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Abstract— This paper presents an algorithm for the enforce-
ment of passivity in delay-based multiconductor transmission
line macromodels based on the Generalized Method of Char-
acteristics. The algorithm enforces passivity via an iterative
procedure based on first-order perturbations. More precisely, the
short-circuit admittance matrix of the macromodel is iteratively
modified until it becomes positive real. This iterative perturbation
is performed on the solutions of a nonlinear eigenvalue problem,
whereas the passivity verification is performed using an adaptive
frequency sampling process. The proposed technique results in
passive, accurate, and efficient macromodels for arbitrary lossy
multiconductor transmission lines, which can be synthesized in
SPICE netlists for system-level analysis and design.

I. INTRODUCTION

The automated design of highly interconnected systems
under Signal Integrity (SI) and Electromagnetic Compatibility
(EMC) constraints requires accurate and efficient models for
all components. In particular, coupled multiconductor trans-
mission lines still represent a quite challenging modeling task.
In fact, all spurious effects that have an influence on the
signals must be considered in the models. Most of these effects
(e.g., proximity, skin effect losses, dispersion) are natively
described in the frequency domain, leading to frequency-
dependent per-unit-length parameter matrices. The conversion
from frequency to time domain descriptions for transient
analysis using standard circuit solvers such as SPICE has
been a subject of intense research over the last few decades.
Nonetheless, several open problems remain.

This paper deals with one of these problems. Namely, the
preservation of passivity during the derivation of a SPICE-
compatible transmission line model. This is a fundamental
physical property, requiring that no energy can be generated
from any passive structure. However, this property may be
lost during the model manipulation and approximation steps
required for the conversion. It is well-known that non-passive
models are unreliable, since they may lead to exponential
instability in a transient simulation, depending on their ter-
minations. We concentrate here on models based on the so-
called Method of Characteristics (MoC), since it has been
demonstrated that such models are the most efficient for lines
characterized by a significant propagation delay. Preservation
of passivity for such models is still an open issue.

Significant advancements have been recently achieved
in [1], [2]. In these papers, the Authors present a systematic

procedure for checking the passivity of MoC-based transmis-
sion line models. Here, we start from their formulation and we
present a perturbation approach that is able to enforce model
passivity once some passivity violations have been detected.
The results in this work generalize to the multiconductor case
the preliminary results in [3], which are valid for single lines
only. The basics of MoC formulation are first reviewed in
Sec. II, and the passivity check of [1], [2] is outlined in Sec. III
in order to set the notations. Also, this section proposes a
more robust passivity verification algorithm based on adaptive
frequency sampling. Finally, the proposed perturbation scheme
is presented in Sec. IV together with two application examples.

II. MOC MACROMODELS

We consider a multiconductor transmission line of length
L governed by the telegrapher equations, here stated in the
Laplace-domain

− d
dz

V (z, s) = Z(s)I(z, s)

− d
dz

I(z, s) = Y (s)V (z, s)
(1)

where z represents the longitudinal coordinate along which
signals propagate. The matrices Z(s) and Y (s) denote the
f -PUL (frequency dependent per-unit-length) impedance and
admittance parameters, respectively. Following the Method of
Characteristics (MoC) approach, the solution of telegrapher
equations is obtained as [4]

I1(s) = Y c(s)V 1(s) − Q(s)[Y c(s)V 2(s) + I2(s)]
I2(s) = Y c(s)V 2(s) − Q(s)[Y c(s)V 1(s) + I1(s)]

(2)

where V 1,2(s) and I1,2(s) represent the terminal voltages
and currents of the line and where Q(s) = exp{−Γ(s)L},
Γ2(s) = Y (s)Z(s), and Y c(s) = Γ−1(s)Y (s). A SPICE-
compatible stamp is derived from (2) by extracting the asymp-
totic modal delays T = diag{Tk} from the propagation
operator Q(s)

P (s) = e−sT M−1Q(s)M (3)

using the asymptotic modal decomposition matrix M , and by
approximating the remaining matrix operators Y c(s), P (s)
with low-order rational functions Ỹ c(s), P̃ (s), respectively.
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The well-known Vector Fitting algorithm [5] can be used for
this task, leading to a state-space realization for Ỹ c(s)

Ỹ c(s) = C(sI − A)−1B + D , (4)

and similarly for P̃ (s). Note that the model poles are the
eigenvalues of A, whereas the corresponding residues are
stored in matrix C. The passivity of (4) can be enforced using
known techniques [7]. We remark that the macromodel (2)-(4)
can be directly synthesized in a compact SPICE subcircuit in-
cluding ideal delay elements and lumped resistors, capacitors,
and controlled sources [4].

III. PASSIVITY CHARACTERIZATION

Following [1], [2], the passivity of the line MoC macro-
model is here characterized using the short-circuit admittance
matrix Y(s). The latter is readily obtained from (2)–(3) and
reads

Y(s) =
[
W−1

0 (s)W 1(s)Ỹ c(s) W−1
0 (s)W 2(s)Ỹ c(s)

W−1
0 (s)W 2(s)Ỹ c(s) W−1

0 (s)W 1(s)Ỹ c(s)

]
(5)

where

W 0 = I − Me−sT P̃ (s)e−sT P̃ (s)M−1

W 1 = I + Me−sT P̃ (s)e−sT P̃ (s)M−1

W 2 = −2Me−sT P̃ (s)M−1 ,

(6)

with I denoting the identity matrix. A multiport described by
the admittance matrix Y(s) is passive if and only if Y(s) is
positive real [6]. If Ỹc(s), P̃ (s), and Y(s) are asymptotically
stable (do not have poles in the right-half plane of the s-
domain) with P̃ (s) → 0 for s → ∞, the positive realness of
Y(s) is equivalent to the condition

2G(s) = YT (−s) + Y(s) ≥ 0 , ∀s = jω , (7)

which can be verified by checking that all eigenvalues λν(jω)
of G(jω) are nonnegative throughout the frequency axis,

λν(jω) ≥ 0 , ∀ω . (8)

At least two options are available for checking (8). A direct
check at discrete frequencies is straightforward but may lead
to miss passivity violations in case the sampling is not accurate
enough. A second purely algebraic technique, which does not
require any frequency sampling, was presented in [1], [2].
This formulation involves restating the macromodel in time-
domain as a set of Algebraic Delay-Differential Equations
(ADDE), for which a delayed state-space realization is readily
obtained from (8) using inverse Laplace transform (see [1],
[2] for details). Then, the passivity of the MoC macromodel
is guaranteed when there are no purely imaginary values for
s that satisfy the following Frequency-Dependent Eigenvalue
Problem (FD-EP)

sξ = H(s)ξ , (9)

where
H(s) = V + W−e−sT + W+esT . (10)

The constant matrices V and W± are easily constructed
following a tedious but simple algebraic manipulation, using
as building blocks the state-space matrices defining the AD-
DEs above. We remark that, as a result, matrix H(s) is a
quadratic function of the state-space matrix C of (4) for any
fixed frequency s. Note that the frequency-dependent matrix
H(s) provides a generalization of the concept of Hamiltonian
matrices [7] to the ADDE case. Hence, the purely imaginary
eigenvalues of FD-EPs above, if any, correspond to those
frequencies at which the eigenvalues of G(jω) change sign
(Fig. 1). If no such solutions are found, the eigenvalues remain
positive at all frequencies and the model is passive.

The above formulation is very appealing, since a global
passivity check is provided by the solution of an eigenvalue
problem. Unfortunately, the solution of (9) poses serious
numerical challenges. In fact, the standard procedure involves
its transformation into a larger-size linear eigenvalue problem
which is often characterized by several eigensolutions that are
very close one to each other. Due to intrinsic ill-conditioning,
a test to ascertain whether these solutions are purely imaginary
is very difficult. For this reason, we use a less elegant but more
robust technique for the detection of these solutions, based
on an accuracy-controlled adaptive sampling strategy similar
to [8].

We begin by extracting an initial set of frequency samples.
Then, this set is adaptively refined until all frequencies

ωk : λν(jωk) = 0 (11)

for some ν are found within an arbitrary precision ε. This
success of this procedure is guaranteed when: i.) the initial
samples cover the bandwidth where all solutions are expected;
and ii.) the sampling rate is sufficiently fine to bracket each
interval where no more than two solutions are expected. A
high frequency bound exists due to the underlying assumption
P̃ (s) → 0 for s → ∞, implying that the eigenvalues
λν(jω) → µν for ω → ∞, where 2µν = eig{D + DT } ≥ 0
by construction due to the passivity of (4). The initial sampling
rate δω is determined by insuring that δω < 2π/(NTmax),
where Tmax is the largest extracted delay and N ≥ 40. For
additional details on the adaptive refinement scheme see [8].

IV. PASSIVITY ENFORCEMENT

Once the above procedure for passivity characterization is
applied to a given MoC model, and the model is found to
be non-passive, some correction must be applied in order to
enforce its passivity. Let us consider the example in Fig. 1.
In this case, four frequencies ωk are found, either as solutions
of the FD-EP in (9) or from adaptive frequency sampling,
leading to two separate frequency bands where passivity
violations occur. In the following sections, we describe a
procedure that allows to perturb matrix C in (4) (i.e., the
residues of a partial fraction expansion of Ỹ c) so that the
non-passive bands are eliminated. This is accomplished by a
first-order perturbation of the frequencies ωk. In fact, this is
the main contribution of this work, namely an extension of
the perturbation scheme of [7], which is applicable to lumped
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Fig. 1. Modeling a L = 10 cm microstrip (w = 0.007′′ and t = 0.0014′′)
over a h = 1/16′′ FR4 substrate with permettivity εr = 4.7. Solutions ωk

of the FD-EP and their perturbation ω̂k . The solid line depicts λ1(jω) as
in (8)

models only, to the delayed transmission-line case. Section IV-
A provides a general result on the perturbation of nonlinear
eigenvalue problems such as the FD-EP in (9). Section IV-B
applies this result for the MoC passivity enforcement.

A. Perturbation of eigenvalues

Let us consider the FD-EP

H(s, ε)ξ(ε) = sξ(ε) , (12)

where the system matrix depends on an additional param-
eter ε � 0. We denote a generic eigensolution of (12) as
{s(ε), ξ(ε), ζ(ε)}, where ξ and ζ are the right and left eigen-
vectors associated to the eigenvalue s, in order to highlight its
dependence on ε. Also, we denote the reference eigensolution
for ε = 0 as

H(s0, 0)ξ0 = s0ξ0 , ζH
0 H(s0, 0) = s0ζ

H
0 , (13)

where H denotes the conjugate transpose. Differentiating (12)
with respect to ε and setting ε = 0 in the result, we obtain(

I − H
(s)
0

)
s′0ξ0 = H

(ε)
0 ξ0 +

(
H(s0, 0) − s0I

)
ξ′

0 , (14)

where

H
(s)
0 =

∂H

∂s

∣∣∣∣s=s0
ε=0

H
(ε)
0 =

∂H

∂ε

∣∣∣∣s=s0
ε=0

(15)

and where s′0 and ξ′
0 are the first-order perturbation co-

efficients of eigenvalue and eigenvector, respectively. Pre-
multiplying now by the left eigenvector ζH

0 and using (13),
we have

s′0 =
ζH

0 H
(ε)
0 ξ0

ζH
0

(
I − H

(s)
0

)
ξ0

, (16)

which establishes a linear relation between the first-order
perturbation coefficients of system matrix H(s, ε) and the
corresponding eigenvalue s(ε) � s0 + s′0ε. Of course, in
case of a regular frequency-independent eigenvalue problem,
we have H

(s)
0 = 0 and standard perturbation results are

obtained [9], [7].
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Fig. 2. Eigenvalue λ1(jω) of original and perturbed model. The perturbed
model is passive because the eigenvalue is positive for all values of ω.

B. MoC passivity enforcement

Equation (16) enables the derivation of a passivity enforce-
ment scheme similar to [7]. Each imaginary eigensolution
sk = jωk is displaced to a target location ŝk = jω̂k inwards
into the violation bandwidth (see Fig. 1). This is obtained by
computing a new state-space matrix

Ĉ = C + ∆ (17)

such that the first-order perturbation induced in the system
matrix H(s,∆) has the desired perturbed eigensolution. After
some straightforward manipulation of (16) we obtain

2�
{
zH

k ∆xk

}
= (ω̂k − ωk)�

{
ζH

k

(
I − H

(s)
k

)
ξk

}
, (18)

to be enforced ∀k, where the complex vectors zk, xk are easily
derived using a first-order expansion of H(s,∆) in terms
of ∆. The final (linear) system to be solved for eigenvalue
displacement is obtained via the following equivalence

2�
{
zH

k ∆xk

}
= 2�

{
xT

k ⊗ zH
k

}
vec(∆) ∀k , (19)

where ⊗ is the Kronecker product [10] and the operator vec(·)
stacks the columns of its matrix argument. Passivity of the
MoC model is enforced by iterative solution of (18)-(19).

C. Example

We apply the proposed methodology for the generation of a
passive macromodel of the microstrip line of Fig. 1, which
was characterized by four imaginary eigenvalues and two
frequency bands with passivity violations. The passivity com-
pensation algorithm of Section IV-B was applied in order to
eliminate these violations. Figure 1 provides a schematic view
of the compensation process, by highlighting the perturbation
that is applied in order to displace the imaginary eigenvalues.
The final result after only one iteration (CPU time less than one
second) of (18) is a passive macromodel, as depicted in Fig. 2,
without any imaginary eigenvalues left. As a confirmation
that accuracy is preserved during the passivity enforcement,
we report in Fig. 3 the transient solution of non-passive and
passive models excited by a pulse with 50 Ω terminations.
Both curves are undistinguishable. However, changing the
termination into a simple RL load drives the non-passive
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Fig. 3. Comparison of passive and non-passive models with 50 Ω loads.
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Fig. 4. The non-passive model looses stability when loaded by a simple RL
load. A nonuniform scale for the time axis is used to highlight the instability.

model to instability, while the passive models remains wel-
behaved, see Fig. 4.

We turn now to a multiconductor line, by considering a
3 cm coupled stripline (conductor width and separation w =
s = 6 mils, thickness t = 17.5µm, total dielectric height h =
20 mils, εr = 4.7). A MoC macromodel was generated and
tested for passivity using the technique of Sec. III. The results
are depicted in Fig. 5, showing that there are four passivity
violation intervals, two for each eigenvalue λν with ν = 1, 2.
The other two eigenvalues λ3,4 (not shown) did not present
any passivity violations. The proposed passivity enforcement
scheme was then applied, achieving global passivity in 2
iterations (CPU time about 10 seconds) . The results of the
compensation are depicted in Fig. 5, where the two eigenvalues
of the passive model are compared to the original eigenvalues.
Figure 6 shows a comparison between original and passive
models for one element of the characteristic admittance matrix.
Small differences are mostly localized where original passivity
violations were detected, whereas a good match is preserved
elsewhere.

V. CONCLUSIONS

We have presented a new algorithm for the passivity en-
forcement in lossy multiconductor transmission-line macro-
models based on the generalized Method of Characteristic. The
proposed technique is able to perturb the model coefficients
until passivity is achieved. The main algorithm extends to
delay-extraction based macromodels existing methodologies
that were available only for lumped macromodels. The final
outcome is a passive equivalent circuit of the transmission line.
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Fig. 5. Eigenvalues λν(jω) of original and perturbed passive model of a
coupled stripline.
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Fig. 6. Characteristic admittance of original and perturbed (passive) model
of a coupled stripline.

This circuit can be used for standard frequency-domain analy-
sis, e.g. based on commonly adopted scattering formalism. In
addition, the explicit passivity enforcement allows its safe use
in transient analyses including nonlinear terminations, since
stability problems are excluded by construction.
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