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The Refined Zigzag Theory (RZT) for homogeneous, laminated composite, and sandwich plates is revisited
to offer a fresh insight into its fundamental assumptions and practical possibilities. The theory is introduced
from a multiscale formalism starting with the inplane displacement field expressed as a superposition of
coarse and fine contributions. The coarse displacement field is that of first-order shear-deformation theory,
whereas the fine displacement field has a piecewise-linear zigzag distribution through the thickness. The
resulting kinematic field provides a more realistic representation of the deformation states of transverse-
shear-flexible plates than other similar theories. The condition of limiting homogeneity of transverse-shear
properties is proposed and yields four distinct variants of zigzag functions. Analytic solutions for highly het-
erogeneous sandwich plates undergoing elastostatic deformations are used to identify the best-performing
zigzag functions. Unlike previously used methods, which often result in anomalous conditions and non-
physical solutions, the present theory does not rely on transverse-shear-stress equilibrium constraints. For
all material systems, there are no requirements for use of transverse-shear correction factors to yield accu-
rate results. To model homogeneous plates with the full power of zigzag kinematics, infinitesimally small
perturbations in the transverse shear properties are derived, thus enabling highly accurate predictions of
homogeneous-plate behavior without the use of shear correction factors. The RZT predictive capabilities to
model highly heterogeneous sandwich plates are critically assessed, demonstrating its superior efficiency,
accuracy, and a wide range of applicability. This theory, which is derived from the virtual work principle,
is well-suited for developing computationally efficient, C0 a continuous function of (x1, x2) coordinates
whose first-order derivatives are discontinuous along finite element interfaces and is thus appropriate for the
analysis and design of high-performance load-bearing aerospace structures. © 2010 Wiley Periodicals, Inc.*
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Keywords: composite plates; plate theory; sandwich plates; shear deformation; virtual work principle;
zigzag kinematics

Correspondence to: Marco Gherlone, Department of Aeronautics and Space Engineering, Politecnico di Torino,
Corso Duca degli Abruzzi, 24, 10129, Torino, Italy (e-mail: marco.gherlone@polito.it)

1



I. INTRODUCTION

Advances in composites technology over the past four decades spurred an ever increasing use of
composite materials in civilian and military aircraft, aerospace vehicles, naval, and civil structures.
Application of composite materials leads to lightweight structures that offer high-performance and
long-term durability and reliability. The newest state-of-the-art civilian aircraft, the Boeing 787,
is 50% composite and uses carbon-epoxy materials for its fuselage, wings, and many load-bearing
components.

Stress-analysis methods based on classical assumptions, which suppress the transverse shear
and normal effects, have significant limitations particularly when applied to multilayered com-
posites undergoing bending and transverse shear deformations. Load-bearing thick-section com-
posites and sandwich structures can exhibit significant deformations due to transverse shear and
thickness-stretch effects, especially in regions of stress concentration and when undergoing high-
frequency responses. Many structural theories of first and higher order and their finite element
implementations have been developed. The most widely used finite elements for plate and shell
bending are those based on First-order Shear Deformation Theory (FSDT) [1–4], because of
their computational efficiency and relatively wide range of applicability. Nevertheless, it is well
recognized that such models have the tendency to underestimate the inplane strains and stresses,
particularly in highly heterogeneous and thick composite and sandwich laminates, and overesti-
mate natural frequencies of relatively high-frequency vibration modes [5–8]. Moreover, FSDT’s
accuracy is related to the use of shear correction factors that are material lay-up dependent.
Higher-order theories, which take into account transverse shear deformability [8], are more accu-
rate than FSDT and normally do not require shear correction factors. Theories based on the
equivalent-single-layer assumption [9–12] also offer reduced computational complexity; however,
they fail to model the zigzag-shaped cross-sectional distortion typical of heterogeneous laminates.
Layer-wise theories [13, 14] have quasi-three-dimensional predictive capabilities; however, the
computational effort is excessively great for most practical applications. To model sandwich
laminates with sufficient accuracy commonly requires application of special sandwich theories
to account for a zigzag-shaped, through-the-thickness distribution of inplane displacements and
strains, at the expense of a much higher modeling and kinematic complexity [15–17]. Alterna-
tively, three-dimensional finite element models are used to analyze relatively small structural
regions of interest, and these are often coupled with two-dimensional discretizations to achieve
smaller and computationally feasible models. Computational methods for nonlinear progressive
failure analysis commonly employ cohesive elements and ply-by-ply discretizations, resulting in
exceedingly intensive computations, particularly when large structures are analyzed [18, 19].

Zigzag theories pioneered by Di Sciuva, both in linear [20–23] and in cubic versions [24, 25],
may be considered as a good compromise between adequate accuracy and low computational cost.
The key idea is to add a piecewise-linear, zigzag-shaped (that is, C0

z a continuous function of z

coordinate whose first-order derivative is discontinuous along material-layer interfaces) contribu-
tion to a globally linear or cubic through-the-thickness distribution of the inplane displacements.
The superposed zigzag kinematics are determined in such a way as to satisfy equilibrium of the
transverse shear stresses through the laminate thickness, as required by the theory of elasticity. The
formulation results in a fixed number of kinematic unknowns, equal to that of FSDT, which does
not depend on the number of layers. These theories often yield response predictions comparable
to those of layer-wise theories; however, various flaws inherent in these theories have prevented
their acceptance in practical applications.

Averill [26] recognized two major drawbacks that plague many previously mentioned zigzag
theories: (i) C1-continuous functions are required to approximate the deflection variable within
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the finite element framework—the type of approximations that are especially undesirable for plate
and shell finite elements and (ii) transverse shear stresses calculated from constitutive equations
vanish erroneously along clamped boundaries.

Building on the observations of Averill [26], Tessler et al. presented [27–31] a Refined Zigzag
Theory (RZT) that augments FSDT with a novel zigzag representation of the inplane displace-
ments. The kinematic field does not require enforcement of transverse-shear-stress continuity to
yield accurate results. Both drawbacks of the original zigzag theories are overcome because: (i)
only first derivatives of the kinematic unknowns are present in the definition of the strain field,
thus leading to C0 -continuous shape functions for beam and plate finite elements [32–35] and
(ii) all field equations (that is, equilibrium equations, constitutive equations, boundary conditions,
and strain-displacement relations) are consistently derived from the virtual work principle without
engendering any transverse-shear-force anomalies. Since the transverse shear forces are fully con-
sistent with respect to the physical and variational requirements, they do not vanish erroneously
along clamped boundaries. Furthermore, the theory has been demonstrated to yield consistently
superior results over a wide range of aspect ratios and material systems, including thick laminates
with a high degree of transverse shear flexibility, anisotropy, and heterogeneity.

In this article, the RZT [30] is revisited to reexamine its fundamental assumptions and to
explore new modeling possibilities. In Section II, the theory is introduced from a multiscale
formalism. The kinematic field is represented as a superposition of coarse and fine kinematic
descriptions, where the coarse kinematics are those of FSDT and the fine kinematics are rep-
resented by piecewise C0

z -continuous zigzag functions through the thickness. The definition of
the zigzag functions is further refined by assuming that the coarse kinematics form the average
laminate response only, whereas the fine kinematics represent a perturbation from the average
response. The strain-displacement equations and constitutive relations are presented in Section III.
In Section IV, the zigzag functions are defined in terms of layer-level thickness coordinates. The
methodology for determining the zigzag functions from the transverse-shear constitutive relations
is reviewed following the approach in [30]. Then, a new perspective, based on the concept of lim-
iting homogeneity, is proposed for the determination of zigzag functions. This new methodology
permits four distinct sets of zigzag functions to be obtained, one of which is coincident with the
form derived in [30]. The concept of limiting homogeneity is further invoked for the purpose
of modeling homogeneous plates with the full power of zigzag kinematics. Analytic results for
homogeneous orthotropic plates and highly heterogeneous sandwich laminates are presented in
Section V to demonstrate RZT’s wide range of applicability.

II. KINEMATICS DESCRIPTION

Consider a multilayered composite plate of uniform thickness 2h composed of perfectly bonded
orthotropic layers (or laminae) as shown in Fig. 1(a). Points of the plate are located by the
orthogonal Cartesian coordinates (x1, x2, z) where x1, x2 are the reference coordinates with axes
positioned in the middle plane of plate and z is the thickness coordinate axis. The ordered pair
(x1, x2) ∈ Sm denotes the inplane coordinates, where Sm represents the set of points given by the
intersection of the plate with the plane z = 0, referred to herein as the middle reference plane (or
midplane). The symbol z ∈ [−h, h] denotes the domain of the through-the-thickness coordinate,
with z = 0 identifying the plate’s midplane. The plate is subjected to a normal-pressure loading,
q(x1, x2) applied at the midplane, Sm, which is defined as positive when acting in the positive z

direction. In addition, a traction vector, (T̄1, T̄2, T̄3), is prescribed on Sσ ⊂ S, where S denotes the
total cylindrical-edge surface. On the remaining part of the edge surface, Su ⊂ S, displacement
restraints are imposed (or prescribed). The sections of the plate edge are related by Sσ ∪ Su = S
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FIG. 1. (a) General plate notation and (b) lamination notation.

and Sσ ∩ Su = ∅. Moreover, the curves Cσ = Sσ ∩ Sm and Cu = Su ∩ Sm define the two parts
of the total perimeter C = Cσ ∪ Cu surrounding the midplane region, Sm. Finally, it is presumed
that small-strain assumptions are valid, and that body and inertial forces are negligible.

The deformation of a plate subjected to applied loading and boundary restraints can be described
by the displacement vector in terms of its Cartesian components as u ≡ (u

(k)

1 , u(k)

2 , u(k)
z ). Using

a multiscale formalism, the material point at (x1, x2, z) situated within the kth material layer —
which could be a ply or a fraction of a ply thickness, if the ply is further discretized through the
thickness — is undergoing the displacement that may be expressed as a superposition of a coarse
kinematic description ui(c) and a fine kinematic description u

(k)

i(f ) (i = 1, 2, z), that is,

u(k)
α (x1, x2, z) = uα(c)(x1, x2, z) + u

(k)

α(f )(x1, x2, z) (α = 1, 2)

u(k)
z (x1, x2, z) = uz(c)(x1, x2, z) + u

(k)

z(f )(x1, x2, z) (1)

where the superscript (k) (k = 1, . . . , N , where N denotes the total number of material layers
through the plate thickness) indicates that a quantity is dependent upon the kth layer constitutive
properties; whereas, in the ensuing discussion, the subscript (k) defines quantities corresponding
to the interface between the k and (k + 1) layers. The kth layer thickness is defined in the range
[z(k−1), z(k)] (see Fig. 1b).

To describe the coarse kinematics, first-order shear deformation theory (FSDT) can be used,
in which case

u1(c)(x1, x2, z) ≡ u(x1, x2) + z θ1(x1, x2)

u2(c)(x1, x2, z) ≡ v(x1, x2) + z θ2(x1, x2)

uz(x1, x2, z) ≡ w(x1, x2) (2)

where u and v represent the constant through-the-thickness components of the in-plane displace-
ments in the x1 and x2 coordinate directions, respectively; θ1 and θ2 represent average bending
rotations of the transverse normal about the positive x2 and the negative x1 directions, respectively,
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and they contribute to the linear distributions through the thickness; and w is the coarse or average
description of transverse deflection.

For each displacement component in Eq. (1), the thickness-wise fine kinematic description
with the resolution on the scale of the kth material layer is represented by linear functions defined
in terms of the interface values of the kinematical variables, thus requiring N + 1 independent
variables, where N + 1 is the total number of layer interfaces including the top and bottom plate
surfaces. Therefore, in the definitions of u

(k)

α(f ) and u
(k)

z(f ), 3 × (N + 1) independent variables are
required. This form of kinematics implies a layer-wise theory, having a high computational cost,
comparable to that of three-dimensional elasticity theory, especially when applied to multilayered
thick-section composite laminates for which N is large.

One way to reduce the number of unknowns in u
(k)

α(f ) is first to represent these functions in terms
of separable functions of the inplane (x1, x2) and transverse (z) coordinates, and then impose a
set of interfacial constraint conditions, with this general strategy leading to what is commonly
known as a zigzag formulation (e.g., see Di Sciuva [20]). A zigzag formulation reduces the
number of kinematic unknowns to a small number that is independent of N , thus guaranteeing
superior computational efficiency over layer-wise and three-dimensional elasticity methods. For
many years it has been widely accepted that the interface constraint conditions to be used within a
zigzag formulation should necessarily be conditions of perfect equilibrium of the transverse shear
stresses along the layer interfaces. Whereas from the mechanics perspective the stress equilib-
rium needs to be perfectly satisfied, the limited kinematic freedom associated with the relatively
simple displacements assumed a priori often lead to an over constraining of the kinematic field
and subsequent pathological conditions and anomalies within the resulting theory.

In Tessler et al. [30], the fine displacement description is assumed as

u
(k)

α(f )(x1, x2, z) ≡ φ(k)
α (z) ψα(x1, x2)

u
(k)

z(f )(x1, x2, z) ≡ 0 (3)

allowing only for the inplane displacements to have a fine description, where φ(k)
α (z) are piecewise-

continuous through-the-thickness zigzag functions that stem from laminate heterogeneity, and
ψα(x1, x2) are independent functions that may be interpreted as the amplitudes of the zigzag
displacements. In its simplest form, as proposed by Tessler et al. [30], φ(k)

α (z) are piecewise lin-
ear, C0-continuous functions through the thickness, having discontinuous thickness-derivatives
φ(k)

α,z(z) at the layer interfaces.
The RZT of Tessler et al. [30] has seven kinematic variables (modes) regardless of the number

of material layers through the thickness, with the kinematic field described by the orthogonal
components of the displacement vector as

u
(k)

1 (x1, x2, z) ≡ u(x1, x2) + z θ1(x1, x2) + φ
(k)

1 (z) ψ1(x1, x2)

u
(k)

2 (x1, x2, z) ≡ v(x1, x2) + z θ2(x1, x2) + φ
(k)

2 (z) ψ2(x1, x2)

uz(x1, x2, z) ≡ w(x1, x2) (4)

During applied loading the material fiber, which prior to deformation is straight and perpendic-
ular to the reference midplane, deforms and rotates about the xα axes. The rotations, henceforth
denoted as θ

(k)

αT , are given as

u(k)
α,z = θα(x1, x2) + φ(k)

α,z(z) ψα(x1, x2) ≡ θ
(k)

αT (5)
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where, henceforward, (•),α ≡ ∂(•)

∂xα
denotes a partial derivative with respect to the midplane coor-

dinate, xα . In Eq. (5), φ(k)
α,z are piecewise constant, and θα(x1, x2) and ψα(x1, x2) are uniform with

respect to the z coordinate; therefore, each material layer rotates in a piecewise constant manner
described by the rotations θ

(k)

αT .
Integrating Eq. (5) over the laminate thickness and dividing by the total thickness gives the

average rotations

1

2h

∫ h

−h

θ
(k)

αT dz = θα(x1, x2) +
(

1

2h

∫ h

−h

φ(k)
α,z(z)dz

)
ψα(x1, x2) (6)

If the average rotations about the x2 and x1 axes of the initially normal fiber are represented by
the coarse rotations θα(x1, x2) only (as in Di Sciuva et al. [31]), then the following integral must
vanish identically ∫ h

−h

φ(k)
α,z(z)dz = 0 (7a)

Integration of Eq. (7a) results in the requirement that the top (surface) and bottom values of the
respective zigzag functions are equal, that is,∫ h

−h

φ(k)
α,z(z)dz = φ(N)

α (h) − φ(1)
α (−h) = 0 (7b)

A special case of Eq. (7b) and a particularly convenient choice is to select the top and bottom
values of the zigzag functions to vanish identically

φ(1)
α (−h) = φ(N)

α (h) = 0 (8)

From Eqs. (4) and (8), the surface displacements are defined exclusively in terms of the coarse
variables, that is,

u
(k)

1 (x1, x2, ±h) = u(x1, x2) ± h θ1(x1, x2)

u
(k)

2 (x1, x2, ±h) = v(x1, x2) ± h θ2(x1, x2)
(9)

III. STRAIN-DISPLACEMENT AND CONSTITUTIVE RELATIONS

The inplane and transverse shear strains derived from linear strain-displacement relations are

ε
(k)

11 = u,1 + zθ1,1 + φ
(k)

1 ψ1,1, (10a)

ε
(k)

22 = v,2 + zθ2,2 + φ
(k)

2 ψ2,2, (10b)

γ
(k)

12 = u,2 + v,1 + z(θ1,2 + θ2,1) + φ
(k)

1 ψ1,2 + φ
(k)

2 ψ2,1, (10c)

γ (k)
αz = w,α + θα + φ(k)

α,z ψα (α = 1, 2). (10d)

The zigzag-function property given by Eq. (7a) ensures that the average transverse shear strains
(γα) are those which correspond to FSDT (a coarse description), that is,

γα = 1

2h

∫ h

−h

γ (k)
αz dz = w,α + θα . (11)
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The generalized Hooke’s law for the kth orthotropic material layer, whose principal material
directions are arbitrary with respect to the reference coordinates (x1, x2) ∈ Sm, is expressed as




σ11

σ22

τ12

τ2z

τ1z




(k)

=




C11 C12 C16 0 0
C12 C22 C26 0 0
C16 C26 C66 0 0
0 0 0 Q22 Q12

0 0 0 Q12 Q11




(k) 


ε11

ε22

γ12

γ2z

γ1z




(k)

, (12a)

where C
(k)

ij and Q
(k)

ij are the transformed elastic-stiffness coefficients referred to the (x1, x2, z)
coordinate system, relative to the stress condition that ignores the transverse-normal stress. To aid
in subsequent discussions, expressions for Q

(k)

ij are given in terms of their principal transverse-

shear moduli, G
(k)

13 and G
(k)

23 , and an angle θ(k) (the angle between the principal material direction
x ′

1 and the x1 axis, formed by the right-hand rule)

Q
(k)

11 = cos2(θ (k)) G
(k)

13 + sin2(θ (k)) G
(k)

23 ; Q
(k)

12 = sin(θ (k)) cos(θ (k))
(
G

(k)

13 − G
(k)

23

)
;

Q
(k)

22 = cos2(θ (k)) G
(k)

23 + sin2(θ (k)) G
(k)

13 .
(12b)

IV. ZIGZAG FUNCTIONS AND TRANSVERSE SHEAR CONSTITUTIVE RELATIONS

The refined zigzag functions (or zigzag displacements) of the present theory are defined by
piecewise linear, C0

z -continuous functions (that is, C0-continuous functions through the laminate
thickness.) For convenience, the zigzag functions φ(k)

α (z) (α = 1, 2), which have units of length,
are defined in terms of their respective layer-interface values φα(i) (i = 0, 1, . . . , N) (see Fig. 2
depicting the notation for a three-layered laminate). For the kth material layer located in the range
[z(k−1), z(k)], the zigzag functions are given as

φ(k)
α ≡ 1

2
(1 − ζ (k))φα(k−1) + 1

2
(1 + ζ (k))φα(k), (13)

ζ (k) = [(z − z(k−1))/h
(k) − 1] ∈ [−1, 1] (k = 1, . . . , N) (14)

with the first layer beginning at z(0) = −h, the last N th layer ending at z(N) = h, and the kth
layer ending at z(k) = z(k−1) + 2h(k), where 2h(k) denotes the kth layer thickness and ζ (k) is the
dimensionless thickness coordinates of the kth material layer.

Evaluating Eq. (13) at the layer interfaces gives rise to the definitions of the interface
displacements

φα(k−1) = φ(k)
α (ζ (k) = −1), φα(k) = φ(k)

α (ζ (k) = 1), (15)

where, according to Eq. (8), the top and bottom interfacial displacements are set to vanish

φα(0) = φα(N) = 0. (16)

Differentiating Eq. (13) with respect to the z coordinate yields the piecewise-constant functions

1
(k)

(φα(k) − φα(k−1)). (17)
φα

(k
,z

) = 
2h
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FIG. 2. Notation for a three-layered laminate and φ(k)
α (z) zigzag functions defined in terms of interface

displacements φα(k).

Straightforward algebraic manipulations provide the alternative forms for φ(k)
α (z) in terms of

φ(k)
α,z(z)

φ(k)
α = φ(k)

α,z(z − z(k−1)) + φα(k−1) (18)

A. Preceding Methodology for Zigzag Function Selection

The approach in zigzag function selection according to Tessler et al. [30] begins by expressing
the transverse shear stresses in the following form

{
τ1z

τ2z

}(k)

≡
[
Q11 Q12

Q12 Q22

](k) ({
γ1 − ψ1

γ2 − ψ2

}
+

{
1 + φ

(k)

1,z

0

}
ψ1 +

{
0

1 + φ
(k)

2,z

}
ψ2

)
(19a)

or alternatively as

{
τ1z

τ2z

}(k)

≡
[
Q11 Q12

Q12 Q22

](k) {
γ1 − ψ1

γ2 − ψ2

}

+ Q
(k)

11

(
1 + φ

(k)

1,z

) {
1

Q
(k)

12 /Q
(k)

11

}
ψ1 + Q

(k)

22

(
1 + φ

(k)

2,z

) {
Q

(k)

12 /Q
(k)

22

1

}
ψ2 (19b)

In Eq. (19b), the second and third stress vectors include, as their normalization (or scaling)
factors, coefficients Q(k)

αα(1 + φ(k)
α,z) (α = 1, 2) involving their respective zigzag functions. If the

normalization factors are selected to be constant for all material layers, that is,

Q(k)
αα

(
1 + φ(k)

α,z

) ≡ Gα (20)

8



where Gα are yet undetermined constants, then solving Eq. (20) for φ(k)
α,z results in

φ(k)
α,z = Gα/Q

(k)
αα − 1 (21)

Substituting Eq. (21) into Eq. (7a) reveals that the Gα constants represent some weighted-average
transverse-shear stiffness coefficients of a laminate given by

Gα =
(

1

2h

∫ h

−h

dz

Q
(k)
αα

)−1

=
(

1

h

N∑
k=1

h(k)

Q
(k)
αα

)−1

(22)

Using Eq. (17), all interfacial displacements (φα(k)) are readily determined in terms of φ(k)
α,z as

φα(k) = φα(k−1) + 2h(k) φ(k)
α,z (23a)

Accounting for the homogeneous boundary conditions, Eq. (16), the interfacial displacements are
further simplified as

φα(k) =
k∑

i=1

2h(i) φ(i)
α,z (23b)

With φ(k)
α,z and Gα fully defined by Eqs. (21) and (22), the definitions of the zigzag functions

given by Eq. (18) are complete. Invoking Eqs. (10d) and (22), piecewise-constant distributions of
the transverse shear strains are maintained and are given as

γ (k)
αz = w,α + θα +


(

Q(k)
αα

h

N∑
k=1

h(k)

Q
(k)
αα

)−1

− 1


 ψα (24)

Note that the present methodology for deriving the zigzag functions is purely constitutive-based;
in contrast to the previous zigzag models, there exist no kinematic constraints. In [30], extensive
analytical studies for simply supported and clamped laminated composite and sandwich plates
have been carried out and have demonstrated superior modeling capabilities of this theory.

B. Homogeneous Limit Methodology for Zigzag Function Selection

In what follows a new methodology for obtaining suitable zigzag functions is examined. The
approach exploits an intrinsic property of zigzag functions referred to herein as the homoge-
neous limit property. It is postulated that a zigzag function φ(k)

α (α = 1, 2; k = 1, . . . , N) has
a non-vanishing distribution provided that the layer-wise transverse shear properties on the xα

cross-sections are different, that is, when the material layers are heterogeneous with respect to
their transverse shear properties. The converse of this property is that under the homogeneous
limit defined as

Q(k)
αα → Gα (25)

where Gα are the constant transverse-shear moduli corresponding to the xα planes (that is, the
planes normal to the xα coordinate axes), the zigzag functions are required to vanish in a limiting
sense under all admissible deformations, that is,

φ(k)
α (z) → 0 if Q(k)

αα → Gα (26)

9



The homogeneous-limit conditions, Eq. (25), also imply that all material layers have the same
angular orientation, θ(k). It immediately follows from Eq. (26) that φ(k)

α,z also vanish in a limiting
sense [refer to Eq. (18)], that is,

φ(k)
α,z → 0 if Q(k)

αα → Gα (27)

Moreover, the limiting conditions described by Eqs. (26) and (27) guarantee that all interior
interfacial displacements of the zigzag functions must vanish in a limiting sense as the laminate
approaches its homogeneous limit

φα(i) → 0 (i = 1, . . . , N − 1) (28)

whereas the exterior (bottom and top) interfacial displacements have been set to zero explicitly in
Eq. (16). Rewriting Eq. (25) by moving Gα to the left-hand side of the equation, and then dividing
by Q(k)

αα or by Gα , gives two sets of dimensionless functions labeled as g(k)
α and g

(k)

Iα :(
g(k)

α , g(k)

Iα

) ≡ (
Gα/Q

(k)
αα − 1, Q(k)

αα/GIα − 1
)

(29)

where, for expediency, Gα has been renamed as GIα in the definition of g
(k)

Iα . It can be seen that g(k)
α

and g
(k)

Iα have the same characteristics as φ(k)
α,z; specifically, (1) these functions are dimensionless,

piecewise-constant, and dependent upon the kth layer’s transverse shear stiffnesses, and (2) each
of these functions vanishes in a limiting sense under the homogeneous limit, Eq. (25). Therefore,
either g(k)

α and g
(k)

Iα can be considered to represent φ(k)
α,z and thus complete the definition of the

zigzag functions.
Specifically:

Gα Method. Exploring the possibility of g(k)
α to represent φ(k)

α,z and setting

φ(k)
α,z ≡ g(k)

α = Gα/Q
(k)
αα − 1 (30)

it is observed that Eqs. (21) and (30) are identical. Moreover, by invoking Eq. (7a), the definition
for Gα given by Eq. (22) is obtained.

GIα Method. When g
(k)

Iα , given by the second relation in Eq. (29), is taken as a representation
for φ(k)

α,z, there results

φ(k)
α,z ≡ g

(k)

Iα = Q(k)
αα/GIα − 1. (31)

Substituting this expression into Eq. (7a) yields yet another set of weighted-average constants

GIα = 1

h

N∑
k=1

h(k)Q(k)
αα , (32)

and, consequently, with the use of Eqs. (13) and (23b), another set of zigzag functions is obtained.
Note that Gα and GIα represent two different weighted-average transverse shear properties

of a laminate. In both cases, however, there exists dependence on the principal transverse shear
moduli of each individual layer as well as their orientation angles θ(k).

Alternatively, the homogeneous limit strategy can be applied by examining the transverse-shear
compliance coefficients instead of the stiffness coefficients. Hooke’s relations for the k-th material
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layer in terms of the transformed compliance coefficients that relate the transverse shear strains
to their conjugate stresses may be written as

{
γ1z

γ2z

}(k)

=
[
S11 S12

S12 S22

](k) {
τ1z

τ2z

}(k)

. (33)

Therefore, the homogeneous limit conditions for φ(k)
α,z and the compliance coefficients correspond-

ing to the xα planes may be written

φ(k)
α,z → 0 if S(k)

αα → Cα (34)

where Cα are yet undetermined constants.
Following the procedure outlined in Eqs. (28)–(32), two additional functions can be considered

to represent φ(k)
α,z, that is,

(
c(k)

α , c(k)

Iα

) ≡ (
Cα/S

(k)
αα − 1, S(k)

αα /CIα − 1
)

(35)

The two additional possible representations for the zigzag functions are

Cα Method. Herein c(k)
α is set to represent φ(k)

α,z, that is,

φ(k)
α,z ≡ c(k)

α = Cα/S
(k)
αα − 1 (36)

Substituting Eq. (36) into Eq. (7a) yields

Cα =
(

1

h

N∑
k=1

h(k)

S
(k)
αα

)−1

(37)

CIα Method. Letting c
(k)

Iα to represent φ(k)
α,z, there results

φ(k)
α,z ≡ c

(k)

Iα = S(k)
αα /CIα − 1 (38)

Substituting Eq. (38) into Eq. (7a) yields

CIα = 1

h

N∑
k=1

h(k)S(k)
αα (39)

where it is noted that Cα and CIα are two different weighted-average laminate constants for a
given laminate. For the special case of a diagonal compliance/stiffness matrix representing all
layers (Q

(k)

12 = 0), such as in a cross-ply laminate whose principal material directions are aligned
with the Cartesian plate coordinates, it can be readily verified that

(Cα , CIα) = (
G−1

Iα , G−1
α

)
and

(
c(k)

α , c(k)

Iα

) = (
g

(k)

Iα , g(k)
α ) (40)

The four zigzag-function methods are summarized in Table I. In Section V, these methods are 

examined quantitatively by way of analytic solutions for simply supported sandwich plates. 
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 TABLE I. Zigzag function definitions.

Homogeneous Weighted-average Zigzag-function derivatives Interfacial
limit method constants φ(k)

α,z displacements

1 Gα =
(

1

h

N∑
k=1

h(k)

Q
(k)
αα

)−1

g(k)
α = Gα/Q(k)

αα − 1

φα(k) =
k∑

i=1

2h(i) φ(i)
α,z

2 GIα = 1

h

N∑
k=1

h(k)Q(k)
αα g

(k)
Iα = Q(k)

αα/GIα − 1

3 Cα =
(

1

h

N∑
k=1

h(k)

S
(k)
αα

)−1

c(k)
α = Cα/S(k)

αα − 1

4 CIα = 1

h

N∑
k=1

h(k)S(k)
αα c

(k)
Iα = S(k)

αα /CIα − 1

C. Modeling Homogeneous Plates With the Full Power of Zigzag Kinematics

When modeling homogeneous plates or laminated plates with the same transverse shear stiff-
nesses on the planes of rectilinear orthotropy, the RZT can be successfully applied by invoking
the homogeneous-limit property. To achieve accurate predictions for homogeneous plates without
the use of shear correction factors, the differences in the layer transverse shear moduli can be made
arbitrarily small, with such an approach taking the full advantage of zigzag kinematics. A judi-
cious choice of small perturbations to describe nearly homogeneous transverse shear properties
over the plate’s thickness can lead to remarkably accurate predictions, achieving parabolic shear
strain and stress distributions that are consistent with elasticity theory predictions for homoge-
neous plates. Moreover, the approach yields accurate nonlinear inplane strains and stresses when
modeling thick plates. By contrast, the use of purely homogeneous transverse shear properties
would result in the vanishing of the zigzag functions and would lead to the exclusively coarse
theory, known as FSDT; where, for homogeneous plates, the kinematic assumptions give rise to
constant through-the-thickness transverse shear strains and stresses and linear inplane strains and
stresses, thus requiring a shear correction factor to compensate, in an average sense, for the lack
of the parabolic transverse shear distributions.

The approach is demonstrated by using the RZT based on the Gα method (see Table I). For
simplicity and clarity of the discussion, a laminated plate whose principal axes of rectilinear
orthotropy are coincident with the x1 and x2 plate axes (thus Q

(k)

11 = G
(k)

13 , Q
(k)

22 = G
(k)

23 , Q
(k)

12 = 0)
is considered; further, cylindrical bending about the x2 axis is considered so that the response
quantities are functions of only the x1 and z coordinates. Using Eqs. (10d) and (11), the RZT
yields the following expression for the transverse shear strain

γ
(k)

1z = γ1(x1)

[
1 + φ

(k)

1,z

ψ1(x1)

γ1(x1)

]
. (41)

It is then assumed that the material layers have slightly different shear moduli from a constant
value G13

G
(k)

13 = G13(1 + ε(k)) (k = 1, . . . , N), (42)
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where ε(k) ≡ sµ(k) 	 1 with µ(k) = O(1) denoting a dimensionless piecewise-constant function
and s an arbitrarily small scalar. Substituting Eq. (42) into Eq. (22) and using Eq. (21) yields

G1 
 G13 and φ
(k)

1,z 
 −sµ(k). (43)

Note that both ψ1(x1) and γ1(x1) have the same functional form in terms of x1; also, for this nearly
homogeneous case their magnitudes are respectively O(s−1) and O(1). Therefore, the ratio of the
two functions appearing in Eq. (41) is simply a large constant

ψ1(x1)

γ1(x1)
= O(s−1). (44)

Accounting for Eqs. (43) and (44) yields the transverse shear strain of the form

γ
(k)

1z = γ1(x1)(1 − cµ(k)), (45)

where c is a dimensionless constant and (1 − cµ(k)) represents a piecewise constant thickness
distribution of the transverse shear strain.

A parabolic transverse shear distribution is a good approximation for homogeneous plates
that range from moderately thick to thin plates. Therefore, for the cylindrical bending problem
considered herein a parabolic distribution of the transverse shear strain may be expressed as

γ H
1z = �1(x1)

(
1 − z2

h2

)
, (46)

where the �1(x1) function is determined from a given boundary value problem.
The function µ(k) in Eq. (45) can now be determined in such a way as to allow (1 − cµ(k))

to approximate a parabolic distribution given by Eq. (46) in an average sense. Thus, the average
shear strain across the kth layer resulting from Eq. (46) is set to correspond to (1 − cµ(k)), that is,

1

2h(k)

∫ z(k)

z(k−1)

(
1 − z2

h2

)
dz = 1 − z2

(k−1) + z2
(k) + z(k−1)z(k)

3h2
= 1 − cµ(k), (47)

from which

µ(k) = 1

3c

(
z2

(k−1)

h2
+ z2

(k)

h2
+ z(k−1)z(k)

h2

)
, (48)

and, finally,

ε(k) = s

(
z2

(k−1)

h2
+ z2

(k)

h2
+ z(k−1)z(k)

h2

)
	 1, (49)

where the constant 3c has been absorbed into an arbitrarily small scalar s 	 1.
A similar analysis of cylindrical bending about the x1 axis results in the expressions for the

G
(k)

23 transverse shear moduli

(50)G
(k

23
) = G23(1 + ε(k)), 

where ε(k) is the same as that given in Eq. (49).
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Equations (42), (49), and (50) provide the slightly perturbed transverse-shear-modulus distrib-
utions through the thickness, for the purpose of achieving a homogeneous plate in a limiting sense
as the small parameter ε(k) diminishes to zero and the number of discretized layers N becomes
sufficiently large.

D. Remarks on Equilibrium Equations, Boundary Conditions, and
FEM Approximations

The plate equilibrium equations and consistent boundary conditions are derived in [30] from the
virtual work principle, resulting in a system of seven second-order partial differential equilib-
rium equations in terms of the seven kinematic variables, thus constituting a 14th-order theory.
The number of kinematic variables within this theory is fixed at seven and does not depend on
the number of discretized layers; hence the computational effort is practically the same for any
number N . From the computational perspective of finite element approximations, C0-continuous
kinematic functions can be used because the strain measures are represented by partial derivatives
not exceeding first order.

V. EXAMPLE PROBLEMS AND RESULTS

Analytic solutions for simply supported square laminates are used to examine the predic-
tive capability of the four variants of the present RZT. The plate is defined on the domain
x1 ∈ [0, a], x2 ∈ [0, a], z ∈ [−h, h] and is subjected to the sinusoidal transverse loading
q = q0 sin(πx1/a) sin(πx2/a). The analytic solutions for uniaxial, cross-ply, and angle-ply
laminates are derived in [30]. The first set of example problems examines the modeling of thin,
moderately thick, and thick homogeneous orthotropic plates using the perturbed transverse-shear
approach. Then, results for a highly heterogeneous and anisotropic angle-ply antisymmetric sand-
wich laminate are critically examined. The numerical and graphical results that follow include
results of the four variants of RZT and several other theories that are used for comparison purposes;
the results are labeled as:

3D Elasticity: Three-dimensional elasticity solutions using procedures developed by Pagano
[36] for cross-ply laminated plates and by Noor and Burton [37] for angle-ply
antisymmetric laminates.

FSDT: First-order Shear Deformation Theory; shear correction factor k2 = 5/6.
Reddy: Third-order equivalent single-layer theory by Reddy [9].

Zigzag (D): Di Sciuva theory [23].
RZT (Gα): Refined zigzag theory based on the Gα method (refer to Table I).

RZT (Gα; N): Refined zigzag theory based on the Gα method modeling a homogeneous plate
with N discretized layers through the thickness (refer to Figs. 3–5).

RZT (GIα): Refined zigzag theory based on the GIα method (refer to Table I).
RZT (Cα): Refined zigzag theory based on the Cα method (refer to Table I).

RZT (CIα): Refined zigzag theory based on the CIα method (refer to Table I).

In Figs. 3–8, the through-the-thickness distributions correspond to the normalized displacement
and stresses, given as

ū1 = (104D11/qoa
4)u

(k)

1 (0, a/2, z), σ̄11 ≡ ((2h)2/q0a
2)σ

(k)

11 (a/2, a/2, z), and

τ̄1z ≡ (2h/q0a)τ
(k)

1z (0, a/2, z).
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FIG. 3. Through-thickness distribution of inplane displacement for a homogeneous orthotropic plate
(a/2h = 5).

A. Homogeneous Orthotropic Plates

The ability of RZT to model homogeneous orthotropic plates using the perturbed transverse-
shear approach is demonstrated subsequently. The plate is made of a carbon-epoxy material
with the mechanical properties given by Young’s moduli E

(k)

1 = 1.579 × 102 GPa, E
(k)

2 =
E

(k)

3 = 9.584 GPa, Poisson ratios v
(k)

12 = v
(k)

13 = 0.32, v
(k)

23 = 0.49, and shear moduli
G

(k)

12 = G
(k)

13 = 5.930 GPa, and G
(k)

23 = 3.227 GPa. For this homogeneous, orthotropic plate
the principal material directions are aligned with the plate coordinate axes.

FIG. 4. Through-thickness distribution of inplane stress for a homogeneous orthotropic plate (a/2h = 5).
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FIG. 5. Through-thickness distribution of transverse shear stress for a homogeneous orthotropic plate
(a/2h = 5).

The four variants of RZT, when applied to the carbon-epoxy (homogeneous and orthotropic)
plates of various span-to-thickness ratios (a/2h = 5, 10, and 100), showed close agreement,
with RZT (Gα) and RZT (CIα) producing slightly superior results. For this reason, subsequent
discussions concerning homogeneous plates focus exclusively on RZT (Gα) that was originally
introduced in [30]. The perturbed transverse-shear approach is assessed by fixing the small scalar
at s = 10−5 while studying the plate’s response by increasing the number of the discretized
layers, N .

Results are shown for the maximum values of three response quantities in Table II. These
results include the central transverse displacement (deflection), which is averaged across the
thickness, uave

z (a/2, a/2), the central inplane stress on the top surface, σh
11(a/2, a/2, h), and the

edge transverse-shear stress at the midplane, τ 0
1z(0, a/2, 0). The results are normalized with respect

to the corresponding solutions of three-dimensional elasticity theory. The response quantities are
seen to converge from below as N is increased from 1 to 64. The special case of N = 1 corresponds
to FSDT (k2 = 1), that is, the zigzag functions are identically zero in this case. For a thin plate
(a/2h = 100), the deflection and inplane stress match the exact solution very closely for all values
of N , whereas the transverse shear stress converges to the exact solution of three-dimensional
elasticity theory as N is increased. For moderately thick (a/2h = 10) and thick (a/2h = 5)

plates, all quantities converge to slightly greater values that exceed those of three-dimensional
elasticity. The converged results corresponding to RZT (Gα; N = 64) were also compared with
Reddy’s third-order theory and both theories were found to be in close agreement. In both cases,
the slightly over estimated results for thick plates may be attributed to the lack of transverse
normal flexibility in these theories.

Normalized through-the-thickness distributions for the ū1, σ̄11, and τ̄1z response quantities,
corresponding to a thick orthotropic plate (a/2h = 5), are depicted in Figs. 3–5. The special case
of N = 1 shows a linear variation through the thickness that matches that of FSDT. As N is
increased, a nonlinear distribution is achieved [Fig. 3(a)]. A close comparison of the nonlinear,
converged solution to the corresponding solutions of three-dimensional elasticity and Reddy’s
third-order theory is shown in Fig. 3(b). For this thick orthotropic plate, Reddy’s theory is per-
fectly applicable and its predictions are in very close agreement with RZT (Gα; N = 64). In
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FIG. 6. Through-thickness distribution of inplane displacement for an angle-ply, antisymmetric, sandwich
laminate (a/2h = 5).

Figs. 4 and 5, similar comparisons are provided for the inplane stress, σ̄11, and transverse shear
stress, τ̄1z, distributions. Of particular interest is the convergence of transverse shear stress; both
RZT (Gα; N = 64) and Reddy’s parabolic stresses slightly over estimate the maximum value
at the midplane; however, RZT (Gα; N = 64) is slightly closer to the three-dimensional elas-
ticity solution. An additional study of thinner homogeneous orthotropic plates reveals that all
three theories achieve full agreement, demonstrating correct linear distributions for the inplane
displacements, and stresses and a parabolic variation of the transverse shear stress through the
thickness (not shown).

These results demonstrate that RZT is perfectly suited for predicting accurate parabolic trans-
verse shear stresses, in a piecewise-constant fashion; hence no shear correction factors are required
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FIG. 7. Through-thickness distribution of inplane stress for an angle-ply, antisymmetric, sandwich laminate
(a/2h = 5).

to model homogenous plates. Moreover, for thick plates, accurate nonlinear inplane displacements
and stresses consistent with three-dimensional elasticity are obtained in a piecewise-linear fash-
ion. Recall that, similarly, no shear correction factors are needed for heterogeneous composite
and sandwich laminates, as discussed in [30].

FIG. 8. Through-thickness distribution of transverse-shear stress for an angle-ply, antisymmetric, sandwich
laminate (a/2h = 5).
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TABLE II. Deflection, inplane stress, and transverse shear stress as a function of the number of discretiza-

tion layers, N , for homogeneous orthotropic plates (a/2h = 5, 10, and 100); results correspond to RZT (Gα ;
N ) and are normalized with respect to three-dimensional elasticity solutions.

a/2h = 5 a/2h = 10 a/2h = 100

N uave
z σ h

11 τ 0
1z uave

z σ h
11 τ 0

1z uave
z σ h

11 τ 0
1z

1 0.948 0.870 0.591 0.976 0.964 0.565 1.000 1.000 0.556
4 1.002 0.972 0.946 0.999 0.993 0.925 1.000 1.000 0.917
16 1.024 1.015 1.025 1.009 1.005 1.003 1.000 1.000 0.995
64 1.026 1.017 1.030 1.009 1.006 1.008 1.000 1.000 1.000

B. Assessment of Four Zigzag-Function Methods for Heterogeneous Laminates

This section focuses on the assessment of the four variants of RZT presented in Section IV. The
selected laminate has a high degree of material heterogeneity and anisotropy and is the most
challenging of the many laminates examined in [30]. The laminate is an angle-ply, antisymmet-
ric, thick sandwich plate with the aspect ratio a/2h = 5. The five-layer sandwich has two stiff
carbon-epoxy face sheets and a thick and very compliant PVC core. The normalized lamina-
thickness distribution, h(k)/h, starting from the first layer, is given by (0.05/0.05/0.8/0.05/0.05);
the corresponding lamina orientation angles are (30◦/−45◦/0◦/45◦/−30◦); the material distri-
bution is given by (C/C/P/C/C), where the labels C and P correspond to the carbon-epoxy and
PVC materials, respectively. The PVC material is modeled as an isotropic material with Young’s
modulus E = 1.040 × 10−1 GPa and Poisson ratio v = 0.3. The mechanical properties of the
carbon-epoxy plies (material C) are the same as those reported in Section 5.1.

Comparisons of results for the center deflection, which is normalized with respect to the three-
dimensional elasticity solution, are presented in Table III. The results are obtained from FSDT,
Reddy’s third-order theory, Di Sciuva’s zigzag theory, and the four variants of RZT. The results
demonstrate that RZT (Gα) and RZT (CIα) underestimate the deflection by less than 0.1%, com-
pared to 12% by RZT (GIα) and RZT (Cα). By comparison, FSDT underestimates the deflection
by about 92%, and Reddy and Di Sciuva theories underestimate the deflection by about 62% and
10%, respectively. Note that Di Sciuva’s solution is only approximate, due to the presence of
angle plies in this laminate (refer to [30] for further details). Also, FSDT’s deflection is expected
to improve by employing lamination-appropriate shear correction factors.

Figures 6–8 demonstrate through-the-thickness distributions for the ū1, σ̄11, and τ̄1z quantities
for the sandwich laminate where, for comparison, three-dimensional elasticity and Reddy the-
ories are used. Figure 6 shows that RZT (Gα) and RZT (CIα) yield superior ū1 displacement
predictions and, as expected, FSDT and Reddy theories are the least accurate. Figures 7 and 8
depict the inplane stress, σ̄11, and transverse shear stress, τ̄1z, distributions, respectively, where
the comparisons are narrowed to the best performing zigzag theories, RZT (Gα) and RZT (CIα),
and Reddy’s third-order theory.

TABLE III. Center deflection normalized with respect to three-dimensional elasticity solution for angle-ply,
sandwich laminate (a/2h = 5).

Normalized center deflection, wCenter(Theory)/wCenter(3D Elasticity)

FSDT Reddy RZT (Cα) RZT (GIα) Di Sciuva RZT (Gα) RZT (CIα)

0.075 0.382 0.879 0.882 0.902 0.999 0.999
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For both stress components, RZT (Gα) and RZT (CIα) produce highly accurate results. By com-
parison, Reddy’s theory underestimates the maximum inplane stress by about 50% [Fig. 7(b)], and
over estimates the maximum transverse shear stress by a factor of 20 [Fig. 8(b)]; this latter result is
typical for a higher-order theory applied to a sandwich analysis. Furthermore, a close examination
of the transverse shear stress in the face sheets [Fig. 8(a)] indicates that although both the RZT (Gα)

and RZT (CIα) predictions are nearly equally accurate, RZT (CIα) solutions in the face sheets are
slightly superior. Integration of three-dimensional elasticity equilibrium equations, while invoking
RZT’s inplane stresses, produces highly accurate, continuous through-the-thickness, transverse
shear stresses (not shown; for details refer to [30]).

VI. CONCLUSIONS

The RZT has been reformulated from a multi-scale perspective and produced superior results over
a wide range of material systems and plate aspect ratios. Four sets of zigzag functions, derived
from the condition of limiting homogeneity of transverse-shear properties, provide viable model-
ing alternatives; however, only two sets of these functions have demonstrated superior predictions.
For all material systems, there are no requirements for shear correction factors to yield accurate
results. This variationally consistent theory, derived from the virtual work principle, requires
simple C0-continuous kinematic approximations for developing computationally efficient finite
elements.

To model homogeneous plates effectively using the full power of zigzag kinematics, a mul-
tilayered modeling approach that employs infinitesimally perturbed transverse-shear stiffness
properties has been demonstrated. The methodology permits excellent predictions of all response
quantities and does not increase the computational effort since the number of kinematic variables
remains unchanged.

Results of analytic solutions have been presented which reveal that RZT is a highly accu-
rate theory over a wide range of span-to-thickness ratios and material systems, including very
challenging sandwich plates that exhibit a high degree of transverse-shear flexibility, anisotropy,
and heterogeneity. The theory is therefore ideally suited for large-scale finite element analyses
and has the potential to be successfully employed in designing high-performance homogeneous,
laminated composite, and sandwich aerospace structures.
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