

EDS Mini-Colloquium On Advanced Electron Devices modelling and Technology Friday 1st May 2009. Admission is free University College Dublin, Ireland (Engineering Building (no 49 on the campus map) Sponsored by

IEEE Electron Devices Society, IEEE UKRI (AP/ED/Photonics/MTT) Societies Joint Chapter

- 09:15-09:50 Registration
- 09:50 10:00 Welcome Remarks: Prof Tom Brazil, University College Dublin
- 10:00 <u>Opening Remarks</u>: Prof Ali A Rezazadeh, Chair IEEE UKRI (AP/ED/Photonics/MTT) Societies Joint Chapter, University of Manchester, UK.
- 10:10 IEEE EDS Activities: Prof J J Liu (Central University of Florida, USA)

10:30 - 12:45 SESSION I

Chair: Prof. Giovanni Ghione

- 10:30 11:15: Roadmap for 22 nm and Beyond, Prof Hiroshi Iwai (Tokyo Institute of Technology, Yokohama, Japan
- 11-15 12:00: Small- and Large-Signal Modelling of GaAs- and GaN-based Transistors Prof Tom Brazil (University City Dublin, Ireland)
- 12:00 12:45: Advanced electrostatic discharge (ESD) protection solutions in BiCMOS/CMOS technologies, Prof J J Liu (University of Central Florida, USA)
- 12:45 2:00: Lunch Break

02:00 - 02:30: PhD Research Students Poster Session

02:30 - 04:20: SESSION II

Chair: Prof Tom Brazil

- 02:30 03:15: Physics-based Noise Simulation of Semiconductor Devices Under Large-signal Operation, Prof Giovanni Ghione, Fabrizio Bonani and Simona Donati Guerrieri (Politecnico di Torino,Italy)
- 03-15 04:00: Passive 3D multilayer microwave components for development of compact multifunctional MMICs, Prof Ali A. Rezazadeh (University of Manchester, UK)
- 04:00 04:20: <u>Closing Remarks</u>: Prof Hiroshi Iwai (Tokyo Institute of Technology, Japan)

For further information, please contact Prof. Tom Brazil, +353-1-716 1929, tom.brazil@ucd.ie

Physics-based Noise Simulation of Semiconductor Devices Under Large-signal Operation

<u>G. Ghione</u>, F. Bonani, S. Donati Guerrieri Dipartimento di Elettronica, Politecnico di Torino, Torino, Italy

UCD 1/5/2009

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Some facts about physics-based numerical noise modelling - II

- Terminal (v,i) fluctuations are evaluated through a (*linear*) Green's function approach from (spatially uncorrelated) <u>microscopic</u> (charge or current density) fluctuations distribuited in the device volume
 - SS conditions → Superposition + Filtering of microscopic noise source spectra
 - LS conditions → Superposition + Filtering & frequency conversion

UCD 1/5/2009

LS cyclostationary noise - I

- Analog applications often require periodic or quasi-periodic LS operation
- In LS operation microscopic noise sources are amplitude modulated by the periodic LS steady-state leading to → cyclostationary microscopic sources with correlated frequency components
- Those are described by the Sideband Correlation Matrix (SCM) formalism

UCD 1/5/2009

Cyclostationary noise formalism Only the spectral components in each sideband having the same distance from the LS harmonics, are correlated **Correlated sidebands** of noise process y $\omega_k = k \omega_0$ LS harmonics sidebands $\omega_k^+ = \omega_k + \omega$ -**2**ω₀ -**0**0 $2\omega_0$ ω 2nd order statistical properties through the sideband correlation matrix (SCM): ω is called sideband frequency UCD 1/5/2009

Numerical implementation

- Through standard (e.g. finite box Scharfetter-Gummel) discretization the Green's function is derived from a linear system (← SS or SSLS)
- Efficient evaluation of the Green's functions at device terminals through adjoint and generalized adjoint techniques
- Bottleneck: LS (quasi) periodic solution through Harmonic Balance

UCD 1/5/2009

Low frequency noise modelling

- Low-frequency (coloured, 1/f or Lorentzian) noise important in many analog applications (mixers, multipliers, oscillators...) where noise frequency conversion takes place
- Low-frequency noise → superposition of bulk, surface or interface GR noise
- GR trap-assisted noise → theory developed by van Vliet in 1960 → trap level rate equations added to DD model

UCD 1/5/2009

Model + traps: bipolar drift-diffusion

- N_t traps included
- Device mesh: N_i internal nodes and N_x external nodes on metallic contacts
- Device contacts: N_c+1, one grounded

UCD 1/5/2009

$$\nabla^{2} \varphi = -\frac{q}{\varepsilon} \left(p - n - \sum_{k=1}^{N} n_{i,k} \right)$$
$$\frac{\partial n}{\partial t} = -\nabla \cdot \left(n \mu_{n} \nabla \varphi - D_{n} \nabla n \right) - U_{n} + \gamma_{n}$$
$$\frac{\partial p}{\partial t} = +\nabla \cdot \left(p \mu_{p} \nabla \varphi + D_{p} \nabla p \right) - U_{p} + \gamma_{p}$$
$$\frac{\partial n_{i,k}}{\partial t} = -U_{k} + \gamma_{k} \qquad k = 1, \dots, N$$

17/34

SS - RG local noise source

$K_{\gamma_n,\gamma_n} = 2(P_{\mathrm{c}k0} + P_{k\mathrm{c}0}),$	
$K_{\gamma_p,\gamma_p} = 2(P_{vk0} + P_{kv0}),$	$\gamma_n \rightarrow \frac{\text{Langevin source,}}{\text{e-continuity equation}}$
$K_{\gamma_n,\gamma_p}=0,$	$\gamma_p \rightarrow \frac{\text{Langevin source,}}{\text{p-continuity equation}}$
$K_{\gamma_k,\gamma_k} = 2(P_{ck0} + P_{kc0} + P_{vk0} + F_{vk0})$	$_{kv0}$), Langevin source.
$K_{\gamma_n,\gamma_k} = -2(P_{ck0} + P_{kc0}),$	$\gamma_k \rightarrow k$ th trap rate equation
$K_{\gamma_p,\gamma_k} = 2\left(P_{\nu k0} + P_{k\nu 0}\right)$	
	$P_{\mathrm{c}k} = c_{n,k} n(N_{\mathrm{t},k} - n_{\mathrm{t},k}),$
Trap transition <i>P_{kc}</i> probabilities <i>P_{vk}</i>	$P_{kc} = c_{n,k} n_{1,k} n_{t,k},$
	$P_{vk} = c_{p,k} p_{1,k} (N_{t,k} - n_{t,k}),$
UCD 1/5/2009	$P_{kv} = c_{p,k} p n_{t,k} $ 20/34

Solving the PB model in LS: total discretized model & solution

 (Space) discretized PB model + embedding circuit → differential algebraic equation (DAE)

System size: $N_{eq} = (3 + N_t)(N_i + N_x) + 2N_c$

For a 3-terminal device with 2000 nodes mesh and 3 traps *N*_{eo}=12,004!

- Direct computation of the steady-state response
 - Frequency-domain: Harmonic Balance (HB)
 - Time-domain: shooting method
 - Autonomous case?

UCD 1/5/2009

23/34

Case studies

2D n⁺p diode

UCD 1/5/2009

 motivation: low-frequency noise compact modelling usually based on amplitude modulation of stationary SS noise generators → is this generally correct / accurate?

GaAs MESFET and AlGaAs/GaAs HEMT Mixer

- 2D LS mixed-mode noise simulation

24/34

Remarks

- The SS 1/f like behaviour is preserved in the (0,0) sideband
- However, conversion to upper sidebands acts differently for bulk and surface traps
- Therefore, noise in upper sidebands is markedly different from modulated SS noise → which would have the same 1/f like behaviour for all sidebands
- Impact on compact modelling!

UCD 1/5/2009

29/34

Conclusions

- Numerical noise simulation has (hopefully) reached maturity
- Progress made in understanding low-frequency noise (→1/f) and its frequency conversion (also → compact modelling)
- Incouraging advances in oscillator PB modelling
- LS noise simulation requires more efficient WP solvers (time domain?)
- General strategy for LS compact modelling still an open problem – but this is another story!

UCD 1/5/2009 34/34