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We demonstrate that perfect conversion between charged supercurrents in superconductors and neutral

supercurrents in electron-hole pair condensates is possible via a new Andreev-like scattering mechanism.

As a result, when two superconducting circuits are coupled through a bilayer exciton condensate, the

superflow in both layers is drastically modified. Depending on the phase biases the supercurrents can be

completely blocked or exhibit perfect drag.
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Introduction.—The terms superconductivity and super-
fluidity refer to dissipationless flow in charged and neutral
systems, respectively. Superfluid exciton condensates, in
which macroscopic phase coherence is established among
pairs composed of electrons and holes in different bands
[1,2], have been realized only recently. Signatures of ex-
citon condensation have been reported in quantum Hall
bilayers [3], in which electrons and holes are located in two
separate two-dimensional electron layers [4], and in
optically-excited exciton [5] and exciton-polariton [6]
cold gases. When the two layers of a bilayer exciton
condensate (EC) are contacted separately, it can exhibit
remarkable transport anomalies [3,7,8] associated with its
neutral supercurrents [9]. These properties provide an ap-
pealing platform for spectacular electrical effects in EC-
superconductor hybrid systems in which the charged super-
conducting order parameter interfaces with the neutral EC
order parameter. In this Letter we demonstrate that when
two superconducting circuits are coupled through a bilayer
EC, the superflow in both layers is drastically altered. If the
same phase bias is applied to both junctions, no Josephson
current can flow through the system, a phenomenon we
refer to as exciton blockade. When a phase bias is applied
to only one layer, on the other hand, it induces a superdrag
counterflow supercurrent of the same magnitude in the
unbiased layer.

In order to explore the physics of conversion between
EC and Cooper-pair supercurrents, we consider the
superconductor-EC-superconductor (S-EC-S) setup
sketched in Fig. 1. Two closely-spaced layers, assumed
to host an EC, are independently contacted to four super-
conducting electrodes. The electrodes in each layer are
separated by a distance L much larger than the exciton
coherence length, and an independent phase bias is applied
to the top and bottom contacts. In the presence of these
biases, Josephson currents flow through the double layer.
Because the EC is gapped, only dissipationless counterflow
can contribute to the Josephson current whenL is long. The
EC and the dissipationless nature of its counterflow super-

current can therefore be revealed by a purely coherent
equilibrium measurement when contacted by supercon-
ducting electrodes.
Exciton blockade and superdrag.—All important fea-

tures of the physics we want to describe are captured by
the simple one-dimensional (1D) model that we now dis-

FIG. 1 (color online). Sketch of a superconductor–exciton-
condensate–superconductor system. (a) A double-layer exciton
condensate is contacted with four superconducting leads.
(b) When the applied phase biases in the top and bottom layers
are identical (’ in this cartoon) no current can flow when the
length of the junction L is much larger than the exciton-
condensate coherence length @vF=j�j. In this case the
Josephson currents are in the ‘‘exciton blockade’’ regime.
(c) When a phase bias ’ is applied to the top layer only, a
supercurrent I flows. In the limit L � @vF=j�j a supercurrent
�I is dragged in the bottom layer in a perfectly frictionless
manner: in this case one has a ‘‘perfect’’ drag or ‘‘superdrag’’ of
Josephson currents.
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cuss in explicit detail. Later we provide arguments support-
ing the general validity of the conclusions we reach. The
four superconducting leads in Fig. 1 are in an equilibrium
configuration, characterized by the same Fermi level "F. In
each layer the electron filling is controlled by a gate
voltage. In our calculations we assume that the two layers
are oppositely gated, so that one layer (the top layer, say)
is ‘‘hole-doped’’ and the other (the bottom layer) is
‘‘electron-doped,’’, as depicted in Fig. 2. Notice that states
near the right Fermi point þkF are right-movers (left-
movers) for the bottom (top) layer, whereas states near
the left Fermi point�kF are left-movers (right-movers) for
the bottom (top) layer. Let ��� be the field operator
describing an electron in the � ¼ top (T)/bottom (B) ¼
� layer with spin � ¼" , # . We have applied the
Bogoliubov–de Gennes approach [10,11] to model our S-

EC-S hybrid system: the Hamiltonian Ĥ of the system is

Ĥ ¼ R1
�1 dx�̂yðxÞH ðxÞ�̂ðxÞ, where energy is measured

with respect to the equilibrium Fermi level "F. Here �̂ ¼
ð�T";�B";�

y
T#;�

y
B#Þ and H ðxÞ is a 4� 4 matrix

H ðxÞ ¼
� @

2@2x
2m �ðxÞ �TðxÞ 0

��ðxÞ @
2@2x
2m 0 �BðxÞ

��
TðxÞ 0 @

2@2x
2m ���ðxÞ

0 ��
BðxÞ ��ðxÞ � @

2@2x
2m

0
BBBBB@

1
CCCCCA: (1)

It contains single-particle band-kinetic-energy terms for
each layer, intralayer terms containing the superconducting
order parameter [10] �� / h��#��"i and interlayer terms

containing the EC order parameter [9] � / h�y
B��T�i.

Both order parameters vary spatially along the current-
flow (x̂) direction. Since details of order parameter behav-
ior near the interfaces are irrelevant for our purposes, we
can assume that �� are nonvanishing only in the left (L)
and right (R) electrodes. For simplicity we also assume the
same amplitude j�j in all the electrodes, whereas the
phases ’�;L=R are allowed to differ. More explicitly, we

take ��ðxÞ ¼ j�jei’�;L�ð�xÞ þ j�jei’�;R�ðx� LÞ, where

the origin x ¼ 0 is chosen at the left layer-electrode inter-
faces and � is the Heaviside step function. In contrast, the
EC order parameter is taken nonvanishing in the double-
layer region, i.e., for 0< x< L. Although its amplitude j�j
can be taken as constant, it is essential to allow for phase
variation in order to account for condensate counterflow
currents. In 1D current, conservation implies linear phase
variation so that � has the form

�ðxÞ ¼ j�jei�0þ2iqx: (2)

When phase biases are applied to the four electrodes,
supercurrents flow in both layers. The EC weak-link sup-
ports two contributions to the Josephson current. The
quasiparticle channel contribution, in which Cooper pairs
propagate by the virtual excitation of quasiparticles in the
double layer, is present in ordinary weak links. In the
present case, however, it is exponentially suppressed
when L � @vF=j�j (vF being the Fermi velocity) because
of the gap in the quasiparticle excitation spectrum of the
EC. Much more interesting is the new contribution to the
current which derives from the conversion of supercurrent
into superfluid excitonic current. It can be visualized as a
correlated Andreev reflection [12] in which an electron and
hole (in different layers) enter the EC and propagate with-
out dissipation to the other end of the double layer. There a
similar process occurs to convert the exciton current back
into a Cooper-pair current. This process survives also in the
long-junction limit and it leads to a number of spectacular
effects, as we shall show below.
In the long-junction limit, j�j, j�j � @vF=L, the critical

current does not depend on the magnitude of either order
parameter. The mathematical description of the long-
junction limit is simplified if we also assume that j�j �
j�j, with no physically relevant consequences for the main
results. Indeed, for energies much smaller than
j�j the layer spectra can be linearized [13], and the elec-
tron field operators can be written as ���ðxÞ ¼
eikFx���þðxÞ þ e�ikFx����ðxÞ, where ����ðxÞ are
slowly varying fields related to the Fermi points �kF.
Furthermore, the presence of the superconductors can be
accounted for by boundary conditions at the contacts, such

as ��#ð"Þþð0Þ ¼ ��iei’�;L�y
�#ð"Þ�ð0Þ at the left interfaces.

Similarly for the right interfaces located at x ¼ L. In this
way the problem is reduced to the evaluation of the average
of the current operator over the equilibrium state of a
system in which the fields satisfy these boundary condi-
tions and the exciton order parameter (2) exhibits a space-
dependent phase winding. It follows that the EC winding
wave vector q must satisfy

q ¼ ’T � ’B � 2�J

4L
(3)

with J an integer. Here’� � ’�;L � ’�;R is the phase bias

in layer �. Minimization of the total energy fixes J to be
the closest integer to ð’T � ’BÞ=ð2�Þ, and the offset phase
to be �0 ¼ ð’T;L � ’B;LÞ=2. We find that, at zero tempera-

FIG. 2 (color online). Schematic electronic band structure of a
gated bilayer in the absence of electron-hole coupling.
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ture, the supercurrents in top and bottom layers flow in
opposite directions. Explicitly, they exhibit a sawtooth
form,

Ið0ÞT=B ¼ � evF

2�L
ð’T � ’BÞ; (4)

where ’T � ’B is defined modulo 2�. The magnitude of
the currents depends on the difference ’T � ’B between
the phase biases ’T and ’B in the two layers.

Equation (4) is the main result of this Letter and has
several interesting physical implications: (i) ’T ¼ ’B

(parallel flow). When the same phase biases are applied
to the two junctions no supercurrents can flow through the
EC. In this case the Josephson currents experience an
‘‘exciton blockade’’; (ii) ’T ¼ �’B (counterflow). In
this case the Josephson current flowing through the EC is
maximal, with a critical value equal to the critical current
of a ballistic one-channel superconductor–normal metal–
superconductor (S-N-S) junction; (iii)’T ¼ ’ and’B ¼ 0
(superdrag). When current flows in one layer due to a phase
bias in that layer, a current equal in magnitude but opposite
in direction flows in the other layer. This is a consequence
of the perfect conversion of exciton current into super-
current. Equation (4) can then be seen as a perfect drag
effect for the supercurrent.

The existence of a dissipationless (counterflow) channel
also has a spectacular impact on the temperature depen-
dence of the critical current. Indeed we notice that the
ground-state current (4) has the same length dependence
as that in a S-N-S junction [14]. At finite temperature it is
possible to show that, in the regime @vF=L � kBT � j�j,
the critical current in the S-EC-S is

IT=B ¼ � 2evF

�
q

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2��j�j

q sinhðqLthÞ
qLth

e��j�j
�
; (5)

where � ¼ 1=ðkBTÞ and Lth ¼ @vF=ðkBTÞ is the thermal
length. Note that the second term in square brackets in
Eq. (5) is / expð��j�jÞ; thus, as long as thermal fluctua-
tions are dominated by the excitonic gap, the ground-state
current is essentially unaffected by thermal fluctuations.
This is another important result of this Letter. Notice that
this occurs even when the thermal length Lth is smaller
than the length L of the junction. This is in striking contrast
with the case of a S-N-S junction (or with the case of two
decoupled layers), where the critical current Ic is exponen-
tially suppressed [15], i.e. Ic / expð�L=LthÞ for Lth � L,
due to thermal decoherence affecting a single Andreev-
reflection process. In the presence of the EC, Andreev
processes coherently occurring in the two layers transform
Cooper pairs into electron-hole pairs of the EC, which are
protected from thermal decoherence by the excitonic gap.
Thus in the temperature window @vF=L � kBT � j�j the
EC counterflow channel is responsible for an exponential
enhancement of the critical current with respect to the
ordinary S-N-S case mentioned just above.

Discussion.—The only crucial assumption we made in
the previous derivation is that the length L of the junction is

much larger than the EC coherence length @vF=j�j. For
these reasons, the physical results obtained are not re-
stricted to the specific 1D model discussed above. The
dependence of the Josephson current on the difference
’T � ’B can be deduced from quite general arguments.
Current conservation indeed implies that the supercurrent
can be evaluated in the bulk of the layers, where the
supercurrent is purely carried by the EC, provided that
the junction is long enough (L � @vF=j�j). We also em-
phasize that, due to the charge neutrality of the EC order
parameter �, the supercurrents in the two layers are equal
in magnitude and opposite in sign. In particular, the current
is proportional to q, i.e., the phase winding in Eq. (2). The
evaluation of the current thus reduces to the determination
of the dependence of q on the superconducting phase
biases ’T and ’B. Let us assume that the system is trans-
lationally invariant in the transverse direction ŷ, so that the
order parameters ��ðrÞ and �ðrÞ depend on the longitudi-
nal x̂ direction only. By applying the transformation

���ðrÞ ¼ expfi½’�;L þð’�;R�’�;LÞx=L�=2g ~���ðrÞ, the
superconducting phase biases ’�;L=R can be gauged

away. The price to pay is twofold. First, an effective vector
potential A� ¼ ð�0’�=LÞx̂ appears in each intralayer
Hamiltonian (here �0 ¼ h=2e is the quantum of flux,
associated with elementary charge 2e of the superconduct-
ing order parameter ��). Second, the EC order parameter
describing the interlayer coupling transforms into

~�ðxÞ ¼ j�j exp
�
2i

�
q� ’T � ’B

4L

�
x

�
: (6)

By observing that the energy scales characterizing the
intralayer and the interlayer terms are @vF=L and j�j,
respectively, it is straightforward to realize that for a long
junction (L � @vF=j�j) the interlayer terms play the ma-
jor role in determining the equilibrium configuration.
Energy minimization implies that the argument of the
exponent proportional to x in (6) vanishes, since in the
new gauge the system is effectively phase unbiased. This
fixes the winding q to be the one defined in Eq. (3), and
proves that the currents just depend on ’T � ’B. The
current-phase relationship is always of the sawtooth
form. We stress that the above argument does not depend
on the details of the experimental setup. In particular, it
applies independently of the specific (parabolic or linear)
energy-momentum dispersion relation of the intralayer
kinetic Hamiltonian. Furthermore, it also holds if the con-
tacts with the superconducting electrodes are not ideal and
when their transparencies are different in the top and
bottom layers. In the specific case of 2D layers with width
W and highly-transparent contacts, the current is still given
by Eq. (4) provided that it is multiplied by the number
kFW=4 of transverse channels [14–16].
The unique properties of the conversion of EC currents

into charged supercurrents can be exploited for a number
of possible applications. As an example we discuss a
configuration realized by closing the two superconducting
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electrodes contacted to the (say) top layer into a ring-
shaped rf-SQUID geometry, so that the phase difference
’T is directly related to the magnetic flux �T by ’T ¼
2��T=�0 þ 2�n. In response to a magnetic field, an
induced Josephson current IT flows in the top layer and,
according to Eq. (4), an opposite current IB ¼ �IT flows in
the bottom layer. Whenever the magnetic field changes the
flux by a fluxon, the currents in both layers are reversed.
Current sign switches detected in the bottom layer count
the fluxons present in the top layer ring. If the magnetic
flux is generated by a monotonic analog input signal, the
system effectively converts it into a sum of current switch
pulses, i.e., to a digital signal. The system is therefore an
analog-to-digital converter. A generalization to nonmono-
tonic input signals can easily be achieved by using two
double junctions.

One important obstacle which presently stands in the
way of observing these effects is the fact that equilibrium
exciton condensation has so far been observed only in
quantum Hall (QH) bilayers at total filling factor �T ¼ 1.
QH systems necessarily have current-carrying gapless
channels localized at their edges. In a QH bar geometry
the edge channels will alter the physics we discuss.
Spontaneous coherence between conduction and valence
band electrons in different semiconductor quantum well
layers is however also expected [17] to occur at zero
magnetic field when interlayer interactions are strong.
There are hints that the conditions necessary for coherence
have been realized in some recent [18] semiconductor
bilayer experiments. Graphene bilayer systems [19] are
just starting to be examined for coherence effects and
have a number of potentially important advantages, as
pointed out recently by several researchers [20–22].
Because they are gapless and atomically 2D, the field-
driven carrier densities that can be achieved are much
larger than in the semiconductor case. Weaker dielectric
screening and linearly dispersive conduction and valence
bands help to increase both interaction and disorder energy
scales. Finally, graphene bands are nearly perfectly
particle-hole symmetric, guaranteeing the nearly perfect
nesting between conduction and valence band Fermi sur-
faces which favors the coherent state. Progress [23–26] in
the realization of electrically isolated double-layer gra-
phene sheets, either two layers separated by a dielectric
or rotated layers, is ongoing. In the single-layer graphene
case, it has already been demonstrated [27] that it is
possible to fabricate transparent interfaces between gra-
phene and superconducting electrodes. In view of this
progress our predictions are likely to be within experimen-
tal reach soon.
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