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Abstract. This paper presents a new optimal algorithm faatimg a set of sensors in 3D able to see the
boundaries of a polyhedral environment. Our apgroaciterative and is based on a lower bound on the
sensors’ number and on a restriction of the originablem requiring each face to be observed imritsrety by

at least one sensor. The lower bound allows evialyahe quality of the solution obtained at eadpstand
halting the algorithm if the solution is satisfagtoThe algorithm asymptotically converges to thsimal
solution of the unrestricted problem if the faces subdivided into smaller parts.
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1 Introduction

Sensor planning is an important research area mpater vision. It consists of automatically compgtisensor
positions or trajectories given a task to perfaime, sensor features and a model of the environmergcent survey [2]
refers in particular to tasks as reconstruction iasdection. Several other tasks and techniques emreidered in the
more seasoned surveys [3] and [4].

Sensor panning problems require considering a nuwfbeonstraints, first of all visibility. To thisffect, the sensor
is usually modeled as a point and referred to ageavpoint”. A feature of an object is said to beibls from the
viewpoint if any segment joining a point of the f@&tand the viewpoint does not intersect the enwiknt or the object
itself (usually excluding boundary points). Assumargni-directional or rotating sensors, for taskshsas surveillance,
the visibility constraint is modeled by the clasgit Gallery problem, which requires observing or “edmng” the
interior of a polyhedral environment with a minimwet of sensors. We call this the Interior Covefpngblem (IC).
The problem tackled in this paper is similar, bat identical. It requires observing only the bouneof P, faces for a
polyhedral environment, and it applies, for insgnia problems like inspection or image based rendeWe call this
the Face Covering (FC) problem.

FC and IC problems are NP-hard. However, “good” appration algorithms are sorely needed. In our view, a
“good” practical algorithm should not only be conmgtionally feasible, but also provide a set of sesswhose
cardinality, on the average, is not far from optimun this paper, we present a new FC sensor posigdechnique.
The algorithm is incremental and converges towasd dptimal solution. A key feature of the algorithenthat it
computes a lower bound, specific of the polyhedralirenment considered, for the minimum number aisees. It
allows evaluating the quality of the solution ob&mnat each step, and halting the algorithm if tbkit®n is
satisfactory. The algorithm refines a starting agpnate solution provided by an integer face cawgalgorithm, (IFC)
where each face must be observed entirely by at tess sensor. A set of rules, aimed to reduce thepatation, is
provided for refining locally the current solution.

Compared to the large amount of literature on the@se, relatively few articles on 3D sensor positigrfiave been
published. Furthermore, to our knowledge, curremily method for automatic sensor planning in a 3D lpedyal



environment, providing an evaluation of the coveragd information for improving it towards the optim has been
presented. Tarabanis presents in [6] an algoritmedmputing the locus of viewpoints from which facégpolyhedral
objects are seen in their entirety. These can bé sslve the FC problems, but no indication wheredate a minimal
number of sensor for seeing all the features ofdbiect is provided. Rana [7] presents a 2D apprdhah can be
applied to 3D as well, where two heuristics are presefior solving the boundary coverage problem. Agaim
indication on optimality of the solution is givelm [5] a graph representation is used to groupdabat satisfy all
constraints simultaneously and hence are suitablgi€éwing from a common viewpoint. The set coverprgblem is
solved with a greedy algorithm. The only attempdédine a quality measure for the covering is gie[8], where such
measure is used to compute the minimal number oe&13or able to cover a polyhedral environment. Howeeasor
position is restricted to lie on the tessellatedrztaries of a reduced area, the walking zone. Taldhe case of faces
of the environment not covered entirely by one sgnall "big faces" are initially split into smatlenes. However, no
indications are given to when a face must be sutted/and no certainty of the fact that all sub-faaresvisible from the
same sensor can be given.

2 Outline of the algorithm

The algorithm aims at finding an optimal boundasyer of an environment P that is assumed to coo$ipblyhedra
(with or without holes). Both internal and externalerage of the environment are managed. We stias®tr work is
focused on the optimality of the solutions providsdthe algorithm. The approach is incremental, iustarts from an
initial solution which is refined step by step. Tihéial step is given by a useful reduction of twvering problem, the
Integer Face Covering (IFC), where each face mustobvered in its entirety by at least one sensois Tirestricted)
problem has an optimal solution, provided by theeder Face Covering Algorithm (IFCA). In order tovel®p an
effective incremental algorithm, it is also necegda have a technique for evaluating at each #tepquality of the
current approximate solution, and an algorithm ablesfine locally the solution, in order to redube computational
burden and leading towards the optimum. A key compbfue the first step is the evaluation of a loweubd LB(P) on
the number of sensors that is specific to the palybn P considered. Its value can be compared Wwéhctirrent
solution and, if the result is not satisfactorys tban be refined bgividing some of the faces of P into smaller areas and
applying again IFCA. For this task, the INDIfalgorithm allows finding the faces of P that must be split (that is,
the ‘indivisible’ faces) since they are entirely observed by atleae guard of all optimal solutions.
The outline of the incremental algorithm is asdaié:
» Step 1. Compute a lower bound LB(P), specific to the petjton P, for the cardinality of the minimum set of
guards using the algorithm LBA
» Step 2. Compute an integer face cover of cardinality IF@ihg the algorithm IFCA
» Step 3. Compare LB(P) and IFCC. If they are equal, or idlative maximum error (IFCC-LB(P))/LB(P) is less
than a predefined threshoTOP. Otherwise:
 Step 4. Apply algorithm INDIVAg; for finding indivisible faces. If all faces aredinisible, STOP, since IFC is
optimal. Otherwise, split the remaining faces and at® a new lower bound.
» Compare the new lower bound and the current IFCtbelj are equalTOP. Otherwise go t&tep 2.
For a practical implementation, the algorithm da halted if several consecutive steps have nomggth the
cardinality of the current solution. Clearly, tHgaithm converges toward an optimal solution inuardefined number
of steps. In the following paragraphs, we will detia@ basic components of the algorithm.

2.1 Integer Face Covering Algorithm (IFCA)

Integer face covering (IFC) requires each faceet@iitirely covered by at least one guard. Firstuseobserve one
fact. Let thelnteger Visibility Regior(f) of a facef be the region of the viewing space whose pointseaéeelyf. An
IFC cover requires a sensor to be placed in fhei(every face of P. However, while a non empfy ékists for every
convex face, this is not true in the case of coactaces. This can be seen from the example in Kay, where,



considering internal covering of Pf;)(and If,) are empty. Therefore, in order to guarantee E@ problem has a
solution, we require that any concave face is iihtgplit into convex parts, as in Fig. 1 (b).

Given this initial constraint, a simple example shugvihe difference between FC and IFC is shown in Eigvhere
three sensors are necessary for the integer cgvefithe faces of polyhedron P (a), while only two §&hsors are
necessary (b).

Regarding complexity, a detailed analysis is ordifter the sake of conciseness, but is similar éodhe presented in
[1]. The relevant point is that IFC is NP-completed dinite algorithms are possible [9]. An algorithoh this kind,
working for any polyhedral environment (external emge of multiple polygons, internal coverage dfygons with or
without holes) is described and implemented in IfBre we will present only the main lines of this aitjyon, which are
necessary for fully understanding its incrementétiesion. The steps of the IFC algorithm are thiefong:

IFCA

Step 1. Compute a partitiofl of the viewing space into regiodssuch that:

* The same sdt=(f,, f,,..., f;) of faces is entirely visible from each pointzfi

 The regiong, are maximal regions, thatks O F; whereZ; is any region bordering

Step 2. Select the dominant regions and the essentig@dnegA regionzZ; is dominant if there is no other regidn

such thaf; O F;. An essential zone is a dominant zone that covéaseanot covered by any other dominant zone.

Step 3. Select an optimal (or minimal) solution. A miningdlution consists of a set containing all the esakand

some dominant regior$ = (4, Zp,..., Zx) such that it covers all faces with the minimum bemof members.

The main difference of the current approach withatgorithm in [9] is how1 is built. Here a two phase process is
necessary. In the first phase, a more detailedtiparf1’, whose regions are also used by LBAnd INDIVAgp, is
constructed. In the second phdseéis refined to obtairil.

Fig. 1.In the case of internal coveringfi)(  Fig. 2. Three IFC sensors are required (a) while

and If;) are empty (a); a convex onlytwo FC sensors are necessary (b)
decomposition of the two faces (b)

A(g) = ((7,,0), (1,,0), (£3,0), (7,,4))

Fig. 3. An example of aspect of poigt(a). The projection of the four occluding featugedges) of P
onf (b)

Before defining’, let us define thespectA(g) of a pointg:

A@) = (), (o 1, ... (1)

wherefy, fy, ... fy are the faces fully or partially visible froga andny, ny, ... nq are the
number of occlusions for each face. The numbercofusions is, briefly, the number of
edges of P that are entirely or partially projeated from g. The aspect defines if a fate



is partially visible  #0), totally visible ¢ =0) or not visible f{ not in the aspect) from.
The word aspect has been used in agreement withtéhature on aspect graphs. The
interested reader is referred to the survey pap@r [An example of aspect is shown in
Fig. 3.
Partitionl’ is defined as the patrtition that divides the iidgexterior of P into regions
Z'; such that
* All points of Z’; have the same aspé&gt
* Z'; are maximum regions, i.é4; # A; for contiguous regions.
The construction ofl’can be performed using a set aftive patchesbelonging to
active surfacesThe active patches are the boundaries betweenspohose aspects are
different. The active patches are a subset of klnds of active surfaces related to a face
of P:
» Typel: the plane supporting
» Type II: surfaces originating from a vertex bfand tangent to an edge of P (VE
surfaces), or from an edgefaind tangent to a vertex of P (EV surfaces)

» Type I11: EEE surfaces (ruled surfaces), tangent to an edglef and two other
edges of P, or tangent to three edges of P ancéugngf

» TypelV: planar surfaces tangent to two parallel edges aofdHraersecting

According to the geometry of these surfaces, to eative surface can be associated
one or more active patches, and to each patchtiayarvisual event A visual event is a
rule for changing the aspect of an imaginary viewporossing the active patch, and it is
synthesized by @D cross operatorhaving a positive and a negative direction. The
positive visual everis the change of aspect of a point crossing thigeapatch along the
positive direction; a similar definition holds fire negative visual event. Therefore, after
constructing the partitiofil’ using the active patches, the aspect of eaclomegan be
constructed with a visiting algorithm, starting froanregion whose aspect has been
computed. The complete catalogue of active surfacésactive patches is shown in Fig.
4. The changes in the aspect due to the diffeleritr8ss operators are listed in Table 1. A
further analysis of the active patches might beesgary since, crossing an active patch T,
f can be partially or totally hidden by other pasfsthe polyhedron P not related to the
feature originating T. A detailed analysis of thHatent cases will not be performed here,
for the sake of brevity.
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Fig. 4. The catalogue of active surfaces related to a flaaptype | and type Il surfaces. b) and c)
type lll. d) type IV. For each surface, the actipatches are highlighted, together with their
associated cross operator

3D Cross Operator

Positive visual event

Negative visual event

ADDO( )

Add (f;,0) to aspect

Delete (fi, 0) from aspect

DECL(f)

n=n-1

n=n+1

ADDI NCk(fi) k=[1, 2]

if(fi in aspect) > nj=n; + k
else > Add (fi, k)

if(n; == k) = Delete (f;, k)
else > ni=n;-k

Table 1 Cross operators and corresponding positive agdtive visual events

2.2 Lower Bound Algorithm (LBA3D)

LBA;, computes a lower bound of the number of sensorscifip to P, for the
unrestricted sensor positioning problem. Both LBAnd INDIVAgp algorithms make use
of the concept of weak and integer visibility regioof a face. They can be defined as
follows:

* the Weak visibility region W(f;) of a facef; is the 3D region whose points see at least

a point off;; points seeing only boundariesfoflo not belong to Vi
* thelnteger visibility region I(f;) is the 3D region whose points see entifely
An example of weak and integer visibility regions &facef of a simple polyhedron

can be seen in Fig. 5.
7/

Both regions can be easily obtained as a bypraofu€&CA. In fact, given the aspect of
each region of’, W(f;) and If;) are simply obtained by merging the regions whegeet

Fig. 5. Integer and weak visibility regions of fate



containsf;, in the former case, or where the number of ocohssoff; is zero, in the latter
case. If there arp zones in the partitiofil, andn faces in P, computing the visibility
regions for all faces is @f).

Weak visibility regions allow us to determine a lov@und for the number of sensors
needed. It is easy to see that:

Statement 1: The cardinality of the maximal subset of disjointt(imersecting) weak
visibility regions W(J of P is a lower bound LB(P) for the minimal numbésensors.

In fact, since each weak visibility region must @ntat least one sensor, no
arrangement of face covering sensors can have famsors than LB(P).

Computing the lower bound requires solving thaximum independent gaibblem for
a graph G where each node represents the weak tjsitgitiion of a face of P and each
face of G connects nodes corresponding to intersgeisibility regions. The problem is
equivalent to themaximum clique problenfor the complement graptG’ (the graph
obtained by joining those pairs of vertices that ot adjacent in G). It is well known that
these are again NP-complete problems,dxaictbranch-and-bound algorithms for these
problems have been presented and extensively tg&tgd[12], [13]), showing more than
acceptable performances for graphs with hundredsodés. Then, computing LB(P) is
computationally feasible for practical cases.

2.3 INDIVisible faces Algorithm (INDIVA3D)

If optimal sets of sensors exist such that a facentirely observed by at least one sensor
of each set, then, in order to approach these apswiutions, that face does not need to
be split. Such a face is calléndivisible The rules for finding the indivisible faces of P
are as follows:

Rulel. If W(f) = I(f;), f; is indivisible.

Rule2. If W(f;) O I(f;), f; is indivisible.

Both rules follow from the fact that, for any sodut, at least one sensor of any
minimal setmust be located in each weak visibility regionthié weak region is equal to
the integer region of the face, rule 1, then foy aalution the sensor placed in the weak
region observes the face in its entirety. If the kvesgion is included in the integer region
of another face, rule 2, then the sensor placethenweak region observes the second
region in its entirety. It follows that for everylation (and in particular for every optimal
solution) these faces are observed in their epthgtat least one sensor and, therefore,
they do not need to be divided.

A simple example will show how to apply these rulesl @ivat they are powerful tools
for simplifying the problem. Let us consider thdyb@dron shown in Fig. 6(a) with the
subdivision of its concave faces. The integer andkwésibility regions of facd; are
coincident, and therefore for rule 1 the face @iisible. The integer visibility region d§
is equal to the weak visibility region &f and therefore is indivisible for rule 2. It caa b
easily seen that all the faces of P are indivisiate then the unrestricted minimal set of
guards is that provided by IFCA. The same resultccbave been obtained by computing
the IFC solution, whose cardinality is equal to ltheer bound LB(P).



Fig. 6.In this case, the optimum FC and IFC covers aralequ

Divisible faces must be partitioned, for instancgsplitting in two all the edges of the
face, and connecting the central point of each edtethe face center.

2.4 Examples

A first example of how the algorithm works can be sieeRig. 7. In (a) the polyhedron P
is shown. LB(P) is 2, and in (b) the two not-intetsgr weak polygons of facds andf,
are shown, together with the initial solution of IFG#hose cardinality is three. Applying
rules 1-2, facd; is found to be the only divisible face and (c) whdts decomposition.
Applying again IFCA, we obtain a solution with only teensors (d), whose cardinality is
equal to LB(P) and therefore is optimal.

Gl
g

Fig. 7. Polyhedron P (a), W) and W¢;), determining LB(P) = 2, and the initial IFC cowey of
cardinality three (b), subdivision ofs (c), the solution of the second iteration of IF@Ad the
regions where sensors can be located (d)

Fig. 8. Dividing faces of the initial polyhedron in (a) th@ver bound can increase (b)

Observe that the lower bound is evaluated at evergtion. In fact, it might increase,
and then improve, after splitting some faces ofghlygon. An example can be seen in
Fig. 8. In (a) the comb polyhedron is shown, togethi¢h the initial lower bound, whose
value is 2, the non-intersecting weak regions okdde and f,, and an initial IFCA
solution, whose cardinality is three. Fagds found to be divisible, and is split. Now,
consider facds, drawn in bold in (b). Its weak polygon, also showrthe picture, does
not intersect W) and W(,) and the value of the lower bound increases tethFae new



lower bound is equal to the cardinality of the poers IFCA solution that is, therefore,
optimal.

3 Conclusions

This paper presents an incremental algorithm f@itipming sensors in a 3D environment
that are capable of seeing in their entirety théermal or internal boundaries of a
polyhedral environment. The approach is iterative & is based on a lower bound on the
number of sensor that allows to evaluate the claset®optimality of the solution and to
define rules for trying to improve the current s@o. This is, in our knowledge, the first
work in literature that attempts to tackle this geob in 3D. Future work will be focused
on the full implementation of the algorithm, whicha rather complex task, especially for
the generation and intersection of the active gtchnd to extend it to take into account
several additional constraints besides the visjbiine.
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