
25 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

GT: Picking up the Truth from the Ground for Internet Traffic / Gringoli, F; Salgarelli, L; Dusi, M; Cascarano, Niccolo';
Risso, FULVIO GIOVANNI OTTAVIO; Claffy, K. C.. - In: COMPUTER COMMUNICATION REVIEW. - ISSN 0146-4833. -
39:5(2009), pp. 13-18. [10.1145/1629607.1629610]

Original

GT: Picking up the Truth from the Ground for Internet Traffic

Publisher:

Published
DOI:10.1145/1629607.1629610

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2281783 since: 2016-05-23T18:19:56Z

ASSOC COMPUTING MACHINERY

GT: picking up the truth from the ground for Internet traffic∗

F. Gringoli, L. Salgarelli, M. Dusi
Università di Brescia

N. Cascarano, F. Risso
Politecnico di Torino

K. C. Claffy
CAIDA

ABSTRACT
Much of Internet traffic modeling, firewall, and intrusion
detection research requires traces where some ground truth
regarding application and protocol is associated with each
packet or flow. This paper presents the design, development
and experimental evaluation of gt, an open source software
toolset for associating ground truth information with Inter-
net traffic traces. By probing the monitored host’s kernel
to obtain information on active Internet sessions, gt gathers
ground truth at the application level. Preliminary exper-
imental results show that gt’s effectiveness comes at little
cost in terms of overhead on the hosting machines. Fur-
thermore, when coupled with other packet inspection mech-
anisms, gt can derive ground truth not only in terms of ap-
plications (e.g., e-mail), but also in terms of protocols (e.g.,
SMTP vs. POP3).

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations

General Terms
Experimentation, Measurement

Keywords
Ground truth, application layer, transport layer

1. INTRODUCTION
The majority of research activities carried on under the

umbrella of Internet traffic analysis requires the association
of application and protocol ground truth information with
traffic traces. Most mechanisms used today to link ground
truth meta-data to Internet traffic traces roughly conform
to one of the two following procedures. One approach is
to create a trace manually by instantiating a realistic pool
of applications on many machines. However, such captured
traffic typically lacks characteristics that human behavior
can induce. The second approach is to record traffic on
a live network, and apply deep packet inspection (DPI –
pattern-matching filters) to each packet’s payload, usually
complemented by port analysis. But DPI is ineffective when
traffic is encrypted and ambiguous when different protocols
exhibit similar signatures, and port-based analysis is rapidly
becoming useless.

∗This work was supported in part by a grant from Cisco
Systems, Inc.

This paper introduces “gt”, a new mechanism to provide
ground truth at the application level. The gt architecture
is based on a client tool that, by monitoring a host’s kernel,
associates each packet flow with the name of its controlling
application, and transmits the collected information to a
back-end. The post–processing toolset “ipclass” analyzes
the traffic captured at the network border by an independent
probe and associates each flow with its application label, lay-
ing a reputable foundation for the establishment of ground
truth for that flow. The tool works on many widespread
operating systems, and it is freely available under an Open
Source (BSD) license [1].

We evaluate the effectiveness of the toolset in two network
environments, with the help of colleagues who consented to
be monitored with gt. Our experiments show that the gt

architecture can tag up to 99% of the bytes and 95% of the
flows on all platforms, while consuming about 5% of the
resources on 2GHz CPUs.

In order to derive ground truth both at the application
level (e.g., attaching the “Firefox” or “Thunderbird” label
to a given flow), and at the protocol level (e.g., attaching
the “SMTP” or “HTTP” label), we include in gt a DPI-
based mechanism. We show that the combination of the
application label with payload inspection can significantly
improve the accuracy of ground truth meta-data1 compared
to current approaches that rely solely on DPI.

The rest of the paper is organized as follows. Section 2
covers the related work. Section 3 presents the gt architec-
ture, discussing the main technical aspects of its implemen-
tation. Section 4 describes our experimental testbed and
Section 5 the results of our tests on gt. In light of such
results, we further discuss two of the main design choices in
Section 6, while Section 7 concludes the paper.

2. RELATED WORK
Payload inspection, if traces contain at least a portion of

the payload, is one of the most popular techniques to es-
tablish a form of protocol ground truth [2, 3]. Port-based
mechanisms are also used, especially for those working with
publicly available traces whose payload has been entirely
stripped [4, 5]. However, both port and payload-based tech-
niques can only provide an estimate of the protocol being
carried, in contrast with gt which unequivocally tags the
flow with the application that generated it.

1Although ground truth should be, by definition, accurate,
not all meta-data that specifies ground truth for Internet
traffic traces is correct, since it is often derived with inaccu-
rate means, such as port analysis or DPI.

Manual generation of traffic can provide ground truth
at the application level. Recently Dusi et al. [6] used this
technique to collect SSH-encrypted data, by capturing both
clear-text and the corresponding SSH-tunneled sessions. Al-
though this approach can deal with encrypted traffic, it can-
not prevent system daemons or other background applica-
tions from generating their own traffic, which may not be
possible to accurately tag.

Trestian, et al. [7] describe a heuristic that combines in-
formation freely available on the web (through Google) to
retrieve the class of applications that generated a flow. The
authors evaluate this heuristic on traffic flows collected on
several Tier-1 networks, and correctly classify 60% of traf-
fic whereas BLINC [8] classifies only 30%. Although the
approach does not require running any daemon on the mon-
itored host, it relies on external resources, namely Google,
to keep current information about the web, as well as track
DNS dynamics for services on dynamic IP address. Instead,
our approach queries the name of the application directly
on the machine that generated the flow.

Szabo et al. [9] offers a more advanced approach in ap-
plication detection and tagging. The mechanism records
part of the name of the application that generated each IP
packet and embeds this information into the packet itself
by means of a Router Alert IP option. Embedding ground
truth information directly in IP packets poses some method-
ological problems. The “stamping” of each packet happens
in real time, which might affect the packet capture process
(e.g., packet inter-arrival times), lowering the precision of
the recorded traces. Also, the mechanism cannot mark pack-
ets whose size is closer to the MTU (unless IP fragmentation
is used), since it requires adding an option to the IP header.
Furthermore their implementation is Windows XP-specific:
porting to other OSes, even other Windows flavors, requires
a considerable amount of work at kernel-level. The software
also lacks a set of tools that allow capturing traffic and post-
processing data in order to assign the ground truth to each
connection; the tool provides application but no protocol in-
formation for a given flow. Finally, the tool has not been
released to the public.

Canini et al. [10] recently presented a new platform, the
Ground Truth Verification System (GTVS), that uses a com-
bination of heuristics at different levels (host, flow, packet)
to improve the quality of ground truth associated with packet
traces. The GTVS platform does not (yet) include appli-
cation labels guaranteed to be accurate, such as those pro-
vided by gt. Conversely, gt currently uses only a DPI–based
mechanism to correlate application labels to protocol infor-
mation, so it could benefit from the additional heuristics de-
scribed in [10]. These two approaches are complementary;
in future work we hope to evaluate whether in combination
both tools perform better than either one alone.

3. THE gt ARCHITECTURE
The gt architecture has four elements: a client daemon

that runs on all monitored hosts, retrieves from the ker-
nel the name of the application that generated each flow,
and sends this information to a remote back-end; a packet
capture engine, which in our scenario is co-located with the
network’s border gateway to the Internet; a database server
that collects the labels assigned by client daemons; and a set
of post-processing tools called ipclass to label each flow with
an application and optionally run other heuristic algorithms

Border
router

hosts
running

GT daemon
Internet

GT SQL
Server

IPClass
Tool

Traffic dump

GT
metadata

GT log
information

GT log
 information

Figure 1: A typical application scenario of gt.

to pinpoint the flow’s characteristics. Figure 1 depicts the
scenario we used to test gt: a LAN with several hosts con-
nected to the Internet via a border router, which records
traffic between the monitored hosts and the Internet.

3.1 The gt client daemon
The main functionality of the client daemon is to track

changes in active network sockets, and collect and transmit
to the database server relevant information about the ap-
plications that own the sockets. We designed the daemon
around a user-space table that mirrors the active socket list
handled by the kernel. A single-thread loop periodically syn-
chronizes the user-space and kernel tables, logging changes
to the database. The loop frequency is configurable, and its
value affects both gt’s accuracy and the performance impact
on the hosting machine: Section 5.1 explores this tradeoff.

The client currently compiles and runs on many differ-
ent platforms. It runs as a service on Windows Vista, XP
and 2003. It works in daemon mode on many Unix-like sys-
tems, including Linux distributions with kernels 2.4 and 2.6,
Mac OS X 10.4 and 10.5, and FreeBSD 5 and 6.

3.1.1 Kernel polling engine
The kernel polling engine is the core of the client dae-

mon. It samples at fixed intervals the state of active sock-
ets as recorded by the kernel, reconciling such information
with gt’s table in user-space, and assigning an application
name to each socket. The output is a list of active sockets,
identified by the classical 5-tuple (source and destination IP,
port numbers and transport protocol), each labeled with the
name of the application that owns it.

The logic that associates each socket with the process that
owns it, and its corresponding “application label”, is differ-
ent depending on the operating system. Table 1 reports the
techniques the client daemon uses to retrieve socket infor-
mation from the kernel and track changes in user space,
along with the privileges required to install and run the
client. Only Mac OS X 10.4 requires administrator privi-
leges, since it does not provide sysctl calls to access the lists
of sockets owned by each process: one must directly parse
kernel memory or copy it to user space before parsing. Note
that Apple documentation discourages this approach, since
the data structures may vary by kernel release, and Apple’s
development forum suggests to “popen” an official lsof pro-
cess and parse its output, the execution of which proved too
slow for our client daemon needs.

3.1.2 Communication module
To synchronize data transmission (to the database) with

polling without taxing system resources, at the end of each

OS Socket info Priv.
Linux 2.4/2.6 proc filesystem user

Mac OS X 10.4
/dev/kmem (PPC)

root
virtual mem fcnt+sysctl (Intel)

Mac OS X 10.5 libproc+sysctl user
FreeBSD 5.x/6.x sysctl user
Windows XP/

IpHlpApi.dll library user
Vista/2003

Table 1: List of operating systems supported by the
gt client daemon, along with the techniques used to
retrieve kernel socket information, and the type of
privileges required.

loop the polling engine organizes the ground truth informa-
tion in a temporary buffer. The engine transmits the tem-
porary buffer to the database at configurable time intervals
(five seconds in our tests).

The client daemon also implements a heartbeat proto-
col, informing the database server of its status. This allows
ipclass to detect when the client daemon is active on each
host, and correlate such information with the traffic traces.
In case the client daemon might be suspended, moved, or
otherwise made unable to reach the database, the commu-
nication module re-initializes the daemon, signaling to the
database a clean re-start and transmitting all currently ac-
tive sockets. Thus, ipclass will know that a recovery has
occurred and behave accordingly.

3.2 Packet capture engine and database server
The gt architecture can be deployed with any packet cap-

ture engine. The only requirement is clock synchronization
between the capture device and database server, which must
be accurate enough to ensure correct correspondence be-
tween the first packet of a flow and its ground truth log
within the database. Similar considerations hold for the
database server: any relational database would do. We
built the current version of the toolset around tcpdump and
MySQL.

Ground truth information coming from all gt client dae-
mons is written to the same database table. Each row con-
tains the 5-tuple for each logged socket, plus log time, name
of the application owning the socket and type of log event:
create, destroy, etc., depending on what happened to the
corresponding socket.

3.3 Post-processing: the ipclass toolset
The gt architecture includes a set of post-processing tools

which we developed, collectively called ipclass, and wrote
in Python. ipclass reconciles ground truth information
contained in the database with the captured traffic traces.
While in the TCP case we consider only those flows start-
ing with a valid three-way-handshake, for UDP we reserve a
flow in the hash table as soon as we observe its first packet.

When we observe the first packet of a flow, say with times-
tamp t0, ipclass looks in the database for a flow with a
log time tlog close to t0, in a time window that depends on
the polling time and the reporting interval (i.e., the time be-
tween subsequent transactions between the gt client daemon
and the database). If found, the entry will unequivocally
identify the application that generated the flow, according
to the gt-client recorded information.

3.3.1 Handling UDP traffic
UDP traffic requires special attention when reconciling

ground truth information with traffic traces. Applications
can use two kinds of UDP sockets: connected and bound.
The former is managed by the kernel through the connect

syscall and allows the application to send messages to a sin-
gle destination IP address/port. The kernel maintains in-
formation about the 5-tuple for each connected socket. The
latter is handled through the bind syscall and allows ap-
plications to specify the destination IP/port address each
time they send messages through it. We call this type of
socket “anonymous UDP”, for which the kernel stores only
the local IP address and port pair.

To deal with anonymous UDP sockets, ipclass initial-
izes an internal database when it starts, with the informa-
tion concerning all tagged anonymous UDP sockets. For
each socket it extracts the IP address H of the logging host,
the log time TS = tlog, the ephemeral port P , the applica-
tion label A and the log type event. For a “create” event,
ipclass adds an entry for that host+port to the UDP inter-
nal database. A “destroy” event for the same host+port will
add the ending time TE = tlog to its entry: this way ipclass

will derive that during the time interval [TS , TE] port P on
host H was owned by application A. Therefore, all flows
that share such host+port will be tagged as belonging to A.

3.3.2 Associating protocols to flows
Although gt by design associates a flow with an appli-

cation, such information can also be used to derive accu-
rate ground truth with respect to the application proto-
col. In ipclass we implemented a DPI module that applies
a selected set of signatures, specific to an application, to
each network flow. We start by inspecting each application
recorded by gt (e.g. browsing source code, reading public
documentation and observing its behavior) and compiling
a list of protocols used by the application itself. We then
use the public signatures from l7filter [11] to construct a
signature list that matches our observations. gt returns the
protocol associated with each flow by matching each flow
with the subset of signatures that we associated with that
application.

Our experiments show that this selective signature-based
matching is accurate. For example, in our tests it allowed
the accurate tagging of some of the Skype flows, for which
DPI–alone matched the signature of the NTP protocol. How-
ever, while gt’s reported application label is 100% accurate
by design, it may report an incorrect protocol, or not detect
it at all if no signatures match. Section 5 expands on this
point.

4. TESTBED SETUP
We evaluated gt on two campus network environments:

at the University of Brescia (UNIBS) and the Politecnico
di Torino (POLITO), whose abstract topologies are shown
in Figure 1. We found a set of informed users consenting
to participate in the experiment, and instrumented a set of
hosts on the same subnet with the gt client daemon, asking
participants to use the Internet as they usually do.

At UNIBS, we installed the gt client daemon on a dozen
machines inside the campus, running a mix of Mac OS X,
Linux and Windows operating systems, used by graduate
students and faculty. We captured all the traffic generated
by these hosts for six days, collecting about 18GB.

30%
40%
50%
60%
70%
80%
90%

100%

125 250 500 1000 2000 4000

Ta
gg

ed
 T

C
P

tra
ffi

c

Polling time (ms)

Windows (flows)

Linux (flows)

Mac OS X (flows)

Windows (bytes)

Linux (bytes)

Mac OS X (bytes)
70%

80%

90%

100%

125 250 500 1000 2000 4000

Ta
gg

ed
 U

D
P

tra
ffi

c

Polling time (ms)

Windows (flows)

Linux (flows)

Mac OS X (flows)

Windows (bytes)

Linux (bytes)

Mac OS X (bytes)

Figure 2: Completeness for TCP (left) and for UDP traffic (right), standalone polling mechanism, with the
service-based enhancement not enabled (see Section 5.1.1). Continuous line is for flows, dashed line for bytes.

At POLITO, we installed the gt client on four real ma-
chines running Linux, Windows Vista and Mac OS X and on
ten virtual machines running Windows XP, which executed
two popular P2P WebTV applications (TvAnts, SopCast).
We monitored for three days and collected 200GB of traffic.

In both environments we captured only traffic of the se-
lected subnets when it traversed the university’s upstream
link to the Internet. Specifically we mirrored the upstream
link to a machine running tcpdump [12] which captured full
packets in pcap format. At UNIBS we ran vanilla tcpdump

on a high-end, 2.4 GHz quad-core machine able to sustain a
load that never exceeded a few tens of Mb/s. At POLITO we
used an Endace capture card to sustain the high traffic load
(more than 100Mbps) on the exit link. Internal counters on
the operating system of the capturing machines indicated no
packet loss during the capture. Socket information collected
by gt on each machine was sent to a MySQL server running
on a dedicated machine inside each campus’ network. We
used Network Time Protocol to maintain synchronization of
the clocks of the capturing device and of the SQL server.

5. EXPERIMENTAL ANALYSIS
We evaluated the performance of gt with respect to two

metrics. The first, which we call completeness, is the frac-
tion of traffic produced by the instrumented end-hosts that
gt is able to tag. A polling-based architecture is unlikely to
catch every socket, so in our first experiments we try to max-
imize completeness given other performance constraints. To
achieve a completeness approaching 100% while maintain-
ing an acceptable CPU load on the monitored host, we in-
cluded in gt a service-based mechanism (described by Baldi
et al. [13] and also used by Karagiannis et al. [8]), that ex-
ploits the knowledge previously gathered by gt (while pro-
cessing earlier flows) of which service is offered at given net-
work coordinates (IP address and TCP/UDP port pair) to
assign the same label to all sessions directed toward those
coordinates.

Our second set of experiments examines how the combi-
nation of the application label and payload inspection can
improve the accuracy2 of ground truth meta-data for In-
ternet traffic traces, as opposed to what obtainable using
solely DPI-based mechanisms. Here “accuracy” is defined
as the fraction of traffic (flows or bytes) that DPI correctly
identifies as a particular application using a particular pro-
tocol. A DPI device can produce inaccurate output when
no patterns match an observed flow, or multiple protocols

2See footnote #1 of this paper.

match, or when a single match is found but it is wrong (false
positive).

5.1 Completeness
The gt configuration parameter most relevant to com-

pleteness is the polling time, i.e., the time between two con-
secutive queries to the socket internal structures. Too short
a polling interval will incur unnecessary overhead on the
monitored host, but the longer the polling interval, the more
sockets, and thus flows, we will miss. Our first experiments
evaluated the effects of the polling time value on accuracy
(completeness) and resource consumption (CPU load).

For these first experiments, we used three machines, a
subset of those described in Section 4. One of them ran the
64-bit-version of Windows Vista, the other two ran Linux
Gentoo 2.6 and Mac OS X Leopard 10.5.5 respectively. All
machines were equipped with a 2GHz Intel Core 2 Duo pro-
cessor and at least 3GB RAM. On each host we simultane-
ously launched several instances of gt with different polling
time values and we let them run for about three hours. For
each instance we calculated the percentage of CPU used
(i.e., the ratio between the CPU time required by the given
gt instance and the total CPU time) and the percentage of
tagged TCP and UDP flows and bytes3.

On all machines, the CPU load due to gt smoothly de-
creased as polling time increased. On all architectures, a
4-sec polling time caused a CPU load well below 5%. The
load stabilized around 5% with a 1sec polling time for all
architectures except for Linux, where the daemon induced a
12% CPU load. Shorter polling times led to increased load:
with an interval of 125msec we registered a maximum CPU
load of 50% on the Windows machine and around 20% on
the other platforms. These results depend largely on the
traffic generated by each host and how operating systems
handle system calls.

Figure 2 (left) shows how the polling time affected com-
pleteness for TCP traffic, in terms of flows and bytes. Inde-
pendent of the platform and polling times, gt tagged more
than 99% of TCP traffic measured in bytes. In terms of
flows, results thus far are less impressive: the fraction of
tagged sessions was around 60%-80%, except for the Mac OS X
case, which tagged over 90% of flows, at least with short
polling intervals. It seems that the Mac OS X kernel main-
tains the link between the process name and its socket longer
after the session has ended than other platforms, facilitating
gt’s job.

3The total CPU load on each machine was always under
100% during the experiment.

Application classes Protocols (signatures)

Web-browsers (Safari, Firefox, etc.) HTTP, SSL
Mail-clients (Evolution, Apple Mail,
etc.)

HTTP, POP3, IMAP,
SMTP, SSL

P2P-data (µTorrent, Transmission) BITTORRENT, HTTP
Skype SKYPE, HTTP

Table 2: Subset of protocols (and corresponding
DPI signatures) used by a few sample applications
from the UNIBS and POLITO datasets.

Figure 2 (right) shows that for UDP traffic, gt performed
better than for TCP: on Unix kernels, the completeness in
terms of UDP flows always exceeded 87% (100% on the
Linux machine), while it exceeded 78% in the TCP case.
We believe this is due to anonymous UDP sockets that the
kernel left indefinitely allocated. On the Windows platform,
the percentage of tagged bytes stayed around 77% indepen-
dent of polling time. We are trying to further investigate
the source of this sub-standard result as follow-on work.

5.1.1 Approaching 100% completeness
In our experiments, a significant number of flows escaped

gt’s observational power, especially on Windows, for which
gt’s completeness for TCP flows was around 45% when us-
ing a polling time of one second. Further analysis showed
that those flows were extremely short (on average, less than
200msec), which explains their small impact on gt’s com-
pleteness in terms of bytes.

To compensate for those flows without further decreasing
the polling time, we paired gt with a service-based tech-
nique [8, 13]. Given an untagged flow, this technique looks
for another flow that shares the network coordinates (desti-
nation IP address and TCP/UDP port pair) and was tagged
by gt. If such a correspondence exists and is unique, we
assume that both flows were generated by the same appli-
cation.

We preliminary evaluated this method on the traffic gen-
erated by three machines at UNIBS (running Linux, Win-
dows and Mac OS X, respectively) for which gt was con-
figured with a one-second polling time, achieving over 95%
of completeness across about 30,000 flows, i.e., gt success-
fully tagged 95% of flows produced by hosts, which cor-
responded to more than 99% in terms of bytes. A simi-
lar test led us to equivalent results for the POLITO trace,
where completeness when using the service-based technique
approached 100% in terms of both bytes and flows.

Although specific to the two traces we used, these re-
sults suggest that the service-based technique might effec-
tively compensate for short flows generated by web browsers,
mainly due to web-caching mechanisms, and for flows gen-
erated by P2P applications sending signaling traffic towards
random ports.

5.2 Improving the accuracy of other ground
truth mechanisms

Although gt labels refer to application names, and not
application protocols, the knowledge of the gt label can
be used to improve the accuracy of protocol ground truth
obtained with other mechanisms, such as port analysis or
DPI. Knowing the application that generated a given flow
can, in fact, help narrow the subset of possible protocols that
generated it. For example, the command-line ftp program

Flows Bytes

UNIBS 95.47% 67.73%
POLITO 79.31% 58.79%

Table 3: Accuracy of ground truth meta-data de-
rived with a DPI–alone mechanism.

available on many BSD-like systems can use only the FTP-
COMMAND and FTP-DATA protocols. A flow labeled by
gt as ftp can then be tested with a DPI by considering only
the patterns of these two protocols, thus reducing the risk
of tagging it with an inaccurate protocol label.

Any technique that provides protocol-level ground truth
estimates can take advantage of gt labels, and the protocol
subsets they imply, to better ascertain the nature of a flow.
In this section we evaluate the accuracy improvement gt po-
tentially offers a DPI (payload inspection) technique, which
is still the primary mechanism used to derive the ground
truth about network traffic at the protocol level.

We started by processing the POLITO and UNIBS traces
with a DPI mechanism that we implemented in ipclass

based on all the signatures available in [11]: we call this
method “DPI–alone”. We then processed the same traces
again with ipclass, but this time we used only the sub-
set of signatures relevant to each flow, according to the gt-
assigned application label as reported in Table 2. We call
this mechanism “GT+DPI”.

Given the absolute accuracy of the gt label at the appli-
cation layer, the ground truth returned by the DPI–alone
mechanism can be trusted only when its output matches
that of GT+DPI. We therefore define “accuracy” of the
DPI–alone mechanism as the fraction of traffic for which the
protocol label assigned by GT+DPI uniquely corresponds to
the one assigned by DPI–alone.

Table 3 presents the results of the experiment. On the
UNIBS trace, DPI–alone correctly tagged 67.73% of the
bytes: this means that gt had the potential to improve the
accuracy of DPI by more than 32% (in bytes). gt’s ability
to improve the flow-based accuracy of this trace was lim-
ited to only 4%, which means that the few flows where DPI
failed carried substantial traffic volume in that trace. On
the POLITO dataset, gt signaled inaccuracies of DPI–alone
in more than 41% of the cases (in bytes) and in almost 21%
in terms of flows, which were mostly connections generated
by P2P applications.

We then extracted the fraction of flows and bytes for the
applications where adding the gt label had the least and
most significant impact for the two traces. Table 4 presents
these results. As expected, for flows generated by appli-
cations that use mostly clear-text protocols (web browsers
and mail clients), the output of DPI–alone is accurate (over

UNIBS POLITO
Flows Bytes Flows Bytes

Web Browsers 97.26% 98.97% 91.55% 96.81%
Mail Clients 92.37% 90.46% 90.00% 35.82%
P2P (data) 22.62% 8.67% 59.37% 34.10%
Skype TCP 4.64% 16.34% 4.99% 9.20%
Skype UDP 97.12% 97.90% 95.80% 94.73%
P2P (WebTV) N.A. N.A. 0.00% 0.00%

Table 4: Accuracy of the DPI–alone approach: de-
tails.

90%). The gt label is particularly useful for applications
that use encryption or obfuscation mechanisms to hide their
traffic, such as Skype and P2P file sharing applications.
The gt label was also essential to ascertaining ground truth
for the traffic generated by P2P video applications in the
POLITO trace, such as TvAnts and SopCast, for which no
public signatures were available. Finally, the results showed
the accuracy of the L7filter signature for Skype UDP traffic,
which the gt label confirmed was effective in more than 94%
of the cases, in both bytes and flows. In contrast, the gt la-
bel also tells us that only a small fraction of Skype TCP
traffic is accurately detected by L7filter’s (DPI) signature,
due to Skype’s use of obfuscation and encryption [14].

6. DISCUSSION ON DESIGN CHOICES
We tested gt in this paper by decoupling the collection of

ground truth knowledge, which is performed on end hosts
by means of a client daemon, from the capture of traffic
traces, which in our experiments was done on a border router
(Figure 1). Although this scenario is quite typical, it is
worth noting that the gt architecture fully supports other
usage modes, such as a distributed deployment where each
end host tags their flows and captures the traffic it produces
without the help of a central node.

The second observation is related to the choice of imple-
menting the tagging engine as a user-space polling daemon.
During the development of gt, we also implemented kgt, a
kernel version of the client tool for the Linux 2.6 architec-
ture. Although this particular implementation allowed us
to obtain 100% completeness even without the service-based
enhancement, portability and extensibility issues led us to
prefer the implementation of gt in user-space. Porting kgt

to other UNIX-like kernel architectures such as Mac OS X is
itself a daunting task, due to the radically different syscalls,
and Windows would require a completely different approach,
e.g., writing wrappers to intercept each socket operation, as
anti-virus or anti-spyware tools do.

We opted to maintain only the user-space code, counter-
ing the resulting lower completeness with the service-based
mechanism as explained in Section 5.1.1, while gaining an
easily portable code base, and therefore greater applicability
to diverse uses, environments, and research goals.

7. CONCLUSIONS
This paper presents the first implementation of gt, an

open source [1] toolset that allows the capture of traffic
traces with associated meta-data indicating what applica-
tion actually sent each packet, a knowledge base essential to
many Internet measurement research activities. By examin-
ing the TCP/IP stack of monitored client hosts, gt assigns
application labels to traffic flows, allowing storage of ground
truth with the trace without altering the statistical proper-
ties of the trace itself. In post-processing, such informa-
tion helps in deriving not only meta-data on the generating
application, but also the protocol used, by correlating the
application label to the estimate of payload analyzers.

Experimental tests demonstrate the effectiveness of our
approach, which can tag more than 99% of bytes and 95%
of flows produced by monitored nodes, without significantly
affecting CPU load, thanks to the combination of a polling
mechanism with a simple service-based heuristic. Our ex-
periments also demonstrate that gt can improve the accu-

racy of DPI–derived ground truth up to 85% (flows) for a
critical application like Skype (on TCP), and up to 91%
(bytes) for P2P applications. While these results are based
on the applications present in our two sample datasets, we
expect significant improvements for other applications that
use encryption or obfuscation mechanisms.
gt can be useful to research activities that go beyond traf-

fic classification. For example, it is being evaluated at the
LIP6 laboratories in Paris as a tool to help the automated
diagnosis of applications responsible for performance degra-
dations in local networks.

We are currently working to further optimize gt’s code
in order to reduce load on host machines, especially on the
Linux architecture. We also plan to provide to the com-
munity a set of anonymized Internet traces with associated
meta-data derived from gt in the near future, once we man-
age to clear the legal hurdles connected to such a release.

8. REFERENCES
[1] The Ground Truth software tools.

http://www.ing.unibs.it/ntw/tools/gt.

[2] J. Erman, M. Arlitt, and A. Mahanti. Traffic
classification using clustering algorithms. In Proc.
ACM SIGCOMM MINENET Workshop, Pisa, Italy,
Sep. 2006.

[3] H. Kim, K. Claffy, M. Fomenkova, D. Barman, and
M. Faloutsos. Internet Traffic Classification
Demystified: The Myths, Caveats and Best Practices.
In Proc. ACM CoNEXT, Madrid, Spain, Dec. 2008.

[4] The Cooperative Association for Internet Data
Analysis (CAIDA). http://www.caida.org.

[5] LBNL/ICSI Enterprise Tracing Project.
http://www.icir.org/enterprise-tracing.

[6] M. Dusi, M. Crotti, F. Gringoli, and L. Salgarelli.
Tunnel hunter: Detecting application-layer tunnels
with statistical fingerprinting. Elsevier Computer
Netw., 53(1):81–97, 2009.

[7] I. Trestian, S. Ranjan, A. Kuzmanovi, and A. Nucci.
Unconstrained endpoint profiling (googling the
Internet). SIGCOMM Comput. Commun. Rev.,
38(4):279–290, 2008.

[8] T. Karagiannis, K. Papagiannaki, and M. Faloutsos.
BLINC: multilevel traffic classification in the dark. In
Proc. ACM SIGCOMM, Philadelphia, PA, USA, Aug.
2005.

[9] G. Szabo, D. Orincsay, S. Malomsoky, and I. Szabo.
On the Validation of Traffic Classification Algorithms.
In Proc. PAM2008, Cleveland, OH, USA, Apr. 2008.

[10] M. Canini, W. Li, A. W. Moore, and R. Bolla. GTVS:
Boosting the Collection of Application Traffic Ground
Truth. In Proc. 1st Intl. Workshop on Traffic
Monitoring and Analysis, Aachen, Germany, May
2009.

[11] L7 Filter. http://l7-filter.sourceforge.net.

[12] Tcpdump/Libpcap. http://www.tcpdump.org.

[13] M. Baldi, A. Baldini, N. Cascarano, and F. Risso.
Service-based traffic classification: Principles and
validation. In Proc. IEEE 2009 Sarnoff Symposium,
Princeton, NJ, USA, Mar. 2009.

[14] P. Biondi and F. Desclaux. Silver Needle in the Skype.
In BlackHat Europe, Amsterdam, The Netherlands,
Mar. 2006.

