rarely” < “often” < “very often” can be assumed to be valid. 

µ-scores can be seen as a data reduction technique, in that a single measure is provided to 

comprehensively assess overall preference. In our study, however, the aim was not the 

traditional aim of (exploratory) factor analysis, namely to reduce the number of variables to be 

included, but to select a model yielding optimal SM and RDM indices, among several models 

theoretically postulated a priori. As a consequence, we explicitly wanted to include all of the 

observed SM and RDM measures, rather than checking to which extent the dimensionality of the 

SM and RDM constructs can be reduced. One possibility would be to run a confirmatory rather 

than an exploratory factor analysis, postulating a measurement model where the mode-specific 

measures load on a single factor and then estimating it through a structural equation modelling 

approach (see Bollen, 1989 for a theoretical discussion on the exploratory and confirmatory 
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factor analysis concepts and Diana, 2008 for a recent joint application of both techniques in the 

travel behavior research field). However this seems not appropriate in our case: a simple 

inspection of Figure 3 shows the existence of “cluster of modes” (i.e. some modes are plotted 

near each other to form distinct groups) that point to the multidimensional nature of the SM and 

RDM by-mode measures. On the other hand, the fact of having combined these measures into a 

single index does not mean that we are trying to force-fit a single factor model, since the method 

we used does not postulate any particular correlation pattern across the measures.  

Beyond the above “dimensionality issue”, a more specific concern is related to ordinal data. 

There are several examples of factor analysis performed on ordinal variables in travel behavior 

research (for example Mokhtarian et al., 2001; Johansson, 2004; Anable, 2005). Some authors 

suggest applying factor analysis to ordinal data by replacing the data of each variable by its 

ranks (Bagge et al., 2005). While this approach avoids some problems, such as sensitivity to 

outliers, it does not overcome the fundamental problem that the latent factors are combined as a 

linear combination with fixed “factor loadings” as coefficients (Brookins, 1970). The required 

assumptions (“multivariate normal”, “bivariate normal”, “normal ogive”, and “proportional odds”, 

see Jöreskog and Moustaki, 2001, for details) are often, as in our case, difficult to justify. Thus, 

the “rank transformation approach” (Lemmer et al., 1968; Conover and Iman, 1981), when 

applied to situations with several factors, suffers from similar problems in factor analysis as in 

analysis of variance (Fligner, 1981; Blair et al, 1987; Akritas et al., 1997; Haas, 1999; Shah and 

Madden, 2004). 

To better illustrate the two above points, we run three different series of factor analyses with 2, 3 

and 4 factors for the 7 SM and 7 RDM mode-specific measures that we considered. In the first 

series we directly used the respondent’s scores, in the second one we log-transformed them, 

and, in the third, we took their ranks. Compared to principal components analysis, factor 

analyses allow for “rotations” of the solution to yield factor structures that might ease the 

interpretation. In all the three cases we performed a varimax rotation of the solution. The 

resulting factor loadings are reported in Table 3. Loadings with an absolute value <0.10 are 

omitted, and the largest loading for each variable is shown in bold. The variance explained by 

each model is also reported. 

For ordinal data, i.e., if the functional relationship between the observed measures and their 

meaning in terms of the underlying concept is not known, monotone transformations such as 

taking logarithms or computing ranks should ideally provide the same results. Models selected 

on the basis of the information content of the µ-scores are in fact unaffected by these (and other)  
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Table 3. Factor analyses results by assumed number of factors and transformation 

2 factors 3 factors 4 factors  

SM RDM SM RDM SM RDM 

No transform.       
  Bicycle -.28 .11 .40 -.40 .33 -.20 -.13 .42  .14 -.13 .48
  Motorcycle  .25 .31 .19 .52 .13 .11  .18 .55 .16
  Car driver -.50 .54 -.16 -.11 -.61 .31 .30 -.14 .41 -.60 .16 .33 -.23 -.13  .48
  Car pax. .21 .39   .12 .40 .16 .21 .49 .19   .18
  Bus .93  .80 -.17 .92 .16 .77 .26 .87 .34 -.11  .76 .31 -.15
  Tram .43 .14 .77 .46 .41 .52 .71 .46 -.26 .38 .28 .42 .20 .72 .32 -.23 .29
  Metro .81  .78  .80 .78 .86 .13  .81  
var. explained 37% 35% 41% 40% 45% 43% 

Log transform.       
  Bicycle .10  .27 .47 -.32 .25 .27 -.45 -37 .12 .18 .59 .15
  Motorcycle .15 .34 .59 .17 .36 .52 .28 .17  .25 .37 .55 .15
  Car driver -.56 .39  .20 -.39 .53 .14 .37 -.36 .55 .15 -.11   .10 .42
  Car pax. .20   .11 .44 -19 .10 -.42 .15  -.11 .15
  Bus .87 .20 .77  .89 -.14 .81 .86 -.16 .24 .78  .26
  Tram .35 .49 .83 .31 .50 .37 .81 .39 .50 .34  .74 .39 .26 -.17
  Metro .76 .21 .81  .78 .80 .82  .83 .14 
var. explained 33% 41% 38% 45% 38% 48% 

Rank transf.       
  Bicycle -.27  .28 -.41 .25 .30 .14 -.20 .42   .35 -.12
  Motorcycle  .21  .29 .51 .14 .29  .52 
  Car driver -.34 .62 -.20 -.47 -.56 .41 .13 -.25 -.45 -.66 .18 -.14 -.26  -.21 .42
  Car pax. .23 .30  -.16 .32 .11 -.14 .52    .17
  Bus .91 -.22 .84 .17 .91 .14 .77 .30 .16 .79 .42 .25  .78 .30 -.13
  Tram .40  .75 .26 .33 .11 .34 .72 .24 .24 .13 .54 .12 .72 .19 .30
  Metro .76 -.23 .67  .79 .12 .77 .67 .45  .77  
var. explained 34% 32% 38% 37% 42% 39% 

monotonic transformations of the data. In contrast, as Table 3 shows, this is often not the case 

when using factor analysis. The three transit variables (Bus, Tram, Metro) heavily load on the 

same factor in most of the 18 analyses, but loadings of other variables vary widely. Some 

variables, especially “SM driver” and “RDM motorcycle”, have quite significant loadings across 

different factors in many models, thus jeopardizing a clear interpretation of the results. No single 

model stands out as the “best”.  

Of note, merely using any “non-parametric” approach is not a panacea. The results based on the 

rank-transformed data consistently explain the smallest amount of the variance, even though our 

data clearly does not follow a Gaussian distribution. 

While the results based on factor analyses do not allow for selecting a particular model, they are 

largely consistent with both the multidimensional scaling findings (figure 3) and the hierarchical 

structures of the transport modes that we assumed (figures 4 to 6). For example, the strong 
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cluster of the three transit variables is apparent in the RDM perceptual map, whereas “SM tram” 

is also nearer other variables such as “SM driver” and “SM passenger”, thus reflecting 

respectively the strong loading of “SM driver” on the first factor and the loading of the “SM tram” 

variable on factors other than the first in table 3. We can also observe that the three 4-factor-

RDM models match our classifications C1, the 3-factor-RDM model without transformation 

matches C2 and the 2-factor-RDM model with log transformation matches C3, thus providing 

empirical evidence to the three postulated hierarchical structures. 

Still, no single method can be a panacea. The number of possible hierarchical structures 

increases so fast, that an exhaustive search is impossible even for moderately sized studies. 

Thus, the proposed non-parametric approach should not be seen as an alternative to traditional 

analyses based on the linear model, but merely as an addition. In a first step, one might use 

factor analyses and multidimensional scaling, to limit the number of structures to be considered 

for analysis. The proposed method could then be used to resolve the ambiguities among models 

suggested under the arbitrary assumptions regarding transformations, number of factors, cut-off 

points, and rotations. 

 

7 POLICY IMPLICATIONS AND CONCLUSIONS 

This paper has investigated the relationship between subjective mobility (SM) and relative 

desired mobility (RDM) in a sample of clerical workers. To obtain actionable hypotheses, 

measures pertaining to several different transportation modes need to be combined into a single 

index. This was achieved through a modification of an innovative methodology. Our method 

utilizes µ-scores for multivariate data (Wittkowski et al., 2004), yet allows for a hierarchical 

structure of the data to avoid ambiguities when ordering the respondents based on a set of 

ordinal measures. This modification not only improves the information content of the index and 

the significance level of the observed correlations, but also provides novel insight into the 

relationship among the transportation modes and into personal characteristics of their users. 

The correlations between “intermediate” SM and RDM indices unveil some interesting features. 

In particular, travellers using “leisure” modes (bi- or motorcycle) seem to enjoy the use of their 

“toys”. Bicycle users, in particular, are adverse to cars or public transportation, while motorcycle 

users are neutral. In contrast, users of cars or public transportation are dissatisfied. Still, they 

would rather switch to the other non-leisure category, cars, than to either of the leisure modes. 

The combination of RDM measures into a single index shows that the majority of respondents 
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globally desires to travel more, and only few would like to travel less. The suggestion of a latent 

demand for travel contributes a novel argument based on quantitative results to the debate on 

the phenomenon of induced traffic.  

Looking at the top-level indices that combine all seven urban transportation modes considered, 

some interesting policy implications can be inferred. As mentioned in the introduction, Choo et 

al. (2005) postulated that SM might be one of the determinants of RDM, and found a negative 

relationship for many categories of trips. We provide empirical evidence for a negative SM-RDM 

correlation overall, and we quantitatively uncover the existence of a latent demand for travel 

among a majority of respondents. Combining theoretical consideration from previous research 

and empirical evidence from our study shows that to lessen the desire for more travelling, people 

need to be aware how much they already travel, so that the latent demand decreases as well, a 

desirable goal of almost any modern transportation policy. Underestimating one’s current travel 

can conversely be associated with a greater desire for more mobility. 

More disaggregate results are also relevant on a policy viewpoint. SM underestimation can 

contemporarily prompt for a greater desire to use more energy-consuming modes (those 

reported on the left side of table 1 where SM-RDM correlations are negative) and a lesser desire 

to use more environmentally friendly modes (the right side of table 1), hence leading to a much 

worse mix of use of different modes from an environmental perspective. Most importantly, this 

doubly negative effect could be one of the mechanisms underlying the widely observed 

difficulties that modal diversion strategies encounter systematically when trying to substitute the 

use of cars. Not taking into account the role of the self-consciousness of the amount of trip that 

one consumes is then probably one of the reasons of the ineffectiveness of many modal 

diversion campaigns, particularly when the use of bicycles is promoted.  

The potentials of combining ordinal measures by means of µ-scores for hierarchically structured 

ordinal variables could be further exploited in future research. In particular, it would be of interest 

to analyze SM and RDM data categorized by trip purpose, rather than by transport mode, to 

check if the general findings concerning the SM-RDM relationships are the same. This method 

could also have several other applications in transport research, given the quantity of ordinal 

data that are available through mobility surveys that are often difficult to properly analyze. 
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