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Outline

• Motivation

• Overview on numerical noise modelling

– Small-signal (stationary)

– Forced large-signal (cyclostationary)

– Autonomous large signal

• Modeling low frequency noise

• Evaluating the Large Signal working point

• Case studies

• Conclusions
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Motivation

• Low-noise circuits important in RF & 

microwave telecommunication systems

– Linear circuits (e.g., low noise amplifiers)

– “Nonlinear” circuits (e.g., mixers, frequency 

multipliers, oscillators)

• Physics-based simulation is a powerful 

tool for:

– TCAD Device design and optimization

– Development of compact, circuit-oriented 

model with sound physical basis

– Understanding exotic noise mechanisms (1/f?)
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Some facts about physics-based 

numerical noise modelling - I

• Microscopic (carrier velocity or 

population) fluctuations are a small

perturbation of 

– DC steady-state ���� Small-signal, stationary 

noise

– Large-signal (quasi) - periodic steady state

���� LS (quasi)-cyclostationary noise

– LS steady-state of autonomous system ����

LS (oscillator) stationary (?) noise
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Some facts about physics-based 

numerical noise modelling - II

• Terminal (v,i) fluctuations are evaluated 

through a (linear) Green’s function approach

from (spatially uncorrelated) microscopic 

(charge or current density) fluctuations

distribuited in the device volume

– SS conditions ���� Superposition + Filtering of 

microscopic noise source spectra

– LS conditions ����Superposition + Filtering & 

frequency conversion
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Some facts about physics-based 

numerical noise modelling - III

• The Green’s function (���� “impedance 

field”) can be derived through SS (small-

signal) or SSLS (ss with respect to LS) 

linearization from any PDE based 

physical model:

– Drift-diffusion 

– Energy balance

– Full hydrodynamic, N moments from BE
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Summary of simulation steps
1. Evaluate the noiseless working point

• Noise sources are switched off

• Solution is (ϕϕϕϕ0, n0,p0,nt,k0)

• The working point depends on the applied generators ����

might depend on time and require mixed-mode 

simulation ���� CPU-intensive for the large-signal case

2. Add (model) the microscopic noise sources
• The working point is perturbed by fluctuations δαδαδαδα

3. Solve the (linear) perturbed system to 

evaluate the terminal electrical fluctuations 

(noise generators) through the Green’s 

function approach
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Example: DD model, SS noise 
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SS noise power spectra

• Correlation matrix of open-circuit voltage 

noise fluctuations:                          
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LS cyclostationary noise - I

• Analog applications often require 

periodic or quasi-periodic LS operation

• In LS operation microscopic noise 

sources are amplitude modulated by the 

periodic LS steady-state leading to ����

cyclostationary microscopic sources

with correlated frequency components

• Those are described by the Sideband 

Correlation Matrix (SCM) formalism
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Cyclostationary noise formalism

• 2nd order statistical properties through the 

sideband correlation matrix (SCM):

( )( ) ( ) ( ), ,y y k lk l
y y+ ∗ +ω = ω ωS ɶ ɶ

Correlated sidebands 

of noise process y
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ωk=ωk+ω
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• Only the spectral components in each sideband

having the same distance from the LS 

harmonics, are correlated
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LS cyclostationary noise - II

• Green’s functions ���� conversion Green’s
functions, implying noise frequency conversion 
into LS spectrum sidebands

• After propagation & conversion noise around 
each harmonic is from
– microscopic noise source at that sideband

– source conversion from other sidebands

LS extension of 

Green’s function 

approach Microscopic

noise sources

Terminal noise

r
Electron device

Green’s functions
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SCM of modulated

microscopic fluctuations

LS cyclostationary noise - III

Conversion 

Green’s functions

µµµµscopic

noise 

sources

“Sideband” terminal noise

Large-signal

external 

(quasi) 

periodic

V or I 

generators 

Modulation 

(local)

Cyclostationary 

microscopic 

noise sources

Cyclostationary 

microscopic 

noise sources
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Noise in autonomous systems

• Oscillator noise ���� object of investigation and 

debate at circuit and system level

• Alper Demir’s approach (system level) 

accounting both for coloured and white noise 

sources ���� viable way for extension to device 

level

• Work by group of Seoul National University

(white diffusion noise sources)
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Numerical implementation 

• Through standard (e.g. finite box –

Scharfetter-Gummel) discretization the 

Green’s function is derived from a linear 

system ( SS or SSLS)

• Efficient evaluation of the Green’s 

functions at device terminals through 

adjoint and generalized adjoint techniques

• ���� Bottleneck: LS (quasi) periodic solution 

through Harmonic Balance
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Low frequency noise modelling

• Low-frequency (coloured, 1/f or 

Lorentzian) noise important in many 

analog applications (mixers, multipliers, 

oscillators…) where noise frequency 

conversion takes place

• Low-frequency noise ���� superposition of 

bulk, surface or interface GR noise

• GR trap-assisted noise ���� theory 

developed by van Vliet in 1960 ���� trap 

level rate equations added to DD model
17/34
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Model + traps: bipolar drift-diffusion

• Nt traps included

• Device mesh: Ni

internal nodes 

and Nx external 

nodes on 

metallic contacts

• Device contacts: 

Nc+1, one 

grounded  
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Trap level transition rates

• N (local) trap rate equations ����SRH model

• Noninteracting traps considered; 
superposition ���� 1/f spectrum
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SS - RG local noise source
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LS - RG local noise source SCM

• In LS conditions the white microscopic RG 
noise sources are (quasi) periodically
modulated by the working point

• Noise source SCM, e.g.:

…..etc.
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Solving the PB model in LS: the 

embedding circuit

• Represented, in its simplest form, by a memory 

relationship between vc, ic and the applied 

generators s(t)

– For periodic excitation, s(t+T)=s(t)

– For autonomous circuit, s(t)=0
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Solving the PB model in LS: total 

discretized model & solution

• (Space) discretized PB model + embedding 

circuit ���� differential algebraic equation (DAE) 

( )( )eq t i x c3 2N N N N N= + + +System size:

For a 3-terminal device with 2000 nodes mesh 

and 3 traps Neq=12,004!

• Direct computation of the steady-state response 

• Frequency-domain: Harmonic Balance (HB)

• Time-domain: shooting method

• Autonomous case? 
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Case studies

• 2D n+p diode 

– motivation: low-frequency noise compact 

modelling usually based on amplitude 

modulation of stationary SS noise 

generators ���� is this generally correct / 

accurate?

• GaAs MESFET and AlGaAs/GaAs 

HEMT Mixer

– 2D LS mixed-mode noise simulation
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2D n+p diode

• n+p junction diode ���� 1 bulk and 3 surface traps

Surface traps: 

    Nt=1.67×1016 cm-3 

    Nt,surf=3.34×1011 cm-2

    energy level: 0.26 eV below Ec

    Trap 1: cn=cp=5.7×10-14 cm3/s

    Trap 2: cn=cp=5.7×10-15 cm3/s

    Trap 3: cn=cp=5.7×10-16 cm3/s

n+ 1017 cm-3

p 1016 cm-3

5
 µ

m
3
0
 µ

m
2 µm 3 µm

Surface traps area,

0.2 µm thick

Anode

Cathode Bulk trap: 

    Nt=5×1012 cm-3

    cn=cp=5.7×10-13 cm3/s

    energy level: 0.56 eV below Ec

Large-signal simulation:

    6 harmonics + DC

    working point: 0.6 V DC 

            + 50 mV tone @ 5 MHz

x

y
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Stationary GR noise spectrum
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Cyclostationary GR noise 

spectrum (absolute frequency)
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Large-signal simulation:

    6 harmonics + DC

    working point: 0.6 V DC 

            + 50 mV tone @ 5 MHz
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Cyclostationary GR noise 

spectrum (sideband frequency)
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Remarks

• The SS 1/f like behaviour is preserved in 

the (0,0) sideband

• However, conversion to upper sidebands

acts differently for bulk and surface traps

• Therefore, noise in upper sidebands is 

markedly different from modulated SS 

noise ���� which would have the same 1/f 

like behaviour for all sidebands

• Impact on compact modelling! 
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Mixer circuit
• Downconversion mixer, fLO=1 GHz, fRF=1.001 GHz

• Noiseless LO

• Device: 0.3 µµµµm gate HEMT, 100 µµµµm gate periphery

• 1300 nodes, 4 harmonics + DC

• Diffusion noise only VDD

voutRRF

RLO

fRF

fLO

RF in

LO in Shunt

f≠fRF,fLO

C R L

C=6.67 nF

R=1.5 kΩ
L=3.8 µH
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Mixer WP
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Load voltage noise around IF
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Intrinsic noise figure vs. RF 

source resistance
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Conclusions

• Numerical noise simulation has (hopefully) reached 

maturity

• Progress made in understanding low-frequency noise

(����1/f) and its frequency conversion (also ���� compact 

modelling) 

• Incouraging advances in oscillator PB modelling

• LS noise simulation requires more efficient WP solvers 

(time domain?)

• General strategy for LS compact modelling still an open 

problem – but this is another story! 
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