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in Resin Injection Molding
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Abstract—This paper deals with the modelling of injection moulding processes taking into ac-
count the deformability of the preform and the polymerisation of the resin. The coupled flow–
deformation problem in the infiltrated and dry region is formulated with the corresponding bound-
ary conditions and with the proper evolution equations determining the motion of the boundaries.
An approximated analytical discussion is performed to obtain some estimates on the infiltration
velocity, helping in identifying a window of applicability in the parameters space (i.e., the mould-
ability diagram), which fits well with the numerical simulations.

Mathematical subject classification —35K10, 35R35, 35L10

Key words—Injection moulding, deformable porous media, mouldability diagram.

1. Introduction

The high fluid pressure required in resin transfer moulding, Rudd et al. [32], and the high
compliance of the porous preform can determine a significant deformation of the preform during
infiltration, Danis et al. [13], Kim et al. [19], Michand et al. Michaud et al. [27], Yamauchi and
Nishida [37]. Such a deformation has great influence in the rate of the flow of the infiltrating resin and
in the microstructure of the final product, Sommer and Mortensen [35]. Indeed the permeability of
the preform depends strongly on the pore volume fraction and reduces more and more as the preform
is compressed. The effects of deformation are also important in the case of sandwich structure, with
the displacement and deformation of foam cores during infiltration, Al-Hamdan et al. [5]. A recent
review paper which considers the problem of deformation is Lacoste et al. [21].

In order to identify in advance possible inhomogeneities and damages in the reinforcing network,
it is important to consider a detailed mathematical model which takes into account the deformation
of the solid constituent. One possible framework to address the modelling of the infiltration of a
fluid in a deformable porous medium is to adopt the mixture theory or, more precisely, the porous
media theory. The first examples of this type of applications is in Preziosi et al. [30] and Preziosi
[28].

In this paper, I assume that the preform is saturated (the case of a solid-liquid-air mixture
is dealt with in Antonelli and Farina [2]). On the other hand, we take the effect of curing into
account since it strongly affects the process increasing the viscosity of the resin, preventing the
whole infiltration if the process parameters are not chosen properly. These effects combined with
the deformation of the solid preform have been studied in Farina and Preziosi [14], Farina and Preziosi
[15]. The inertial effects can be neglected, since they are important only in processes induced by
the sudden imposition of the injection pressure during the initial compression, giving rise to quickly

1



decaying small oscillations of the wet border of the preform, as studied in Ambrosi [1], Ambrosi and
Preziosi [3], Ambrosi and Preziosi [4], Mesin and Ambrosi [25].

The main focus of this paper is the deduction of some estimates which can help evaluating the
process parameters generating a successful process and the identification of a window of applicability
in the process parameters called mouldability diagram. This problem has been proposed by several
authors, Clyne and Mason [12], Gonzales-Romero and Macosko [17], Gonzales-Romero and Macosko
[18], Reboredo and Rojas [31], Rudd et al. [32], who put in evidence the importance of identifying, by
the use of modelling and simulation, a window of process pressures and temperatures for a particular
process of interest, for which full infiltration can be obtained. The temperature upper and lower
limits are mainly due to the choice of the resin system; the upper limit of the pressure is given by
either the maximum pump output or the flow rate at which mat tearing or fibre washing occurs. The
pressure lower limit, which is the minimum pressure that provides the full infiltration at a certain
process temperature, can be obtained by a deep study of the infiltration problem, which requires
the mathematical modelling and the quantitative analysis of the process.

The aim of this work is then to study a mathematical model of the injection moulding process,
and to perform an analytical and numerical discussion in order to help in improving the manu-
facturing procedure identifying the optimum set of operating parameters. The paper shows how a
mathematical model can help identifying the mouldability diagram.

The model used is non linear and presents coupled equations modelling the inflow of a reac-
tive resin undergoing polymerisation into a deformable preform. The coupling between the curing
equation and the porous media equations modelling the preform causes the mathematical analysis
of the problem to be fairly involved. Some analytical results can be found in the literature, under
the simplifying assumption of a rigid preform, Billi [6], Billi [7], Billi and Farina [8]. In this paper
some analytical results on the infiltration rate are obtained in the one–dimensional isothermal case,
but considering both the deformation of the preform and the polymerisation of the resin. An upper
bound for the infiltration velocity (and hence also a lower bound for the infiltration time) is given. A
further analytical estimate for the infiltration velocity is also given, which fits well with the numer-
ical simulations and allows to find out very simply the optimal values for the process parameters.
The numerical analysis regards the full non-isothermal model and puts in evidence the quality of
the isothermal estimates (see also Liu [24], for other results in the isothermal approximation).
After this introduction, the paper is organised as follows:

– the second section is devoted to a short introduction of the classical framework in which the
model is developed;

– the third section illustrates the model in the one dimensional case and presents the mathematical
problem;

– in the fourth section, the numerical analysis is explained and the numerical results are shown;
– in the fifth section, under some approximations, analytical approximate expressions for the

motion of the infiltration front and some estimates on the mouldability diagram are given.

2. Mathematical model

A proper theoretical framework to model the injection moulding process is the theory of de-
formable porous media, which can be obtained on the basis either of mixture theory or of others
averaging methods.

The physical assumptions of the mathematical model considered are the following:
A1. inertia is negligible if compared to the stresses;
A2. the principle of constituent separation is assumed, which means that the Helmholtz free

energy densities depend only on quantities related to their own constituent variable;
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A3. surface tension and capillary effects are neglected;
A4. small departures from thermal equilibrium are studied;
A5. the motion of the fluid through the skeleton is slow, in order to neglect the viscous effects

compared to the pressure gradient;
A6. all the constituents have the same temperature.
Based on the previous assumptions, the classical model for a porous medium can be recovered

introducing conservation laws for the mass, the momentum and the energy.
In the model a fundamental role is played by the fact that the resin undergoes a polymerisation

process usually referred as curing cycle. The polymerisation process consists in an exothermic cross-
linking chemical reaction which links monomers to build longer and longer polymers. The state of
the reaction is described by the so-called degree of cure (or resin conversion) δc(x, t) defined as the
ratio of the amount of heat H released by the curing reaction over the total heat of reaction Hc:
δc(x, t) = H(x,t)

Hc
∈ [0, 1]. As the liquid is moving, the evolution of the degree of cure can be modelled

by
∂ δc

∂ t
+ vf · grad δc = fc (δc, Θ) , (7.2)

where fc is a curing function describing the chemical reaction which is measured experimentally.
The curing reaction enters the model of the infiltration process by the two following effects:

– a supply term R = φfHcfc(δc, Θ), where φf is the resin volume fraction, is introduced in the
energy balance, due to the heat released by the reaction;

– a viscosity increase, which becomes dramatic (it blows up) as the resin approaches a stage
known as gelation, indicted by δg.
Referring to Preziosi and Farina [29], in the Eulerian framework, the mathematical model for

the wet (or infiltrated) region writes





∂φs

∂t
+ div (φsvs) = 0 ,

div vc = div(φsvs + φfvf ) = 0 ,

φf (vf − vs) = −K
µ

grad P ,

div T′w − gradP = 0 ,

ρC

(
∂Θ
∂t

+ vs · grad Θ
)

= ρf Cf
K

µφf
gradP · grad Θ + div(k grad Θ)+

+
1
µ

gradP ·K grad P + tr (T′wgradvs) + φf Hc fc ,

∂ δc

∂ t
+ vf · grad δc = fc ,

(2.2)

where the index f refers to the fluid component (a resin) and s to the solid preform, φ denotes the
volume fractions (φf = 1−φs, which corresponds to the saturation assumption), K the permeability
tensor of the preform, T′w the excess stress tensor in the wet region, P the pore pressure, ρ the density
of the mixture as a whole, C (Cf ) the total (fluid) heat capacity, k the heat conductivity tensor.

For the dry region, neglecting air, the following model is considered





∂φs

∂t
+ div (φsvs) = 0 ,

div T′d = 0 ,

ρs Cs

(
∂Θ
∂t

+ vs · grad Θ
)

= div(ks grad Θ) + tr (T′dgradvs) ,

(2.3)
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where Cs is the solid heat capacity, ks is the solid heat conductivity, T′d is the excess stress tensor
in the dry region.

The previous model must be closed by specialising the constitutive relations for the viscosity
µ and the permeability tensor K, the stress tensors in both the wet and the dry region, and the
particular form of the curing function fc.

3. One dimensional problem

We’ll consider the infiltration process to be pressure driven, with a constant pressure jump
∆P applied over the wet region. A one dimensional approximation is studied. Such a model can
approximate an infiltration process concerning generally flat mould cavities, when edge effects are
negligible; the flow simulation for arbitrary component geometries requires to take into account two
or three dimensional models Rudd et al. [32]. The one dimensional model, even if feasible to more
restricted applications, allows to obtain some interesting analytical estimates.

Referring to Figure 1, the preform is considered to be fixed with a net on the right and the fluid
to enter from the left solid border of the preform.

The resin is supposed to infiltrate a matrix initially compressed, presenting a constant volume
fraction corresponding to the applied pressure (referring to Ambrosi and Preziosi [4], Mesin and
Ambrosi [25], considering inertial terms and starting from a relaxed matrix, rapidly decaying oscil-
lations affect the system only at the early times). The length of the compressed preform is denoted
by L = φr

φc
l, where φr and φc are the volume fraction in the relaxed and compressed preform, re-

spectively, and l is the length of the relaxed preform. This means that the left solid border moves
as a consequence of the relaxation of the matrix in the infiltrated region. Referring to Gurtin [16]
and Wilmanski [36], the Lagrangian framework is introduced on the solid constituent, in order to
fix the left solid border. Its position is indicated with X = 0.

Figure 1. Representation of the infiltration problem. The infiltrated (wet) region is delimited by

the two moving boundaries of the problem. The right border of the preform, instead, is fixed by a

web, which allows only the liquid to go through.

In the Lagrangian formulation it is convenient to introduce the so-called void ratio e(X, t) as
dependent variable, in place of the volume fraction:

e :=
1− φs

φs
. (3.1)

Furthermore, the following constitutive assumptions are considered:
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– the stress tensor of the preform is elastic; the elasticity assumption is made in order to get
a simpler model, for which some analytical estimates can be obtained (for a mathematical
discussion of the viscoelastic case, see Ambrosi and Preziosi [4]); this assumption requires to
neglect relaxation phenomena during the process considered (lasting less than 10s, see Figure
3); for metal preforms, due to their elastic-plastic behavior, such an assumption is more critic;
preforms constituted by glass fibres can be better approximated by an elastic model; in the one
dimensional case, the elastic assumption means that the stress tensor is a function (which is
supposed to be one to one) of the void ratio only;

– the permeability depends only on the void ratio (this is another approximation, as permeability
is in general also a function of the temperature).

The one dimensional mathematical model in Lagrangian coordinates in the wet region is the following




∂e

∂t
=

∂

∂X

(
G(e)

µ(δc, Θ)
∂e

∂X

)

ρC
∂Θ
∂t

= ρfCf
K(1 + e)

µ e

(1 + er)2

(1 + e)2
∂T ′w
∂X

∂Θ
∂X

+
1 + er

1 + e

∂

∂X

(
k

1 + er

1 + e

∂Θ
∂X

)
+

+
1
µ

(1 + er)2

(1 + e)2
K

(
∂T ′w
∂X

)2

+ T ′w
1 + er

1 + e

∂

∂X

(
K

µ

∂T ′w
∂X

)
+

e

1 + e
Hcfc(δc, Θ)

∂ δc

∂ t
=

1
e

G(e)
µ(δc, Θ)

∂δc

∂X
+ fc (δc, Θ)

(3.2)

where T ′w = T ′w(e) is the excess stress tensor in the wet region (note that it is positive in compression
contrary to the customary convention) and the following function is introduced

G(e) = − (1 + er)2

(1 + e)
dT ′w(e)

de
K(e) , (3.3)

where er is the void ratio corresponding to the relaxed preform.
We note that equation (3.2.I) is parabolic, since the function G(e)

µ(δc, Θ) is positive. However, its
value approaches zero when δc → δg (near gelation). Furthermore it is assumed that the derivative
of G(e) is a negative function of the void ratio, as it is usually the case in applications.

From equation (2.3.II), written in the one dimensional case, we have that the void ratio is
constant in the dry region in space and time. Hence, the model for the dry region reduces to the
energy balance

ρsCs
∂Θ
∂t

=
(1 + er)2

(1 + ed
c)2

∂

∂X

(
k

∂Θ
∂X

)
. (3.4)

Let’s obtain now the constant value of the void ratio in the dry region. As the excess stress is
constant across the infiltration front, we have

T ′d(e
d
c) = T ′w(ew

c ) , (3.5)

where T ′d is the excess stress in the dry region and ed
c , ew

c are the value of the void ratio at the dry
and wet side of the infiltration front, respectively. Being the excess stress a one to one function of
the void ratio, we can obtain ed

c once we know ew
c . Integrating in space equation (2.2.IV), in its one

dimensional form, from zero to Xi, we have

T ′w(e(t, X = Xi))− T ′w(e(t, X = 0)) = −∆P . (3.6)

The preform is stress free at the left border of the preform, so that

T ′w(ew
c ) = −∆P . (3.7)
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From (3.5) and (3.7) we can then determine ed
c and ew

c , which are constant in time if ∆P is time
independent.

In the one dimensional case an evolution equation for the infiltration front Xi(t) can be given:
its velocity is a Lagrangian velocity, Wilmanski [36]; referring to Ambrosi [1] it can be written as

Ẋi(t) = − 1
ew
c

G(ew
c )

µ(δc, Θ)
∂e

∂X

∣∣∣∣
X−

i

. (3.8)

Referring to Liu [23], Muller [26], Preziosi and Farina [29], the following boundary conditions are
considered 




e(t, X = 0) = er ,

Θw(t, 0) = Θin(t) ,

δc(t, 0) = δin(t) ,

ew(t, Xi) = ew
c ,

Θw(t, Xi(t)) = Θd(t, Xi(t)) ,

ks + ew
c kf

1 + ew
c

[
∂Θw

∂X

]

Xi(t)

=
ks

1 + ed
c

[
∂Θd

∂X

]

Xi(t)

,

Θd(t, L) = Θout(t) .

(3.9)

The initial conditions are {
Θd(0, X) = Θo(X) ,

Xi(0) = 0 .
(3.10)

In what follows, the following conditions are considered
– Θin(t) = Θout(t) = Θo(X) = Θ0, a constant;
– δin(t) = 0, the curing develops inside the preform.

Summarising, the mathematical problem under consideration is given by the system of equations
(3.2) in the wet region, the equation (3.4) in the dry region, (3.8) for the motion of the infiltration
front, supplemented by the boundary and initial conditions (3.9) and (3.10).

4. Numerical simulations

The free boundary problem introduced in the previous section is integrated using a front tracking
method, Crank [11]. The space interval was uniformly sampled (100 samples). The front tracking
method has the advantage of setting smaller time steps (defined as the time needed for the infiltration
front to move to the next spatial sample point) when the infiltration velocity is higher and larger time
steps when infiltration is slowing down, e.g. near gelation. When gelation occurs, the infiltration
process and the numerical simulation stop.

Due to the variable time step, an unconditionally stable method has to be used, Bellomo and
Preziosi [9]. An implicit finite difference method (a backward Euler method) for each equation was
used.
Concerning the degree of cure equation, an implicit upwind method is used for the central nodes.
The infiltration front, instead, is a characteristic of the hyperbolic equation and then the degree of
cure there is obtained by direct integration along such a characteristic.
Domain decomposition techniques, Bellomo and Preziosi [9], are used to interface the problems for
the temperature in the two regions.

The numerical analysis refers to the infiltration of a thermosetting resin in a network of glass
fibers. Referring to Kamal and Sourour [20], Lin et al. [22], Sourour and Kamal [34], I use the
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following specific expression for the isothermal cure rate of a thermosetting resin (a general purpose
unsaturated polyester, see Kamal and Sourour [20] for details)

fc (δc, Θ) :=
[
c1 exp

(
− E1

R Θ

)
+ c2 exp

(
− E2

R Θ

)
δmc
c

]
(1− δc)

nc , (4.4)

and for the viscosity of the resin

µ (Θ, δc) =





µ̄ exp
(

Eµ

R Θ

) (
δg

δg − δc

)cµ+dµ δc

, if δc < δg ,

∞ if δc ≥ δg ,

(4.5)

where mc, nc describe the order of reaction and are independent of temperature, c1, c2 are the
reaction rate constants, E1, E2, Eµ are the activation energies, R is the gas constant.

Regarding the permeability, referring to Young et al. [38], the following relation is used

K(φs) = K0e
α(φ1−φs) . (4.6)

The stress-strain relation is extrapolated from the data reported in Kim et al. [19]

T ′ = β(eγφ − eγφr ) , (4.7)

where β and γ are coefficients taking different values passing from the wet region to the dry one.
Table 1 summarizes all the parameters used in the simulations.

Table 1 : Numerical values of the physical parameters.

Variable Value Variable Value Variable Value
ρs 2560 Kg/m3 Hc 1.54 108 J/m3 mc 0.3
ρl 1100 Kg/m3 c1 3.7833 105 s−1 nc 1.7
Cs 670 J/Kg c2 6.7833 105 s−1 δg 0.1
Cl 16801 J/Kg Eµ 18000 J/mole µ 2.78 10−4 Pa · s
ks 0.168 W/mk E2 54418 J/mole cµ 1.5
kl 0.0335 W/mk E2 50232 J/mole dµ 1

β (wet region) 0.09 Pa β (dry region) 0.3 Pa φr 0.4
γ (wet region) 26.4 γ (dry region) 25 K0 10−9 m2

α 16 φ1 0.6 l 0.3 m

Figure 2 shows typical diagrams of the void ratio and the degree of cure. The discontinuity in
the void ratio corresponds to the fact that different stress - void ratio relations are used in the wet
and dry regions, according to the measurements in Kim et al. [19]. Continuity would be recovered
if a viscoelastic model was used, Ambrosi and Preziosi [4].

However, in this paper I want to focus on the following features of the manufacturing process:
– mouldability diagram;
– infiltration time;
– deformation of the preform.

The mouldability diagram presents the window of parameters for which the industrial process
is successful. The key parameters under consideration are the injection pressure ∆P and the process
temperature Θ0.

The infiltration time is the time taken by the infiltration process to be completed, in the case
in which it is successful. After such a time the mould can be possibly heated to speed up the curing
reaction.
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Figure 2. Void ratio and degree of cure as a function of space (given in percent of L). The pressure

is 1.2 · 105 Pa and the (constant) process temperature 350o K. In this case gelation occurs after the

preform was infiltrated for the 99% of its length.

Finally, knowing the deformation of the preform as a function of the parameters is important to
determine the initial length of the preform needed to obtain a final product of a specified dimension.
The numerical evaluation of the length of the final product is performed considering the first sudden
compression due to the applied pressure (which is the initial condition for the model, because
inertial terms are neglected) and the subsequent relaxation, due to the infiltration of the resin. Such
a relaxation is studied integrating in time the velocity of the left solid border, that, referring to Billi
and Farina [8], Preziosi and Farina [29], is given by

vl =
K

µ

∂T ′w
∂φ

∂φ

∂x

∣∣∣∣
x=xi

− K

µ

∂T ′w
∂φ

∂φ

∂x

∣∣∣∣
x=xe

, (4.8)

where xi and xe are the Eulerian positions of the infiltration front and the left preform border, respec-
tively. It needs to be mentioned that, because of the boundary conditions, deformation necessarily
implies inhomogeneity in the final product.
The simulations suggest that the process temperature affects only weakly the length of the final
product (unless gelation occurs), which can then be put in correspondence with the injection pressure
only.

8



300 320 340 360 380 400 420
Temperature - k

0.2

0.4

0.6

0.8

1

1.2

P
r
e
s
s
u
r
e

-
M
P
a

3.5%
6%

8%

10%

11.5%

13%

14%

8 s
5 s

2.5 s

1.5 s

1 s

0.5 s

Figure 3. Mouldability diagram. The grey line represents the points for which the infiltration time is

equal to the gelation time. Below this line gelation occurs before completing the infiltration process.

Along the full black lines the infiltration time is the reported constant value. The dashed lines

show the lower temperature, the upper temperature limit (due to degradation) and the limit in the

pressure (due to the injection unit or to mat tearing). These latter dashed lines are not studied in

the paper.

In Figure 3 the mouldability diagram resulting from the simulations is shown. The left vertical
axis reports the applied pressure, the horizontal one the constant environmental temperature in
which the process takes place. The vertical axis on the right reports the deformation (which is in a
one to one relation with the applied pressure). The five decreasing lines correspond to five different
constant process times (time in which the infiltration is fulfilled), which can be named isochrones
lines. The grey line is the limit below which gelation occurs: if we start from a point on such a
line and increase the temperature and/or decrease the pressure then gelation occurs before the full
infiltration is fulfilled. The grey line corresponds to processes for which the gelation time is equal to
the infiltration time. It can be argued that from the operative viewpoint the best choice of injection
pressure and temperature is that corresponding to a point just above the grey line, because it would
minimize inhomogeneities in the final product. As suggested by Gonzales-Romero and Macosko [17]
the diagram can be completed by adding the dash lines in Figure 3, corresponding to the lower
limiting process temperature, the upper temperature limit above which degradation occurs, and the
upper limit for the pressure, which accounts for the limited value for the injection unit and for mat
tearing.

9



5. Estimates on the infiltration process

In order to obtain some useful estimates on the infiltration process and on the mouldability
diagram, the isothermal case is considered, which is a simplification of the full model suggested
by the numerical simulations. Indeed in all the simulations considered the maximum temperature
increase during infiltration is of the order of 3 - 4 degrees. It is possible to give an estimate of the
temperature increase due to the exothermic reaction. The total heat of reaction Hc = 1.54 108 J/m3

enters the temperature equation multiplied by fc, taking values of the order of 10−4. To evaluate
the influence of the exothermic reaction to the temperature increase, the term Hcfc (of the order of
104) has to be divided by the multiplication of the heat capacity and the density (which is of the
order of 106). The rate of increase of the temperature due to the exothermic reaction is then of the
order of 10−2, justifying that in a maximum of 10 s of process duration the isothermal model is a
good approximation. The isothermal assumption allows to simplify the model as follows





(
∂e

∂t

)

s

=
∂

∂X

(
G(e)
µ(δc)

∂e

∂X

)
X ∈ (0, Xi), t ∈ (0, tf ),

(
∂ δc

∂ t

)

s

=
1
e

G(e)
µ(δc)

∂e

∂X

∂δc

∂X
+ fc (δc) X ∈ (0, Xi), t ∈ (0, tf ),

Ẋi = − 1
ew
c

G(ew
c )

µ(δc)
∂e

∂X

∣∣∣∣
Xi

e(0, t) = er

e(Xi(t), t) = ew
c

δc(X = 0, t) = 0 ,

Xi(t = 0) = 0 ,

(5.1)

where the final time tf is such that Xi(tf ) = L or δc(Xi, tf ) = δg. I recall that the viscosity
µ(δc) and the curing function fc(δc) depend on the temperature; however, since in this section the
isothermal case is considered, I removed Θ from the arguments of the functions µ and fc to simplify
the notation.

In what follows I first study the equation for the degree of cure, then the properties of the
degree of cure are used to obtain some estimates for the void ratio. The velocity of the infiltration
front is then studied to estimate the infiltration time. Such a time is compared to the gelation time
to know if the infiltration process is successful.

5.1 Some features of the equation for the degree of cure

The curing equation is hyperbolic with characteristics which go along the liquid. In particular
the infiltration front is a characteristic. It is useful then to write this equation along the character-
istics: 




dδc

d t
= fc(δc)

δc(t = τ) = 0 ,
(5.2)

where the time derivative indicates total derivative along the characteristic, d
d t = ∂

∂ t +Vf
∂

∂ X , where
Vf = − 1

e
G(e)
µ(δc)

∂e
∂X is the Lagrangian velocity of the resin, τ is the instant in which the characteristic

enters the infiltrated domain from the left preform border. The solution of the previous problem is

t− τ =
∫ δc

0

1
fc(δ)

dδ = F (δc) . (5.3)
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Being F (δc) an increasing function (as fc is a positive function), the previous equation is a one to
one correspondence between time t and degree of cure δc with a parameter τ . If we fix τ and study
(5.3) for increasing values of time, we readily notice that the degree of cure increases. On the other
hand, fixing the time t, the degree of cure increases choosing smaller values of the parameter τ ,
which means considering a characteristic that entered the boundary X = 0 at an earlier time. This
means that δc is also an increasing function of space and that the maximum always occurs at the
infiltration front. We can then evaluate the gelation time as

tg =
∫ δg

0

dδ

fc(δ)
, (5.4)

and state that if gelation occurs during the process it starts at the infiltration front.
For the following, it is also important to study the derivative of the degree of cure w.r.t. X at

the infiltration front. The ratio ∆δc

∆X is studied at the early instant of time and then the limit ∆t → 0
is taken. We can evaluate the variation in δc studying equation (5.2) along the infiltration front

∆δc =
∫ ∆t

0

fc(δc(τ)) d τ ∼= fc(0)∆t . (5.5)

During the same time interval the advancement of the infiltration front can be obtained approxi-
mating (5.1.III):

∆X ∼=
√

2
ew
c

G(ew
c )

µ(0)
∆e

√
∆t , ∆ e = er − ew

c , (5.6)

where the void ratio in the infiltration region is approximated by a straight line, which is justified
by the fact that at early times the thickness of the wet region is very small. The result is coherent
with the results obtained in Billi and Farina [8] for the case without curing.

We can now approximate the derivative of the degree of cure at early times as

∂δc

∂X
∼= fc(0)

√
∆t√

2
ew

c

G(ew
c )

µ(0) ∆e
, (5.7)

which goes to zero as ∆t goes to zero.
Now I study the evolution of the space derivative of the degree of cure at the infiltration front.

Evaluating the derivative of (5.1.II) w.r.t. X, we can obtain the following equation for the space
derivative of the degree of cure δX along the characteristics

dδX

dt
=

(
dfc

dδc
− ∂Vf

∂X

)
δX , (5.8)

where the total time derivative on the l.h.s. means derivation along a characteristic. The initial
condition for δX must be non negative, since the degree of cure increases in space. Furthermore, the
initial condition vanishes at the infiltration front, as shown by (5.7). Hence for the infiltration front

δX(Xi(t), t) = 0 , ∀t , (5.9)

which means that the derivative w.r.t. X of the degree of cure at the infiltration front is always
zero, as is also evident in the simulations reported in Figure 2.

Regarding the space derivative of the degree of cure in all the wet region, we can obtain some
qualitative information studying the ratio between the variation of δc on two characteristics and the
distance between such characteristics.
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The variation of δc depends only on the difference between the times in which the characteristics
enter the domain. Considering the choice of characteristic function fc(δc) introduced in Section 4,
and evaluating numerically the integral in (5.3), we obtain that the increasing of δc in time along a
characteristic is well approximable with a straight line, for all the range of temperatures considered
(from 300o K to 400o K).
The resin velocity is the velocity of the characteristics of the equation for the degree of cure. If
curing is neglected, the infiltration velocity depends on time as a square root, Billi Farina [8]. In
such a case the resin covers one half of the length of the preform in one fourth of the infiltration time.
Considering curing, the infiltration velocity reduces more and more in time: from the simulations
reported in Figure 2, we can argue that the time taken by the resin to infiltrate the first half of the
preform is of the order of 1

10 of the infiltration time. This means that initially the degree of cure is
almost constant in a neighbour of the infiltration front with an extent of L

2 . As a consequence, also
the viscosity is almost constant in that neighbour of the infiltration front, and, as the gradient of the
resin velocity would be positive in the case of constant viscosity, we can argue that the dimensions of
the neighbour of the infiltration front in which the degree of cure is almost constant are not reduced
as the process proceeds.
This suggests that the derivative of the degree of cure w.r.t. X is small in a neighbour of the
infiltration front of the order of one half of the wet preform. A larger variation of the degree of cure
occurs near the left border of the preform.

We can note that the property that the degree of cure is an increasing function in space depends
only on the assumption that the isothermal cure rate is positive, which means that it is a general
result. The gelation time is given by (5.4) (requiring only the integral at the r.h.s. to be well
defined). For the property of the vanishing space derivative of the degree of cure at the infiltration
front it is sufficient for fc to have a bounded derivative. This means that all the main results of this
section do not depend on the specific choice of the isothermal cure rate, but can be applied to more
general cases.

5.2 Estimates on the void ratio near the infiltration front and on the infiltration process

The first step in our discussion of the evolution of the void ratio consists in fixing the moving
boundary with the following Landau’s transformation

(X, t) 7−→
(

Y =
X

Xi(t)
, t

)
, (5.10)

so that X ∈ (0, Xi(t)] is mapped onto Y ∈ (0, 1] (see Figure 1). In order to avoid division by zero
in the definition of Y in (5.10), we can consider the preform to be initially infiltrated in an arbitrary
small region [0, b), b ¿ L. The limit b → 0 is finally discussed. Equation (5.1.I) becomes

∂ẽ

∂t
= Y

Ẋi

Xi

∂ẽ

∂Y
+

1

X2
i µ(δ̃c)

∂

∂e
G(ẽ)

(
∂ẽ

∂Y

)2

+
G(ẽ)
X2

i

∂

∂δ̃c

(
1

µ(δ̃c)

)
∂δ̃c

∂Y

∂ẽ

∂Y
+

G(ẽ)

X2
i µ(δ̃c)

∂2ẽ

∂Y 2 , (5.11)

where ẽ and δ̃c are the void ratio and the degree of cure evaluated in the new variables (Y, t),
respectively. An interesting qualitative result can be obtained from equation (5.11): the void ratio
ranges between the boundary values and the extreme values are taken only at the boundary. Indeed
it cannot have any maximum or minimum point in the interior of the domain by the maximum
principle for parabolic equations (if a maximum point exists, its value has to decrease, and vice
versa for the minimum; given the monotonous initial data, maxima and minima cannot exist). This
means that the infiltration velocity is non negative in all the wet region and can only stop as an
effect of the increasing of the viscosity, since the pressure gradient does not vanish at any point in
the wet region.
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Now a bound on the infiltration velocity is obtained. We can note that the infiltration velocity
depends only on the derivative of the void ratio w.r.t. X at the infiltration front (since the degree of
cure at the infiltration front can be obtained from equation (5.3) with τ = 0). Referring to Figure 2,
we can note that the simulations suggest that the void ratio in the wet region near the infiltration
front is under the straight line connecting the boundary values. I can give some suggestions of the
mathematical reason why this happens studying the following problem for the difference w between
the void ratio and the straight line v connecting the boundary points

w(t, Y ) = e(t, Y )− v(Y ) where v(Y ) = er −∆e Y , ∆e = er − ec ,





∂w

∂t
=

G

X2
i µ

∂2w

∂Y 2
+

(
∂w

∂Y
−∆e

)[
G′

X2
i µ

(
∂w

∂Y
−∆e

)
− Y

X2
i

1
ec

[
G

µ

(
∂w

∂Y
−∆e

)]

Y =1

− Gµ′

X2
i µ2

∂δc

∂Y

]

w(t = 0, Y ) = 0 , w(t, Y = 0) = 0 , w(t, Y = 1) = 0
(5.12)

where I supposed to approximate with a straight line the initial condition in the initially infiltrated
region [0, b). The first term in the r.h.s. accounts for diffusion; the other three terms can be
considered as sources. The first two sources are negative, whereas the last is non negative: this
means that the void ratio is under the straight line till the positive source remains smaller than the
negative ones. This condition is verified at the beginning of the infiltration process, since ∂δc

∂Y
∼= 0.

This means that the void ratio is initially under the straight line v(Y ) (for the maximum principle).
The positive source is proportional to the derivative w.r.t. Y of the degree of cure so that it vanishes
at the infiltration front. This means that there is always a neighbour of the infiltration front in which
the source term is negative. Furthermore, at the end of Section 5.1 I argued that in a neighbour of the
infiltration region with dimensions of the order of a half of the infiltrated preform the contribution
due to this term is expected to be smaller than the other ones, and therefore in the same neighbour
the total source term is negative.
On the other hand, with respect to what happens at the infiltation front, near the left border,
the derivative of the degree of cure can be quite high; furthermore the importance of the second
(negative) source term is less important, since it is proportional to Y ; hence near the left border the
source can become positive. This happens next to gelation, when the wet region is almost equal to
the length of the preform, for a critical case in which the infiltration time is close to the infiltration
time. This is the reason why in Figure 2 the void ratio overcomes the straight line between the
boundary values near the left border only for large times (∗1).

The positive source, if sufficiently large, can affect also the region near the infiltration front, due
to diffusion. Nevertheless, the simulations suggest that this cannot happen, for all the parameters
of interest.

In this way we can obtain a bound for the derivative of e(t, X) w.r.t. X and, as a consequence,
the following bound for the velocity of the infiltration front

Ẋi < − 1
ew
c

G(ew
c )

µ(δ̃c)

ec − er

Xi
, (5.13)

where I used the fact that the space derivative of e(X, t) at the infiltration front is less in modulus
than the slope of the straight line between the boundary values. From the previous estimate we

(∗1) It is worth noticing the dependence of the qualitative shape of the void ratio and the parameters.
Let’s consider only critical situations, in which the infiltration time is almost equal to the gelation
time. We can note that the negative sources present a quadratic dependence on ∆e, whereas the
positive one depends only linearly on it. This means that for lower pressure the effect of the positive
term is more important.
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obtain the following bound for the evolution of the infiltration front

Xi(t) <

√
2
∆e

ew
c

G(ew
c )

∫ t

0

1
µ(δc(τ))

dτ + b , (5.14)

where δc(t) is recovered studying the equation for the degree of cure along the infiltration front. The
term b in the expression (5.14) can be dropped, as it is arbitrarily small.

An important information can be obtained from the previous analysis: we can determine if the
infiltration will be successful or not, controlling if the full infiltration is achieved. In fact computing
(5.14) for t = tg, where tg is the gelation time given by (5.4), we can conclude that if

L = l
1 + ec

1 + er
>

√
2
∆e

ew
c

G(ew
c )

∫ tg

0

1
µ(δc(τ))

dτ (5.15)

then full infiltration cannot be achieved.
Another useful relation can be obtained merging (5.2) and (5.13): in fact, one can deduce the

following estimate

Xi(δc) <

√
2
∆e

ew
c

G(ew
c )

∫ δc

0

1
µ(δ)fc(δ)

dδ , (5.16)

that is if

L >

√
2
∆e

ew
c

G(ew
c )

∫ δg

0

1
µ(δ)fc(δ)

dδ (5.17)

the process is certainly incomplete.
In order to give a better approximation of the velocity of infiltration I study further the problem

(5.1) in a neighbour of the infiltration front. For example, we can use a second order approximation
of the solution e(X, t) near the infiltration front, substituting the first and second derivative in
equation (5.11). In this case two parameters need to be determined, but only one equation is
available. One way to proceed is to fix a constraint, choosing a particular kind of solution. In the
following we examine as a set of trial solutions the family of parabolas connecting the conditions
(5.1.IV) and (5.1.V), with a positive slope at Y = 1

h(Y ) = −∆eY + er + αY (Y − 1) , α ∈ [0, ∆e] . (5.18)

Indeed, from the simulations we can note that the void ratio at a fixed time can be approximated
well by a parabola, except when the resin is about to gel. I choose the parabola with convexity such
that the r.h.s. of equation (5.11) evaluated at the infiltration front (i.e., in a point in which the void
ratio is constant in time) vanishes. This occurs when

−β(ew
c )(α−∆e)2 + 2αG(ew

c ) = 0 , (5.19)

where

β(ew
c ) = − ∂

∂ẽ
G(ẽ)

∣∣∣∣
ew

c

+
G(ew

c )
ew
c

> 0 . (5.20)

The unique solution of (5.19) belonging to [0, ∆e] (hence giving a positive infiltration velocity) is

α0 =
β(ew

c )∆e + G(ew
c )−

√
G(ew

c )2 + 2β(ew
c )∆eG(ew

c )
β(ew

c )
. (5.21)
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We then obtain the following estimates for the infiltration velocity

Ẋi
∼= G(ew

c )
ew
c µ(δc(Xi, t))

∆e− α0

Xi
; (5.22)

and for the infiltration front

Xi(t) ∼=
√

2
∆e− α0

ew
c

G(ew
c )

∫ t

0

1
µ(δc(τ))

dτ . (5.23)

It is worth noticing that the value of α0 only depends on the value of the void ratio at the
infiltration front. It does not depend on the degree of cure, because the derivative of the degree
of cure w.r.t. Y vanishes at the infiltration front. Since the void ratio at the infiltration front is
constant in time, α0 is also constant in time.
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Figure 4. Lagrangian position of the infiltration front as a function of time: comparison between

the numerical solution (full line) and those obtained using the estimates (5.14) (dot line) and (5.23)

(dash line). On the left a successful process is shown, on the right an unsuccessful one (the length

of the compressed preform L is indicated by the horizontal grey line).

Figure 4 shows a comparison between the numerical results concerning the full model and the
estimates (5.14) and (5.23).

Substituting ∆e with ∆e − α0 in equation (5.16) we can obtain the following approximated
expression to test if the full infiltration can be obtained

Xi(δc) ∼=
√

2
∆e− α0

ew
c

G(ew
c )

∫ δc

0

1
µ(δ)fc(δ)

dδ . (5.24)

Figure 5 shows the limiting lines for which the gelation time is equal to the infiltration time: the
full line refers to the approximation for the velocity of the front given by the correspondent equation
of the inequality (5.16), the dashed line refers to equation (5.24), the grey line to the numerical
analysis of the full model. Comparing the grey with the dash line, we can argue that estimate (5.24)
gives a quite good approximation for the infiltration velocity. Comparing the grey with the full line
we can say that the bound for the infiltration velocity (5.13) is close to the numerical results only
for low pressure values.
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Figure 5. Results on the analytical estimates for the production process: the grey line is obtained by

numerical simulations; the dashed line refers to the approximation of the void ratio with a parabola

(see equation (5.23)); the full line refers to the approximation of the void ratio with a straight line

(see (5.13); under such a line gelation occurs for sure).

Remark. As mentioned in the introduction, another way to drive the process is imposing the inflow

velocity uin of the fluid instead of applying a pressure. If uin is constant in time, referring to Ambrosi

[1], the final time of infiltration is given by

Tfin =
erL

(1 + er)uin
. (5.25)

In the case of non constant inflow velocity, we can recover the final time from the following implicit

expression ∫ Tfin

0

uin(τ)dτ =
erL

1 + er
. (5.26)

Such a time can be compared to gelation time tg, given by (5.4), to know if the process is successful.

For example, in the case of constant inflow velocity, we have the following condition for the process

to be successful

uin >
erL

(1 + er)
∫ δg

0
dδ

fc(δ)

(5.27)
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6. Conclusions

A one dimensional mathematical model of the infiltration of an incompressible resin through
a deformable solid porous medium (modelling a preform) has been considered, in the framework
of mixture theory. The model has been applied to the industrial process of pressure driven resin
injection moulding, considering an elastic preform.

The model presents a strong coupling between the infiltration of the resin, its polimerisation, the
temperature variations due to the dispersion of mechanical and chemical power. From the numerical
analysis we can argue that the influence of the temperature variations is not very important. This
suggests to study a simpler model in which the energy balance equation is neglected, that allows to
obtain an approximate analytical expression for the motion of the infiltration front.

Finally the numerical analysis gives the mouldability diagram, presenting the window of appli-
cability in the parameter space.

It is worth noticing that in injection processes, the resin, the fibers and the mould are usually
preheated at different temperatures. In such a case, assumption A6 is not satisfied and an isothermal
model would be a row approximation. It can be expected that obtaining analytical estimates for the
case of non-isothermal models is a very difficult task, beyond the aims of this papers. Nevertheless,
on the basis of the results of this paper, an approximate analysis of the non-isothermal model is
suggested. Numerical analysis of non-isothermal models have been developed in the literature of
non-isothermal liquid moulding processes (see for example Bruschke and Advani [10], Shojaei et al.
[33]).

In conclusion, the main contribution of the paper is the mathematical analysis of a one dimen-
sional mathematical model of the infiltration of an incompressible resin through a deformable solid
porous medium introduced in previous works (see Ambrosi [1], Ambrosi and Preziosi [4]). Such an
analysis provides some estimates of the infiltration process in the isothermal case. Further analytical
analysis (supported by numerical simulations) is needed to extend the results of the paper to the
three dimensional, non-isothermal case.
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