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Abstract

This paper illustrates a procedure for demonstrating and quantifying the importance of

passivity in linear macromodels. This issue is critical whenever the macromodels are derived

from tabulated port responses, either in time or frequency domain. We show an algorithmic

procedure for the design of a passive termination network that will drive to instability a

given non-passive macromodel. Several termination structures characterized by various port

couplings are investigated. Relaxed passivity conditions are also given that guarantee the

stability of the macromodel under specific reduced-coupling loading conditions. Theoretical

results are applied to a set of application test cases.

Keywords: Linear macromodeling, Passivity, Stability, Scattering.

1 Introduction

The design flow of digital and mixed-signal systems requires accurate Signal Integrity verifica-

tions. The influence of all system parts on signal quality must be carefully investigated using

suitable predictive models in system-level simulations. These macromodels [1, 2] can be viewed

as simple mathematical expressions providing an approximation of the frequency response of

the structure under investigation, usually over a broad frequency spectrum. In this work, we

concentrate on electrical interconnect structures, such as connectors or via arrays. The com-

mon approach for deriving models of such structures is to start with a brute-force full-wave

solution of Maxwell equations (typically using commercial solvers) in order to derive tabulated

frequency responses at selected ports. Alternatively, such responses may be obtained via direct

measurement, if possible. In a second step, rational curve-fitting algorithms [3, 4] are applied, in

order to produce a mathematical representation for the electrical behavior of the structure that

is implementable as a lumped netlist. Finally, system-level simulations are carried out using

standard circuit solvers such as SPICE. This equivalent circuit modeling approach is a standard

practice in several different application areas (see, e.g., [5, 6]). Moreover, it generally provides
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much higher efficiency than direct computation of discrete impulse responses from frequency

samples followed by numerical convolution in time-domain [7].

Electrical interconnects are obviously passive, i.e., unable to generate energy, based on first

principle physical considerations. Unfortunately, passivity may be lost in the macromodel either

during the derivation of the raw frequency samples, as a result of numerical simulation or mea-

surement/calibration errors, or during the curve-fitting phase. Loss of macromodel passivity

implies that it is possible to find a termination circuit that drives the macromodel to instabil-

ity. This result has been known since many years [8]-[21], mainly in application areas such as

amplifier design, system theory and control. In such context, what we call here ”macromodel”

is either a system with an intended active behavior, typically amplifier circuits [12]-[21], or a

”plant” to be controlled [22]. It is natural to expect possible instabilities in such systems if no

proper countermeasures are taken. Various denominations such as conditional stability, potential

stability or potential instability have been used to address this concept [12]-[14], often just for

the particular case of two-port networks with independent terminations.

Here, we consider a quite different scenario. The passivity of the physical structure is granted. It

is the predictive model that may be non-passive, due to numerical approximations or measure-

ment errors in its derivation. As such, the model may be useless and may be the root cause for

a catastrophic interruption of the design flow. The symptom of this situation is an exponential

blow up or a lack of convergence of a transient SPICE run. This work wants to provide some

insight in this loss of model stability.

We present an algorithmic procedure that, given a non-passive macromodel, computes a passive

termination, with minimal size and dynamic order, that drives the macromodel to instability.

This is done regardless of how small the passivity violation is. For the sake of completeness,

the developments are carried out down to the synthesis of the destabilizing loads in terms of

standard circuit elements (resistors, capacitors, inductors, transformers, and gyrators whenever

reciprocity is violated).

A systematic investigation is performed on several classes of structured terminations, with dif-

ferent levels of coupling between the ports. For each of these cases, the conditions allowing

for stability loss are explicitly provided. We perform this study since such uncoupled termina-

tion schemes are very common in practical designs. Therefore, one might accept a non-passive

macromodel provided that it is guaranteed to remain unconditionally stable under uncoupled

terminations. We also report the comprehensive set of conditions that guarantee stability for

each of the investigated reduced-coupling termination schemes.

Some of the material in this work is not new, since many concepts are borrowed from the field of

robust control theory, where the main results were derived some twenty years ago (see, e.g., [22]

and references therein). We reinterpret such results in a systematic way to demonstrate that

2



H(s)

Γ(s)

1+ 1− p−p+· · ·

H(s)

Γ(s)

w y

+

Figure 1: Left: macromodel H(s) with p ports (positive and negative port terminals are denoted

with + and −, respectively) and its termination network Γ(s). Right: reformulation of the

structure as a feedback loop. Vector y collects output scattering waves at the macromodel

ports. Vector w is a disturbance signal entering the feedback loop as an input scattering wave

at the macromodel ports. This disturbance represents numerical approximation errors arising

in the transient simulation of the entire circuit.

macromodel passivity cannot be ignored and must be taken care of. The material is deliberately

presented in a form of a tutorial, working from simplest uncoupled cases (Section 3) to the

most general fully-coupled case (Section 4). Section 5 presents a summary of relaxed structure-

dependent passivity conditions, while numerical examples are presented in Section 6.

2 Formulation

We consider the situation depicted in the left panel of Fig. 1. No special assumptions on

the structure of this macromodel are made to allow for both rational (lumped) and delay-

based (transmission-line) macromodels. The p macromodel ports are connected to an unknown

termination network Γ(s). Throughout this work we will consider both H(s) and Γ(s) to be

scattering matrices normalized to a common resistance R0, although a similar derivation can

be obtained for other representations. Note that tabulated port responses coming from direct

measurements are usually in scattering form, and most full-wave solvers can export their results

in scattering form. Therefore, this representation seems to be natural for high-speed interconnect

modeling applications.

The macromodel H(s) is considered to be strictly causal and stable, with all poles having nega-

tive real part. Causality and stability enforcement is not a critical issue during the identification

of the macromodel, since explicit techniques are available for this task [3, 4]. However, we assume

that there is at least one frequency band (ω1, ω2) where the macromodel exploits a non-passive

behavior. For the adopted scattering representation this is equivalent to

||H(jω)|| > 1, ∀ω ∈ (ω1, ω2) , (1)
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where the euclidean 2-norm is used

||H || = σmax{H} =

√
λmax{HHH} , (2)

with H denoting the complex conjugate transpose. In (2), σmax{·} and λmax{·} denote the

maximum singular value and the maximum eigenvalue of their matrix argument, respectively.

This norm will be used throughout this work unless otherwise stated. The non-passive frequency

bands in (1) can be easily identified, e.g., by using the algorithms proposed in [41] for lumped

macromodels and [26] for delay-based macromodels.

We are interested here in the stability properties of the complete circuit as depicted in the left

panel of Fig. 1, including the effect of a termination Γ(s). This is a standard problem in control

theory, since the connection between two multiport elements can be represented as a feedback

loop (right panel in Fig. 1). The viewpoint of control theory is to design the termination network

such that the feedback structure is well defined and internally stable. Conversely, our interest

here is to show how a passive termination network can be designed such that the feedback

structure is not stable. We will show that this is always possible under the assumption (1)

with a fully-coupled p-port termination network. In addition, we will derive the conditions

allowing for the synthesis of various destabilizing terminations characterized by less port coupling

or no coupling at all. The results will provide quantitative evidence that use of non-passive

macromodels should be carefully avoided, and that passivity should be either imposed a priori

or enforced using some correction scheme once some passivity violation has been detected.

From Fig. 1 we can easily derive the transfer matrix between a disturbance signal w(s) and the

output signal y(s)

y(s) = (I − H(s)Γ(s))−1
H(s)w(s) . (3)

The signal w may represent the inevitable numerical errors occurring during a transient simu-

lation of the entire terminated circuit. Instability occurs when this transfer matrix is singular

in the right hand plane,

det{I − H(s0)Γ(s0)} = 0 , ℜ{s0} > 0 . (4)

The point s0 corresponds to an unstable pole of the terminated circuit and gives rise to an

exponentially unstable mode es0t in the transient solution. Our main goal is to find both the

unstable pole location s0 and a corresponding passive termination network with scattering matrix

Γ(s) such that condition (4) is satisfied. In addition, the synthesis of an equivalent circuit for

Γ(s) will be performed, using only standard circuit elements (resistors, capacitors, inductors,

transformers, and gyrators).

The determination of a passive destabilizing termination Γ(s) satisfying (4) is simplified by the

following fact, proved in [22]
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Lemma 1 Given a complex s0 with ℜ{s0} > 0 and a constant matrix Γ0 ∈ C
p×p, with ||Γ0|| < 1,

it is always possible to find Γ(s) regular for ℜ{s} ≥ 0 (stable) such that Γ(s0) = Γ0 and

||Γ(s)|| ≤ 1 for ℜ{s} ≥ 0 (passive).

The above lemma allows us to first look for a constant matrix Γ0 such that det{I−H(s0)Γ0} = 0

for some s0 in the open right plane. The extension of Γ0 to the destabilizing termination Γ(s)

will come for free as an application of Lemma 1.

2.1 Preliminaries: the structured singular value

One of the objectives of this work is to demonstrate the loss of stability under realistic termi-

nation schemes as typically found in real high-speed interconnect modeling and simulation. In

fact, the general construction of a destabilizing termination available in [22] leads to a load Γ(s)

that couples all p ports. This situation occurs quite rarely in practical high-speed interconnect

simulations, since the near-end and the far-end ports of any interconnect are usually not di-

rectly coupled by a common termination network. Therefore, we will investigate here simpler

termination structures with less coupling or no coupling at all, highlighting for each case both

the conditions leading to instability and providing a synthesis procedure for a corresponding

destabilizing termination. The various cases will be analyzed in Sections 3–4.

We report here some preliminary definitions that will be necessary for the study of the termi-

nations with reduced coupling. Technical details are available in [22]. The general structure of

the coupling scheme is best represented by a generic constant block-diagonal matrix

∆ = diag(∆j) , (5)

where each block of dimension rj can either be full, ∆j ∈ C
rj×rj , or repeated scalar, ∆j = δjIrj

with δj ∈ C. Once the coupling structure is fixed, we are interested in finding both s0 in the

right-hand plane and a corresponding matrix ∆0 with structure (5) such that

det(I − H(s0)∆0) = 0 , and ||∆0|| < 1 . (6)

The feasibility of this problem is not guaranteed, since specific conditions must hold depending

on the particular structure (5). These conditions will be derived in the following. Note that the

unitary boundedness of the desired solution ∆0 is necessary in order to guarantee the passivity

of the destabilizing termination to be constructed based on Lemma 1. These considerations lead

naturally to adopt the structured singular value as a key parameter. This is defined, for a given

constant matrix M , as

µ∆(M) =
1

min{||∆||, det(I − M∆) = 0} , (7)
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Figure 2: Iterative placement of an unstable pole via Algorithm 1. The left panel reports

the value of ϑ(ξ + jω0) at successive iterations starting from ξ = ξmax. Iterations stop when

ϑ(ξ + jω0) > γ. Right panel shows the evolution of the unstable pole location in the complex

plane through the iterations.

where the minimum is taken over all complex matrices having the prescribed structure (5). This

parameter plays a central role in robust control application as well as in present work, since

it can be proved [22] that when µ∆(H(jω)) ≤ 1 for all ω, there cannot be a solution to (6).

Conversely, such a solution can be found when µ∆(H(jω)) exceeds one at some frequency ω0.

Unfortunately, there is no efficient algorithm for the evaluation of the structured singular

value (7). However, it is possible to estimate a lower bound, since

max
i

|λi(UM )| ≤ µ∆(M ) , UHU = I , (8)

with U sharing the same block-structure of ∆ as in (5), and where λi(·) denotes the i-th

eigenvalue of its matrix argument. Also, it is guaranteed that there is one such matrix Uopt such

that the bound (8) holds with the equality sign, i.e., the bound is tight. An algorithm returning

an estimate of a lower bound using (8) is reported in [24, 23]. This algorithm returns both a

constant matrix ∆0 having the prescribed block structure (5) such that det(I − M∆0) = 0,

and the corresponding lower bound

µ∆(M) =
1

||∆0||
≤ µ∆(M) (9)

for the structured singular value. Both these quantities will be used in the forthcoming sections

for the synthesis of destabilizing terminations in the reduced coupling cases.
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Algorithm 1 (determination of the unstable pole s0 = ξ0 + jω0)

Require: a real nonnegative function ϑ(s), continuous for ℜ{s} ≥ 0, and such that ϑ(jω0) >

γ > 1 with ω0 > 0.

Require: a positive constant ξmax

1: set ξ := ξmax > 0

2: while ϑ(ξ + jω0) ≤ γ do

3: set ξ := ξ/2

4: end while

5: set ξ0 := ξ

2.2 Placement of unstable poles

As a preliminary step, we present here a procedure for the determination of the unstable pole

s0. This procedure will be common to all synthesis cases that will be analyzed. The basic

requirement is the availability of a real nonnegative function ϑ(s), continuous for ℜ{s} ≥ 0,

such that

∃γ > 1 : ϑ(jω0) > γ , with ω0 > 0 . (10)

As an example, for the fully-coupled synthesis depicted in the left panel of Fig. 1 (to be discussed

in Section 4.1), we can assume ϑ(s) = ||H(s)||, so that condition (10) is guaranteed by the

assumed passivity violation (1) for the macromodel. Other choices for ϑ(s) will be detailed in

Sections 3–4.

The determination of the unstable pole location can be performed using Algorithm 1 with a

suitable choice of ϑ(s). The algorithm will find

s0 = ξ0 + jω0 such that 0 < ξ0 ≤ ξmax and ϑ(s0) > γ > 1 . (11)

A graphical illustration of this procedure is provided in Fig. 2. Termination in a finite (usually

small) number of iterations is guaranteed by the continuity condition on ϑ(s). Guidelines on

how to choose the initial value ξmax will be provided below.

3 Uncoupled termination schemes

We begin the investigation of possible termination schemes driving the macromodel to insta-

bility from the simplest cases in which each port is terminated independently. No couplings

between any ports are considered in this section. We remark that this type of synthesis is not

always possible given a non-passive macromodel H(s). However, we will explicitly provide the

conditions that need to be checked in order to insure the feasibility of this synthesis.
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Figure 3: Single-port mismatched termination.

3.1 Single-port mismatched termination

The simplest situation allowing for the design of a destabilizing termination occurs when one

of the diagonal elements of scattering matrix H(s) has a magnitude larger than one on the

imaginary axis, i.e.,

∃ω0 ∃γ : |Hii(jω0)| > γ > 1 . (12)

This condition allows to exploit a single-port resonance by a suitable mismatched one-port

termination, as depicted in Fig. 3. All other ports can be matched into the reference resistance

R0, since their contribution is unnecessary. As a result, the scattering matrix Γ(s) of the global

termination network can be assumed identically vanishing except the diagonal element Γii(s).

It turns out that

det{I − H(s)Γ(s)} = 1 − Hii(s)Γii(s) , (13)

so that the destabilization problem reduces to a scalar synthesis. The singularity condition (4)

becomes, by taking magnitude and phase of (13),

|Hii(s0)| |Γii(s0)| = 1 , ∠Hii(s0) + ∠Γii(s0) = 0 , ℜ{s0} > 0 . (14)

Since a resistive termination would not be sufficient to fulfill the above condition on the phase,

Γii(s) need to be dynamic. Among the many possible solutions, we assume the following func-

tional form for the reflection coefficient

Γii(s) = ρ
β − s

β + s
, −1 ≤ ρ ≤ 1 , β ≥ 0 , β < ∞ . (15)

This corresponds to a two-parameter family of first-order terminations, which can be synthesized

as in Table 1. Note that the bounds on ρ and β insure that this load is stable and passive. We

remark that alternative solutions of (14) with arbitrary dynamic order are indeed possible but

are not investigated here.

The feasibility of this choice is guaranteed, since

ξ0 ≤ ξmax = ω0
γ2 − 1

2γ
⇔

√
(ξ0 − β)2 + ω2

0

(ξ0 + β)2 + ω2
0

≥ 1

γ
, ∀β ≥ 0 , (16)

as can be proved via a straightforward calculation. This condition implies that it is possible to

determine ρ such that the magnitude condition in (14) is satisfied with |ρ| ≤ 1, independent of
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β. The actual identification of the two unknown parameters ρ and β is performed by following

the few steps below.

1. First, we set ϑ(s) = |Hii(s)| and we use Algorithm 1 with ξmax defined as in (16) to identify

the real part ξ0 > 0 of what will be an unstable pole s0 = ξ0+jω0 of the terminated circuit.

Note that the algorithm insures that |Hii(ξ0 + jω0)| > γ > 1.

2. Once ξ0 is known, the phase condition in (14) can be satisfied by finding β such that

φ(β) = π − ∠Hii(ξ0 + jω0) − ∠ρ , (17)

where

∠ρ =

{
0, if ∠Hii(ξ0 + jω0) ∈ (0, π)

π, if ∠Hii(ξ0 + jω0) ∈ (−π, 0)
(18)

and

φ(β) = arctan
β − ξ0

ω0
+ arctan

β + ξ0

ω0
(19)

Since φ(β) is regular and monotonically increasing from 0 to π as β increases from 0 to ∞,

the solution to (17) is unique and is easily found, e.g., by few Newton-Raphson iterations.

3. Finally, the magnitude condition is satisfied by choosing

|ρ| =
1

|Hii(ξ0 + jω0)|

√
(ξ0 + β)2 + ω2

0

(ξ0 − β)2 + ω2
0

, (20)

which is bounded by one due to (12) and (16). Hence, passivity of Γii(s) is guaranteed.

4. The particular case of purely real Hii(ξ0 + jω0) is handled by choosing β = 0 and ρ =

1/Hii(ξ0 + jω0).

Whenever one of the diagonal entries of the macromodel scattering matrix is larger than one,

the above procedure leads to a passive scalar first-order load defined in (15). This load is easily

synthesized into an equivalent circuit as summarized in Table 1 for all various combinations of

the parameters.

A few remarks on the constant γ. This constant is used to parameterize the design, in the

following sense. When γ tends to one from above, the real part of the resulting pole s0 is the

largest possible (see Algorithm 1), thus leading to faster exponential blow up of the terminated

circuit. In such case, the termination becomes close to lossless, see (14) and Table 1. Larger

values of γ allow for more dissipative destabilizing loads but lead to unstable poles that are very

close to the imaginary axis, corresponding to a slower exponential blow up rate of the terminated

circuit.
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Table 1: Synthesis of a scalar first-order load (15) with β ≥ 0 and |ρ| ≤ 1

ρ β Circuit Elements

0 ∀
R0

1 0

-1 0

| · | < 1 0
R

R = R0
1−ρ
1+ρ

1 > 0
C

C = 1
βR0

-1 > 0
L

L = R0

β

> 0 > 0
R1

R2 C

R1 = R0
1−ρ
1+ρ

R2 = R0
4ρ

1−ρ2

C = (1+ρ)2

4ρβR0

< 0 > 0
R2

R1 L

R1 = R0
1−ρ
1+ρ

R2 = R0
1−ρ2

−4ρ

L = R0(1−ρ)2

−4ρβ

H(s)

1+ 1− p−p+· · ·

Γ(s) Γ(s)

Figure 4: Identical scalar terminations.
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H(s)

1+ 1− p−p+· · ·

Γ1(s) Γp(s)

Figure 5: Scalar terminations.

3.2 Identical scalar terminations

Another load structure that reduces to a scalar synthesis is a set of identical uncoupled scalar

terminations, depicted in Fig. 4. The corresponding scattering matrix is diagonal with identical

entries,

Γ(s) = Γ(s)I . (21)

In fact, using the eigendecomposition H(s) = V −1(s)diag{λi(s)}V (s), we obtain

det{I − H(s)Γ(s)} =
∏

i

(1 − λi(s)Γ(s)) . (22)

Loss of stability occurs when any term in the above product vanishes at any s0 with ℜ{s0} > 0.

This is guaranteed by the condition

∃ω0 ∃γ : max
i

|λi(H(jω0))| > γ > 1 , (23)

which can be easily checked by a sweep within the frequency bands (1) where the macromodel

exploits a non-passive behavior. If ω0 satisfying (23) is found, the same procedure of section 3.1

can be used with only slight modifications. The only differences are

• the use of ϑ(s) = maxi |λi(H(s))| in Algorithm 1 for the identification of the unstable pole

location;

• use of λi(H(ξ + jω0) instead of Hii(ξ + jω0) in steps 2 and 3 for the determination of ρ

and β defining Γ(s) as in (15).

The corresponding equivalent circuit for Γ(s) can be synthesized according to Table 1. The above

derivation insures that termination of each macromodel port as in Fig. 4 leads to instability the

system.

3.3 Scalar terminations

The next level of complexity is obtained by releasing the constraint of identical loads and keeping

the constraint of independent uncoupled terminations, as depicted in Fig. 5. The corresponding

11



scattering matrix is diagonal

Γ(s) = diag{Γi(s)} . (24)

Theorem 11.8 in [22] states that a necessary and sufficient condition for the loss of stability of

the system with passive Γi(s) is

∃ω0 ∃γ : µ∆(H(jω0)) > γ > 1 , ∆ = diag(δi) , δi ∈ C , (25)

where the structured singular value (7) corresponding to a diagonal block structure is used. As

introduced in Section 2.1, the computation of µ is difficult. Therefore, we will use the condition

∃ω0 ∃γ : µ∆(H(jω0)) > γ > 1 , ∆ = diag(δi) , δi ∈ C , (26)

where the lower bound (9) is used instead of the actual structured singular value. Condition (26)

can be easily checked by a search within the frequency bands where H(s) exploits a non-passive

behavior. When this condition is satisfied, we can use ϑ(s) = µ∆(H(s)) in Algorithm 1 to

identify the location s0 of the unstable pole. As a byproduct from the lower bound computation,

we obtain µ
0

= µ∆(H(s0)) and a constant complex matrix Γ0 = diag{Γi,0} such that

det(I − H(s0)Γ0) = 0 and ||Γ0|| = max
i

|Γi,0| = 1/µ
0

< 1 . (27)

Since diagonal structure is assumed here, the synthesis of each independent load is achieved by

computing βi ≥ 0 and ρi with |ρi| ≤ 1 such that

ρi
βi − s0

βi + s0
= Γi,0 . (28)

This problem has already been solved in Sec. 3.1, with the circuit synthesis reported in Table 1.

As a result, we obtain a set of p independent first-order scalar loads providing a destabilizing

termination network for the macromodel according to Fig. 5.

As a final remark, we note that when no ω0 and γ can be found to fulfill condition (25), the

macromodel is guaranteed to remain stable regardless of its (passive) port terminations, as far

as they are uncoupled.

4 Coupled termination schemes

The destabilization of a non-passive macromodel is always possible, at least with a fully coupled

termination Γ(s). We will detail in Sections 4.1 and 4.2 the construction and the circuit synthesis

of such a termination. However, we will detail in Section 4.3 another termination scheme made

of two uncoupled blocks, which is very often encountered for transmission line and interconnect

structures.
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4.1 Fully coupled termination

The termination structures discussed in Section 3 may not always be applicable in the general

case. However, a destabilizing termination network can always be found by leaving all couplings,

as depicted in the left panel of Fig. 1, since the condition

∃ω0 ∃γ : ||H(jω0)|| > γ > 1 (29)

is guaranteed by working assumption (1) of a non-passive macromodel H(s). The localization

of the unstable pole is achieved using ϑ(s) = ||H(s)|| in Algorithm 1. In this fully coupled case,

a slightly more stringent initialization of ξ is also needed in Algorithm 1 (line 3) with respect to

the scalar case (16). More precisely, we set

ξmax := ω0
γ − 1

2
√

γ
(30)

This condition guarantees that the unstable pole s0 = ξ0 + jω0 will have a real part ξ0 such that

√
(ξ0 + β)2 + ω2

0

(ξ0 − β)2 + ω2
0

≤ √
γ , ∀β ≥ 0 , (31)

as can be easily verified by a straightforward calculation.

A procedure for the construction of Γ(s) can be found in [22]. We report here the main steps

for completeness. We start noting that in correspondence of s0 we have σ1 = ||H(s0)|| > γ > 1.

We compute the singular value decomposition of this (constant complex) matrix, as

H(s0) = Udiag{σi}V H . (32)

Next, we define

Γ0 =
1

σ1
v1u

H
1 , (33)

where σ1 is the largest (first) singular value and v1, u1 are the corresponding right and left

singular vectors (first columns of V and U , respectively). Note that ||Γ0|| = 1/σ1 < 1 by

construction. We have

det{I − H(s0)Γ0} = det

{
I − Udiag{σi}V H 1

σ1
v1u

H
1

}

= det

{
U

(
I − diag

{
σi

σ1

}
V Hv1u

H
1 U

)
UH

}

= det

{
U

(
I − diag

{
σi

σ1

}
(1 0 . . . 0)T (1 0 . . . 0)

)
UH

}

= det{Udiag{0, 1, . . . , 1}UH} = 0 ,

so that the singularity condition (4) at s0 is satisfied for any termination Γ(s) such that Γ(s0) =

Γ0. The existence of such termination (which has to be stable and passive) is guaranteed by

13



Lemma 1. The actual construction is achieved by finding ρ1,i, ρ2,i, β1,i, β2,i for each component

of the singular vectors v1 and u1, such that

ρ1,i
β1,i − s0

β1,i + s0
=

v1,i√
σ1

, ρ2,i
β2,i − s0

β2,i + s0
=

u∗
1,i√
σ1

, β1,i, β2,i ≥ 0 , −1 ≤ ρ1,i, ρ2,i ≤ 1 . (34)

The problem is thus reduced to 2p independent constructions, which have already been dealt

with in Section 3.1 (see Eqs. 14 and 15). Assembling all components, we obtain a stable and

fully coupled destabilizing termination as

Γ(s) = ρ1(s)ρ
T
2 (s) , (ρ1(s))i = ρ1,i

β1,i − s

β1,i + s
, (ρ2(s))i = ρ2,i

β2,i − s

β2,i + s
(35)

It turns out that this definition insures also passivity. In fact, using the definition (34), we can

see that each component of these two vectors is bounded as

|(ρ1(s))i| ≤ |ρ1,i| ≤
√

(ξ0 + β)2 + ω2
0

(ξ0 − β)2 + ω2
0

|v1,i|√
σ1

< |v1,i| (36)

due to (31), and similarly for ρ2(s). Since Γ(s) is a rank-one scattering matrix for each value of

the complex frequency s, its maximum singular value is easily computed as

||Γ(s)|| = ||ρ1(s)|| ||ρ2(s)|| < ||v1|| ||u1|| = 1 (37)

due to the orthonormality of the right and left singular vectors. The above bound proves

passivity of Γ(s).

4.2 Circuit synthesis for the fully coupled case

We provide here a possible circuit synthesis for the fully coupled termination with scattering

matrix (35). The latter can be restated as a factorization into three matrix terms,

Γ(s) = Γ′(s)ΓDC Γ′′(s) (38)

where

ΓDC = r1r
T
2 , with rk,i = ρk,i , k = 1, 2 , i = 1, . . . , p (39)

denotes Γ(s = 0), and where

Γ′(s) = diag

{
β1,i − s

β1,i + s

}
= diag{Γ′

i(s)} , Γ′′(s) = diag

{
β2,i − s

β2,i + s

}
= diag{Γ′′

i (s)} (40)

are diagonal and para-unitary. Equivalently, Γ′(s) and Γ′′(s) are the scattering matrices of

two lossless and fully uncoupled multiports, with each diagonal entry representing the reflection

coefficient of a single capacitance C ′
i = 1/(β1,iR0) or C ′′

i = 1/(β2,iR0), as depicted in Table 1.
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C′
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i

R0

Figure 6: Left: Realization of Γ(s) in (38) via a 4-port circulator connected to each port (i2)

of ΓDC and loaded by two reflection coefficients Γ′
i(s) and Γ′′

i (s). Right: circuit implementation

of the loaded circulator section (superscripts + and − denote positive and negative terminals of

each port, respectively). See also text.

The circuit synthesis of the product (38) can be performed using circulators. The basic block

structure depicted in Fig. 6 (left panel) is readily shown by a signal flow analysis to be equivalent

to (38). In fact, an incident wave into port (i1) of Γ(s) is redirected into Γ′′
i (s), which reflects it

into the port (i2) of ΓDC . The corresponding reflected wave is redirected into Γ′
i(s), which finally

reflects it at the output. The actual circuit implementation of the loaded circulator section, i.e.,

the two-port connected between ports (i1) and (i2), is available in the right panel of Fig. 6. This

two-port has a scattering matrix of the form

Si(s) =

(
0 Γ′

i(s)

Γ′′
i (s) 0

)
(41)

Note that the gyrator cannot be avoided since the construction of Γ′
i(s) and Γ′′

i (s) is independent,

implying β1,i 6= β2,i in the general case.

The gyrator can be eliminated when the macromodel under investigation is reciprocal, i.e., when

its associated scattering matrix H(s) is symmetric. In this case, the matrices U and V in the

singular value decomposition (32) of H(s0) = HT (s0) can be shown to be the complex conjugate

one of each other up to arbitrary phase terms, i.e.,

U = V ∗diag{ejθi} . (42)

A redefinition of the left singular vectors via compensation of these phase terms, i.e., by setting

θi = 0, leads to the equivalent decomposition

H(s0) = V ∗diag{σi}V H , (43)

which explicitly preserves symmetry. This in turns allows to define

Γ0 =
1

σ1
v1v

T
1 (44)
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Figure 7: Circuit realization of the loaded circulator section of Fig. 6 in the reciprocal case.

instead of (33), leading to ρ2,i = ρ1,i and β2,i = β1,i in (34) and (35). Consequently, the two

capacitances in the loaded circulator section depicted in Fig. 6 become identical, C ′′
i = C ′

i and

the corresponding scattering matrix (41) becomes symmetric and represents a matched lossless

reciprocal all-pass two-port. The circuit synthesis becomes therefore a canonical problem (see [8],

p. 215). A possible circuit realization using only one ideal transformer with turns-ratio (−1:1)

is illustrated in Fig. 7.

We turn now to the synthesis of the purely resistive multiport ΓDC . Since all ports are assumed

to be referenced to the same resistance R0, the (constant real) impedance matrix of the multiport

is obtained as

RDC = R0(I + ΓDC)(I − ΓDC)−1 , (45)

which is always defined and strictly positive definite since ||ΓDC || < 1 by construction. Using

expression (39) we get, after few straightforward algebraic manipulations,

RDC = R0

(
I + α r1r

T
2

)
, α =

2

1 − rT
2 r1

> 0 , (46)

showing that this DC impedance matrix is a rank-one perturbation of a matched diagonal

termination.

This synthesis of RDC is a canonical problem, fully developed in [8]. The impedance matrix is

first decomposed into its symmetric and skew-symmetric parts

RDC = R′ + R′′ , R′ = R0I + R0α (r1r
T
2 + r2r

T
1 ) , R′′ = R0α (r1r

T
2 − r2r

T
1 ) . (47)

Thus, RDC is synthesized as a series connection of two p-port networks, which can realized

using positive resistors, ideal transformers, and gyrators. More precisely, the symmetric part is

transformed via Gauss algorithm as

R′ = N ′TΛ′N ′ , Λ′ = diag{λ′
i} ≥ 0 , (48)

which is interpreted as a 2p-port ideal transformer network having a turns-ratio matrix N ′. The

p shunt ports of this transformer network are closed on positive resistances λ′
i. Similarly, the
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H(s)

1+ 1− q−q+· · ·

[q+1]+ [q+1]− p−p+· · ·

Γ1(s)

Γ2(s)

Figure 8: Two-block uncoupled terminations.

skew-symmetric part is reduced as

R′′ = N ′′TΛ′′N ′′ , Λ′′ =

(
0 R0α

−R0α 0

)
, N ′′ =

(
rT

2

rT
1

)
, (49)

which is interpreted as a rank-2 (p+2)-port transformer network having turns-ratio matrix N ′′,

whose two shunt ports are closed on an ideal gyrator with resistance R0α. Finally, we remark

that in the reciprocal case we have r1 = r2, implying that the synthesis can be performed

directly using (46) as a rank-1 (p + 1)-port transformer network having turns-ratio matrix rT
1 ,

with its shunt port loaded on a resistor R0α, and with resistors R0 connected in series to each

of its series ports.

4.3 Two uncoupled blocks

More general termination schemes can be adopted, other than the fully uncoupled and the fully

coupled cases. Many combinations are possible, so we consider here only one case which is the

typical setting for high-speed interconnects and transmission-line simulation. Without loss of

generality we assume p even and we split the ports into two uncoupled sets of size q = p/2,

defining a two-block termination structure depicted in Fig. 8. The corresponding scattering

matrix is block-diagonal

Γ(s) = diag{Γ1(s),Γ2(s)} . (50)

The basic condition allowing for this two-block destabilization is

∃ω0 : µ∆(H(jω0)) ≥ µ∆(H(jω0)) > γ > 1 , ∆ = diag(∆1,∆2)) , ∆i ∈ C
q,q . (51)

Also this condition can be checked by a search within the non-passive bandwidths of the macro-

model. When (51) is fulfilled, application of Algorithm 1 with ϑ(s) = µ∆(H(s)) and with

the initialization (30) leads to the location of the unstable pole s0 = ξ0 + jω0 and to a pair of

constant complex matrices Γ0,k, k = 1, 2 such that

det(I − H(s0)Γ0) = 0 , Γ0 = diag(Γ0,k) and ||Γ0,k|| < 1 . (52)
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Table 2: Relaxed passivity conditions under structured terminations. If the conditions in the

right column are fulfilled, the macromodel with a stable scattering matrix H(s) preserves its

stability when terminated by a load with the coupling structure reported in the left column.

Load structure Structured passivity condition

Single-port mismatch |Hii(jω)| ≤ 1, ∀ω ∀i

Identical scalar maxi |λi(H(jω))| ≤ 1, ∀ω ∀i

Scalar µ∆(H(jω)) ≤ 1 ∀ω, ∆ = diag(δi) , δi ∈ C

Two-block µ∆(H(jω)) ≤ 1 ∀ω, ∆ = diag(∆1,∆2), ∆i ∈ C
q,q

Full ||H(jω)|| ≤ 1, ∀ω

This condition guarantees that H(s0)Γ0 has a unitary eigenvalue. Denoting as x1 and x2 the

two block components of the corresponding eigenvector, we define

Γ̃0,k = ṽkũ
H
k , with ṽk =

Γ0,kxk

||Γ0,k||1/2 ||xk||
, ũk =

xk

||xk||
||Γ0,k||1/2 , (53)

unless xk = 0, in which case we set Γ̃0,k = 0. Clearly, ||Γ̃0,k|| < 1. This enables the construction

of a passive two-block dynamic termination as in (50) such that

Γk(s0) = Γ̃0,k , (54)

using the same procedure already employed for the fully coupled case and detailed in Section 4.1.

The result is, for each block k = 1, 2

Γk(s) = ρk
1(s)(ρ

k
2(s))

T (55)

with each component being defined as in (35) for the fully coupled case. Finally, the circuit

synthesis can be performed for each independent block following the procedure of Section 4.2.

5 Structure-dependent passivity

The developments of Sections 3 and 4 have been carried out with the intention of demonstrating

the loss of stability of a macromodel under various passive termination schemes with different

coupling structure. For a quick comparison, a visual summary of all these terminations is

depicted in Figure 9. In this short section we change perspective. Indeed, the main theoretical

results can be restated in terms of relaxed ”structured” passivity conditions, which guarantee

macromodel stability when it is terminated by a load having a prescribed coupling structure.

These conditions are listed in Table 2 for all cases investigated in this paper.
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Single-port Identical scalar Scalar Two-block Full

Figure 9: Outline of the scattering matrix Γ(s) for all termination schemes presented in the

paper, referred to a macromodel H(s) having 4 ports. Only the nonvanishing entries of Γ(s)

are depicted with filled boxes. Within each panel, different filling schemes denote different

independent subcircuits.

3 1

24

Figure 10: Layout of the PCB with the coupled interconnect structure under investigation. Port

numbering is also specified.

6 Examples

6.1 Lumped macromodel

We illustrate the destabilization procedure on a practical example. The Printed Circuit Board

(PCB) coupled interconnect depicted in Fig. 10 has been characterized by a set of measured

Scattering parameters referred to R0 = 50Ω, over a 1 GHz bandwidth. This dataset has

been used to compute a rational macromodel via the VF algorithm [3]. This macromodel

results non-passive, since a frequency-sweep of the corresponding ||H(jω)|| returns values larger

than one. We remark that the physical interconnect structure is certainly passive. Passivity

violations are here introduced in the measurement process and are essentially due to an imperfect

instrument calibration. Figure 11 reports the norm ||H(jω)|| (curve labeled as ”full”) and

some additional frequency-dependent structured singular values corresponding to the two-block,

scalar, and identical scalar termination schemes. All these norms exceed one in three different

frequency bands, thus enabling the application of the proposed destabilization scheme.

Three independent sets of passive terminations have been designed for each passivity violation

bandwidth, with a prescribed coupling structure. In particular, Algorithm 1 has been executed in

each case by choosing the frequency ω0 that maximizes the norm of interest (”full”, ”two-block”,

”scalar”, and ”identical scalar”) within each of the three available frequency bands. Then,
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Figure 11: Frequency-dependent structured norms for a non-passive macromodel of a PCB

interconnect structure. Three passivity violation bands are visible; band I: (0, 0.3) GHz, band

II: (0.4, 0.6) GHz, band III: (0.7, 1) GHz. The ”full”, ”two-block” and ”scalar” curves are almost

superimposed, except for a small bandwidth at low frequency.

Table 3: Unstable poles for various termination schemes. Each column correspond to a different

design based on the location of the target unstable poles in frequency bands I, II, and III,

respectively.

Termination scheme Unstable poles [Grad/s]

Band I Band II Band III

Fully coupled 0.0032 ± j1.3195 0.0129 ± j3.2044 0.0430 ± j5.4350

Two-block 0.0032 ± j1.3195 0.0129 ± j3.2044 0.0430 ± j5.4350

0.0097 ± j2.8865 0.0209 ± j4.9577

Scalar 0.0032 ± j1.3195 0.0129 ± j3.2044 0.0430 ± j5.4350

0.0272 ± j2.8792 0.0253 ± j4.8872

0.0317 ± j4.6895

Identical scalar 0.0038 ± j0.6597 0.0128 ± j3.2044 0.0369 ± j5.4350

0.0005 0.0259 ± j4.8886

the corresponding twelve different de-stabilizing terminations have been computed. Finally,

the twelve sets of poles of the complete network (macromodel plus each of the terminations)

have been computed. Figure 12 reports the network poles for one of these cases (identical

scalar terminations designed within band III) and shows the presence of two unstable poles, as

expected. The set of unstable poles for each case is reported in Table 3.
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Figure 12: Poles of the complete network with the identical scalar termination designed in

band III. Unstable poles are highlighted with a circle.

As a further illustration of the loss of stability, we show in Figure 13 the transient response

excited in the complete network with the band III design of identical scalar terminations. The

transient response has been obtained with SPICE on a simulation deck obtained by synthesizing

the termination as in Table 1. For this particular case, each scalar load has been synthesized

with structure R1||(R2 + sL), with component values R1 = 1.93kΩ, R2 = 1.29Ω, L = 9.18 nH.

A current source is(t) = eαt cos(ω0t)u(t) in parallel to one of the macromodel ports is used

to excite the unstable mode in the network, with α < 0 and with ω0 corresponding to the

resonant frequency of the unstable pole. The exponential blow up of the network demonstrates

the macromodel destabilization.

This example tells us that passivity is a fundamental property that must be insured in any data

processing and modeling step. When passivity is lost (in this case during measurement), obvious

difficulties may arise if no proper countermeasures are taken. Note also that stability loss occurs

with terminations made of standard circuit elements, having quite realistic component values.

6.2 Delay-based macromodel

We consider now a delay-based macromodel of a transmission line. The structure under in-

vestigation, depicted in Fig. 14, is a three-layer flexible interconnect typically used in foldable

mobile phones to connect modules residing in different moving blocks [30]. The transmission line

is fully characterized once the per-unit-length impedance Z(s) and admittance Y (s) matrices

are known, e.g., via quasi-static 2D field solutions in the transverse plane. It is well-known
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Figure 13: Exponential instability of the terminated network.
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Figure 14: Cross-section of the transmission-line under investigation. Crosshatch and solid

fill indicate signal and ground conductors, respectively. Parameter values are h1 = 50µm,

h2 = 57.5µm, δ = 0.5mm, w = d = 100µm, t = 17.5µm, εr = 3.6, L = 30 cm.
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that these matrices have a complex dependence on frequency due to skin/proximity effects and

dielectric losses [25]. This makes a direct inclusion of such models in standard SPICE-based

solvers difficult [1].

A macromodel for this structure can be derived in closed-form from the Telegrapher’s equations

using the Generalized Method of Characteristics [30, 31]. The resulting macromodel equations

are

I1 = Y c(s)V 1 − Q(s) (Y c(s)V 2 + I2) (56)

I2 = Y c(s)V 2 − Q(s) (Y c(s)V 1 + I1)

where V 1, I1 and V 2, I2 denote the near and far end terminal voltage and current vectors, with

Y c(s), Q(s) being the characteristic admittance and the propagation operator, respectively,

defined as

Γ2(s) = Y(s)Z(s) , Yc(s) = Γ−1(s)Y(s) , Q(s) = e−LΓ(s) . (57)

Due to the complex dependence of Y c(s) and Q(s) on frequency, a rational approximation

combined with modal delay extraction is performed

Y c(s) ≃
∑

n

RY
n

s − pn
+ Y ∞ , Q(s) ≃ M e−sT

(
∑

n

RP
n

s − qn
+ P∞

)
M−1 (58)

in order to implement the model as a SPICE-compatible stamp, i.e., as a set of delayed ordinary

differential equations. The delay matrix T is diagonal, and the constant matrix M collects the

line modal profiles at s = ∞. More details can be found in [31]. We remark that (56) defines

only implicitly the macromodel, but the corresponding scattering matrix H(s) (not reported

here) can be readily obtained using simple algebraic calculations from (56). Despite the very

recent results of [26, 27, 28], passivity enforcement of such macromodels still remains an open

problem, due to the presence of the delay terms.

Since the structure is a transmission line, any practical termination scheme never couples directly

the near-end and the far-end ports. Therefore, only the passivity of the model under structured

terminations with reduced coupling is important. The structured singular value norms have been

computed for the ”identical scalar”, ”scalar”, and ”two-block” cases, leading to a maximum value

of about 1.00031 for all three cases, in a frequency band between 10 and 20 MHz. Note that the

raw data used to derive the model are passive, so that the small passivity violation is introduced

during the rational approximation phase.

Application of Algorithm 1 for the ”identical scalar” case leads to an unstable pole s0 = (1.113×
104 + j7.226 × 107) rad/s. The synthesis of the destabilizing load produces a R1||(R2 + sL)

termination at all ports, with component values R1 = 335.4 kΩ, R2 = 7.454mΩ, and L =

0.433µH. A further confirmation of the destabilization process is provided in Fig. 15, where a
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Figure 15: Contour plot of log |det(I −H(s)Γ(s))| around the location of the destabilizing pole

s0.

contour plot of log |det(I − H(s)Γ(s))| is depicted as a function of s around the location of

the destabilizing pole s0 in the right-hand complex plane. The crowding of the contour lines

pinpoints the expected singularity at s = s0.

6.3 RF amplifier circuit

The last example we consider is a two-port FET-based microwave amplifier circuit. We are

interested in the stability properties of the amplifier under variable independent one-port ter-

minations up to 10 GHz. Therefore, we compute the structured singular value for the ”scalar”

case, as reported in Table 2. The results are depicted in Fig. 16, where also the norm of the

scattering matrix and the input-output transmission coefficient H21 are reported. Since the

structured singular value is uniformly bounded by one in the frequency band of interest (upper

bound is 0.99924), the amplifier will remain stable when no external coupling is present between

its input and output port. This example shows that, in addition and as a generalization of

existing techniques [15]-[21], the structured singular value can be adopted as a single metric for

the robust stability assessment of any type of device, including active elements, provided that

the specific coupling structure of its terminations is predefined.
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Figure 16: Stability analysis of a two-port RF amplifier circuit. Since the structured singular

value µ∆(H(jω)) for the ”scalar” case is less than one, the amplifier remains unconditionally

stable for any termination network that does not couple its input and output ports.

Conclusions

In this paper, we have provided an algorithmic procedure for the identification of a particular

passive termination that drives a non-passive macromodel to instability. The structure of the

termination, from no port coupling to the fully-coupled case, can be chosen almost arbitrarily

depending on suitable conditions. These conditions are explicitly derived in each case and

involve the unitary boundedness of a suitable norm of the macromodel scattering matrix at the

frequency of interest. We remark that there are no important practical limitations on the size of

macromodel that can be handled by the proposed algorithms, since the destabilization synthesis

is performed at a single working frequency.

The material in this paper provides a quantitative evidence of the paramount importance of

passivity in any macromodel to be used on a CAD environment for system analysis and design.

In case macromodel passivity is not guaranteed, obvious global stability problems may arise

during model simulation. Consequently, there is a strong motivation for further research on

passivity enforcement methods. Although several of such techniques are available for small to

medium-size lumped models (say, up to ten ports and up to few hundred states) [32]-[44] and for

particular classes of small-size delay-dependent models (see, e.g., [26]-[29] and referenfes therein),

robust methods are still unavailable for models having large dynamic order and a large number

of ports, as typically found, e.g., in high-speed packaging applications. For instance, the gen-

eration of accurate broadband passive macromodels of full IC packages for chip-package-board

Signal Integrity analysis still remains an open problem due to the overwhelming computational

complexity of state of the art techniques.
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Systems by Rational Function Approximation”, IEEE Trans. Advanced Packaging, vol. 28,

N. 2, May 2005, pp. 209–215.
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