
09 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Two Schemes to Reduce Latency in Short Lived TCP Flows / Ciullo, Delia; Mellia, Marco; Meo, Michela. - In: IEEE
COMMUNICATIONS LETTERS. - ISSN 1089-7798. - 13:(2009), pp. 806-808. [10.1109/LCOMM.2009.091149]

Original

Two Schemes to Reduce Latency in Short Lived TCP Flows

Publisher:

Published
DOI:10.1109/LCOMM.2009.091149

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2281022 since:

IEEE

IEEE COMMUNICATIONS LETTERS, VOL. 13, NO. 10, OCTOBER 2009 1

Two Schemes to Reduce Latency in Short Lived TCP Flows
D. Ciullo, M. Mellia, and M. Meo

Abstract—Motivated by the amount of short-lived TCP traffic
due to interactive applications like web browsing, we propose two
schemes to reduce the download time of TCP flows. Both schemes
explicitly try to overcome the long delay suffered when TCP has
to recover from the loss of the last data segment in a flow, loss
for which Fast Retransmit cannot be triggered. The first scheme
consists in transmitting twice the last segment, while the second
one exploits the reception of the duplicate ACK caused by the
delivery of the FIN segment. Both schemes allow the transmitter
to recover the loss without waiting for a Retransmission Timeout
expiration, thus providing quicker recovery with up to 50% gain.

Index Terms—

I. INTRODUCTION

TCP detects that a segment is lost and recovers it at the oc-
currence of one of these two events: i) a Retransmission

Time Out expiration (RTO), or ii) the arrival of three duplicate
ACKs that triggers the Fast Retransmit (FR) algorithm [1], [2].
The time to recover a loss through RTO is larger than the one
of FR by a factor that is typically between 3 and 5. In case
of the last segments of a flow, the RTO is the sole recovery
mechanism that can be used, since the number of segments
that remain to be transmitted is not large enough to generate
duplicate acknowledgments at the receiver. This might result
in an excessive penalty for the connection, especially for short-
lived ones. Notice also that the quicker recovery of the last
segment loss does not affect the congestion control of TCP,
being the flow actually completed.

Several studies have shown that most of the TCP traffic is
populated by short-lived flows, mainly generated by Web data
transfers caused by user interactions [3], [4]. This observation
still holds true after the explosion of Peer-To-Peer traffic
and Web 2.0. To confirm this, left plot of Fig. 1 reports
the Cumulative Distribution Function (CDF) of TCP flow
length 𝐿 measured in segments for both client and server
flows. Data have been collected using TSTAT tool [5], and
refer to one day-long measurement collected during February
2009 on a ISP BRAS link which aggregate more than 30,000
users. As can be seen, more than 95% (70%) of the client
(server) flows are shorter than 10 full-size segments. For
this kind of traffic, the paramount performance index is the
flow completion time, or ”latency”, i.e., the time to complete
the actual data download and this time can be significantly
affected by segment losses. To give the reader the intuition
of RTO impact, right plot of Fig. 1 reports the probability
density function of actual flow completion time for the same

Manuscript received May 27, 2009. The associate editor coordinating the
review of this letter and approving it for publication was F. Theoleyre.

The authors are with the Dipartimento di Elettronica, Politecnico di Torino,
Italy (e-mail: {ciullo, mellia, meo}@tlc.polito.it).

Digital Object Identifier 10.1109/LCOMM.2009.091149

 0 1 2 3 4 5 6
 0.001

 0.01

 0.1

 1

Pr
ob

ab
ili

ty
 D

en
si

ty
 F

un
ct

io
n

Flow duration [s]

server
client

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000

C
um

ul
at

iv
e

D
en

si
ty

 F
un

ct
io

n

Flow length, L [pkt]

server
client

Fig. 1. TCP flow length distribution (on the left), and actual completion
time (on the right).

dataset. The plot clearly shows some bumps, the highest one
being at 3s which is the default RTO value. These bumps are
due to flows that suffered a long delay due to the RTO used to
recover a packet loss. Besides, we estimated by measurements
the average packet drop probability during peak hour: it is
typically above 4% considering downlink traffic, while it is
higher than 8% considering uplink traffic.1 These values can
be used as an estimation of the last packet drop probability if
we assume packet drop probability is a Bernoulli process. For
the sake of completeness, more than 70% of dropped packets
are recovered after a RTO expires.

A proposal to reduce the TCP latency by reducing the time
to recover segment losses when FR cannot be triggered was
made by the authors in [6]; that scheme is based on a proper
data segmentation. In this letter, we, instead, focus on the
impact of the last segment loss of a short-lived TCP flow,
and we propose two schemes to quickly recover from the last
segment loss. Both schemes outperform Classic TCP in terms
of latency. The proposed schemes were previously discussed
in [7].

II. SCHEMES DESCRIPTION

According to the Classic TCP, when the last segment of
a TCP flow is lost, the transmitter can only wait the RTO
expiration before retransmitting it: the time to recover the loss
is given by the sum of one RTO and the Round Trip Time
(RTT) time, see Fig. 2a. To reduce this lengthy waiting, we
propose the two schemes described below.

The first scheme, named Transmit Twice (TT), consists
in transmitting twice the last segment of a TCP flow. In
this way, while introducing only a marginal increase of the

1Notice that these values are very much dependent on the specific network
and settings.

1089-7798/09$25.00 c⃝ 2009 IEEE

2 IEEE COMMUNICATIONS LETTERS, VOL. 13, NO. 10, OCTOBER 2009

Fig. 2. Last segment loss with TCP (a), TT (b) and TF (c) schemes.

traffic injected in the network corresponding to one additional
segment, the probability that the segment is successfully
delivered increases: as far as one of the two last segments
reaches the destination, the flow ends at the associated ACK
reception. Fig. 2b shows an example of segment loss at the
end of the flow: the first copy of the data segment is lost,
while the second copy (DATA-2) is received correctly. The
connection ends when the ACK of DATA-2 is received.

The second scheme, named Transmit FIN (TF), uses the
duplicated ACK caused by the FIN reception to detect the
possible last segment loss: at this duplicate ACK reception,
the last segment is retransmitted without waiting for the
RTO expiration. Fig. 2c shows an example of loss recovery
under this scheme. This scheme can be implemented also by
allowing the sender to immediately transmit a TCP keep-alive
message after the last data segment, thus forcing the receiver to
generate a duplicate ACK (as triggered by the FIN message).
2

III. PERFORMANCE EVALUATION

To evaluate the performance of our schemes, we select two
parameters: the last segment delivery delay, i.e., the average
time needed to successfully transmit the last segment and
the overhead, in terms of additional transmitted segments,
introduced by the proposed schemes with respect to the Classic
TCP. To compare our schemes, we adopt a model similar to
[8], where performance indexes are estimated as functions of
the loss probability, RTT and RTO.

1) Assumptions: To describe our model, we define the
segment loss probability 𝑝 as 𝑝 = 𝑝𝐷 + (1 − 𝑝𝐷)𝑝𝐴 where
𝑝𝐷 and 𝑝𝐴 are the probabilities to lose, respectively, a DATA
segment and an ACK segment. We assume that the loss rate
is the same for the whole flow duration and each segment is
dropped with the same probability 𝑝 that is independent on
the segment size.

For simplicity, we compute the retransmission timeout using
the following approximation (see [2], [9] for details):

𝑅𝑇𝑂 ≃ 𝐸[𝑅𝑇𝑇] + 4𝜎[𝑅𝑇𝑇] ≃ 4𝐸[𝑅𝑇𝑇].

Moreover, we consider the transmission time to be negligible
with respect to the propagation time. This also allows us to
disregard the dependencies between the RTT and the segment
size.

2Notice that, a transfer is considered successful when the source receives
the ACK for the last segment, i.e., when sender knows that all transmitted
data has been successfully delivered to the application. To this extent, we
ignore the flow tear-down procedure.

 0

 10

 20

 30

 40

 50

 60

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

E
ff

ic
ie

nc
y,

 η
 [

%
]

Loss probability, p

TT
TF

Fig. 3. Average schemes efficiency with respect to Classic TCP.

2) Delay: We define 𝐷𝑇𝐶𝑃 , 𝐷𝑇𝑇 , 𝐷𝑇𝐹 as, respectively,
the average delay of the last segment transmission in the
Classic TCP, the Transmit Twice and Transmit FIN schemes.

The average time needed to successfully send the last
segment in the Classic TCP is:

𝐷𝑇𝐶𝑃 = (1− 𝑝)𝑅𝑇𝑇 +

(1− 𝑝)

∞∑
𝑖=1

𝑝𝑖[(2𝑖 − 1)𝑅𝑇𝑂+𝑅𝑇𝑇]

= 𝑅𝑇𝑇 +𝑅𝑇𝑂

(
𝑝

1− 2𝑝

)
(1)

Note that this holds only if 𝑝 < 1/2. Moreover, observe
that the RTO exponentially grows in case of consecutive
losses, according to the Karn’s algorithm. In a similar way
we compute 𝐷𝑇𝑇 :

𝐷𝑇𝑇 = [(1 − 𝑝)(1− 𝑝) + 𝑝(1− 𝑝) + (1− 𝑝)𝑝]𝑅𝑇𝑇 +

(1 − 𝑝)

∞∑
𝑖=2

𝑝𝑖[(2𝑖−1 − 1)𝑅𝑇𝑂+𝑅𝑇𝑇]

= (1 − 𝑝2)𝑅𝑇𝑇 + 𝑝2
(

𝑅𝑇𝑂

1− 2𝑝
+𝑅𝑇𝑇

)
(2)

Finally, 𝐷𝑇𝐹 is given by:

𝐷𝑇𝐹 = (1 − 𝑝)𝑅𝑇𝑇 + 𝑝(1− 𝑝)[𝑅𝑇𝑇 +𝐷𝑇𝐶𝑃] +

(1 − 𝑝)

∞∑
𝑖=2

𝑝𝑖[(2𝑖−1 − 1)𝑅𝑇𝑂+𝑅𝑇𝑇]

= (1 − 𝑝)𝑅𝑇𝑇 + 𝑝(1− 𝑝)[𝑅𝑇𝑇 +𝐷𝑇𝐶𝑃] +

𝑝2
(

𝑅𝑇𝑂

1− 2𝑝
+𝑅𝑇𝑇

)
(3)

To directly compare the two proposed schemes, we compute
the efficiency 𝜂 with respect to Classic TCP as:

𝜂𝑖 =

(
1− 𝐷𝑖

𝐷𝑇𝐶𝑃

)
⋅ 100

with 𝑖 = {𝑇𝑇, 𝑇𝐹}. As shown in Fig. 3, Transmit Twice is
the best performing scheme, but also the Transmit FIN scheme
outperforms Classic TCP for increasing loss probability.

Similarly, we compute the average delay given that the last
segment is lost, �̃�𝑖. This allows to appreciate the improvement

CIULLO et al.: TWO SCHEMES TO REDUCE LATENCY IN SHORT LIVED TCP FLOWS 3

 50

 55

 60

 65

 70

 75

 80

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

E
ff

ic
ie

nc
y,

 η
 [

%
]

Loss probability, p

TT
TF

Fig. 4. Average schemes efficiency with respect to Classic TCP given that
the last segment is lost.

for flows that actually suffer the last segment loss impairment.

�̃�𝑇𝐶𝑃 = (1− 𝑝)

∞∑
𝑖=1

𝑝𝑖−1[(2𝑖 − 1)𝑅𝑇𝑂 +𝑅𝑇𝑇]

= 𝑅𝑇𝑇 +𝑅𝑇𝑂

(
1

1− 2𝑝

)
(4)

�̃�𝑇𝑇 = 𝑅𝑇𝑇 +𝑅𝑇𝑂

(
𝑝

1− 2𝑝

)
(5)

�̃�𝑇𝐹 = 𝑅𝑇𝑇 (2− 𝑝) +𝑅𝑇𝑂

(
𝑝

1− 2𝑝

)
(6)

Fig. 4 shows that the efficiency gain 𝜂 is always above 50%,
and that the lower is 𝑝, the higher is the gain. This suggests that
the proposed schemes can greatly improve the performance for
those unlucky situations in which the last segment is lost.

3) Overhead: We define by 𝑁𝑇𝐶𝑃 , 𝑁𝑇𝑇 , 𝑁𝑇𝐹 the average
number of segments that are transmitted to successfully deliver
the last segment:

𝑁𝑇𝐶𝑃 = (1− 𝑝)

∞∑
𝑖=0

𝑝𝑖(𝑖 + 1) =
1

1− 𝑝
(7)

𝑁𝑇𝑇 = 𝑁𝑇𝐶𝑃 + 1− 𝑝 (8)

The bytewise overhead can be derived from the overhead in
segments considering the average size of the last segment, e.g.,
half the TCP Maximum Segment Size.

For the TF case, the value of 𝑁𝑇𝐹 depends on the proba-
bility that packets are received out-of-order rather than on 𝑝.
In particular, if no reordering occurs, 𝑁𝑇𝐹 is equal to 𝑁𝑇𝐶𝑃 ;
while, if the ACK of the FIN arrives earlier than the ACK of
the DATA, the transmitter sends a (useless) duplicate DATA
segment. Let 𝑝𝑟 be the probability that the last segment ACK
and the FIN ACK arrive out-of-order. We can compute:

𝑁𝑇𝐹 = 𝑁𝑇𝐶𝑃 + 𝑝𝑟(1− 𝑝)2 (9)

Let us compute the overheads 𝑂𝑇𝑇 and 𝑂𝑇𝐹 , in terms of
the average number of additional segments that the scheme
has to transmit with respect to Classic TCP, as:

𝑂𝑖 = 𝑁𝑖 −𝑁𝑇𝐶𝑃 𝑖 = {𝑇𝑇, 𝑇𝐹}
Then, for the Transmit Twice scheme, the additional over-

head is simply given by 1 − 𝑝. For the Transmit FIN, Fig. 5
shows the additional overhead versus 𝑝, for different values of
𝑝𝑟. As expected, the overhead actually decreases with 𝑝, while

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

T
ra

ns
m

it
FI

N
 o

ve
rh

ea
d,

 O
T

F

Loss probability, p

pr

pr=0.01
pr=0.1
pr=0.2
pr=0.3
pr=0.4

Fig. 5. TF scheme: overhead versus 𝑝.

it increases with 𝑝𝑟. Nonetheless, for moderate reordering
probability, the additional overhead is limited.

To evaluate the additional number of segments the network
has to transport, we consider the distribution of actual flow
size from Fig. 1 and evaluate the additional overhead averaged
over all flow size �̄�𝑇𝑇 . We analyze the Transmit Twice
scheme since it performs worse than Transmit FIN in terms
of overhead. We have:

�̄�𝑇𝑇 =

∑∞
𝑙=1(1− 𝑝)𝑓(𝐿)∑∞

𝑙=1 𝐿𝑓(𝐿)
(10)

where 𝑓(𝐿) is the probability that the flow length is equal to
𝐿. For example, for 𝑝 = 0.2, we obtain �̄�𝑇𝑇 = 0.0214, that
is a quite negligible value.

IV. CONCLUSIONS

We have proposed two schemes to improve TCP perfor-
mance in case of last segment loss: Transmit Twice, based
on the duplicate transmission of the the last segment, and
Transmit FIN, that uses the ACK triggered by the FIN (or
additional keep-alive) segment to retransmit the last segment.
Results show that substantial improvement is achieved, while
marginally increasing the network load for both schemes.
Transmit Twice is the best performing scheme, while Transmit
FIN wastes less bandwidth due to protocol overhead.

REFERENCES

[1] M. Allman, V. Paxson, and W. Stevens, “TCP congenstion control,”
Request for Comments 2581.

[2] V. Paxson and M. Allman, “Computing TCP’s retransmission timer,”
Request for Comments 2988.

[3] V. Paxson and S. Floyd, “Wide-area traffic: the failure of Poisson
modelling,” IEEE/ACM Trans. Networking, vol. 3, no. 3, pp. 226–244,
June 1995.

[4] S. Ebrahimi-Taghizadeh, A. Helmy, and S. Gupta, “Tcp vs. tcp: a
systematic study of adverse impact of short-lived tcp flows on long-
lived tcp flows,” in Proc. IEEE INFOCOM, pp. 926–937, Miami, FL,
Mar. 2005.

[5] M. Mellia, R. Lo Cigno, and F. Neri, “Measuring IP and TCP behavior
on edge nodes with Tstat,” Computer Networks, vol. 47, no. 1, pp. 1–21,
Jan. 2005.

[6] M. Mellia, M. Meo, and C. Casetti, “TCP smart framing: a segmentation
algorithm to reduce TCP latency,” IEEE/ACM Trans. Networking, vol.
13, no. 2, pp. 316–329, Apr. 2005.

[7] P. Ganti, Email discussion, http://www.postel.org/pipermail/
end2end-interest/2007-December/007017.html, 2007.

[8] M. Mellia, I. Stoica, and H. Zhang, “TCP model for short lived flows,”
IEEE Commun. Lett., vol. 6, no. 2, pp. 85-87, Feb. 2002.

[9] M. Handley, S. Floyd, J. Padhye, and J. Widmer, “TCP friendly rate
control TFRC: protocol specification,” Request for Comments 3448.

