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The cohesive frictional crack model applied to

the analysis of the dam-foundation joint

F. Barpi a,∗, S. Valente a

aDipartimento di Ingegneria Strutturale e Geotecnica, Politecnico di Torino,
Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

Abstract

The mechanical behaviour of dam-foundation joints plays a key role in concrete
dam engineering since it is the weakest part of the structure and therefore the evo-
lutionary crack process occurring along this joint determines the global load bearing
capacity. The reference volume involved in the above mentioned process is so large
that it cannot be tested in a laboratory: structural analysis has to be carried on by
numerical modelling. The use of the asymptotic expansions proposed by Karihaloo
& Xiao (2008) at the tip of a crack with normal cohesion and Coulomb friction
can overcome the numerical difficulties that appear in large scale problems when
the Newton-Raphson procedure is applied to a set of equilibrium equations based
on ordinary shape functions (Standard Finite Element Method). In this way it is
possible to analyze problems with friction and crack propagation under the constant
load induced by hydro-mechanical coupling. For each position of the fictitious crack
tip, the condition K1 = K2 = 0 allows us to obtain the external load level and the
tangential stress at the tip. If the joint tangential strength is larger than the value
obtained, the solution is acceptable, because the tensile strength is assumed negligi-
ble and the condition K1 = 0 is sufficient to cause the crack growth. Otherwise, the
load level obtained can be considered as an overestimation of the critical value and
a special form of contact problem has to be solved along the fictitious process zone.
For the boundary condition analyzed (ICOLD benchmark on gravity dam model),
after an initial increasing phase, the water lag remains almost constant and the
maximum value of load carrying capacity is achieved when the water lag reaches its
constant value.

Key words: Cohesive crack, Concrete, Dam, Fluid driven fracture, Foundation,
Frictional crack, Fracture, Hydro mechanical coupling, ICOLD, Joint, Water lag



1 Nomenclature

• ′: derivative with respect to z
• a1n, a2n, b1n, b2n: real coefficients
• An = a1n + i a2n, Bn = b1n + i b2n: complex coefficients
• α1, α2, . . .: best fitting constants
• c: joint cohesion
• E: Young modulus
• ν: Poisson’s ratio
• δ: crack sliding displacement
• δc: critical value of δ
• ft: ultimate tensile strength
• GII

F : conventional Mode II fracture energy
• hiff : imminent failure flood water level (Fig. 3)
• hovt = hiff − hc: over-topping water heigth
• hc: dam crest height (Fig. 3)
• i: imaginary unit, iteration number
• K1: mode I stress intensity factor
• K2: mode II stress intensity factor
• λi: eigenvalues
• κ: Kolosov constant
• µ = E/(2 (1 + ν)): shear modulus
• µf = −τxy

σy
|θ=π: stress ratio used in the asymptotic expansion

• φ(z): analytic function
• Φ: Coulomb friction angle in joint failure criterion (Fig. 4)
• χ(z): analytic function
• p: water pressure along the crack (Fig. 3)
• tn: traction along the crack (Fig. 3)
• r: polar coordinate
• σx: stress along x direction
• σy: stress along y direction
• σc: critical value of σy (corresponding to w = 0)
• τxy: tangential stress
• θ: polar coordinate
• u: displacement along x direction
• v: displacement along y direction
• w: crack opening displacement
• wc: critical value of w
• weff =

√
w2 + δ2: effective joint opening

• weff,c: critical value of weff

• z = r ei θ: complex variable

∗ Corresponding author.
Email addresses: fabrizio.barpi@polito.it, silvio.valente@polito.it (S.

Valente).



2 Introduction

The mechanical behaviour of dam-foundation joints plays a key role in concrete
dam engineering since it is the weakest part in the structure and therefore
the evolutionary crack process occurring along the joint determines the global
load bearing capacity. In the scientific literature two problems on load-bearing
capacity are discussed:

• the problem of sliding along a pre-existing compressed discontinuity (see,
among others, Barton et al. (1985), Plesha (1987), Gens et al. (1990), Stup-
kiewicz & Mróz (2001)),

• the problem of crack initiation and propagation along an undamaged inter-
face (see Carol et al. (1997), Červenka et al. (1998), Barpi & Valente (2008),
Cocchetti et al. (2002))

The latter problem is discussed below in the framework of the cohesive crack
models, introduced by Barenblatt (1959) and Dugdale (1960) for elastoplas-
tic materials, and by Hillerborg et al. (1976) for quasi-brittle materials. In
this model, the fracture process zone (due to degradation mechanisms such
as plastic micro-voiding or micro-cracking) in front of the actual crack tip is
lumped into a discrete line (two-dimensional) or plane (three-dimensional) and
is represented by a nonlinear traction-separation law across this line or plane.
When the tangential components of the tractions are present the solution can
lose uniqueness. Therefore numerical difficulties occur if the Newton-Raphson
procedure is applied to a set of equilibrium equations based on ordinary shape
functions (Standard Finite Element Method). In order to overcome these dif-
ficulties Strouboulis et al. (2001) proposed an approximation which employs
knowledge about the character of the solution (Generalized Finite Element
Method). In this direction we take advantage from the work of Karihaloo
& Xiao (2008) on the asymptotic fields at the tip of a cohesive crack. In
this model frictional forces operate when the crack faces are open. Therefore,
these forces are different from those operating in a contact problem. In this
context Karihaloo & Xiao (2008) obtained asymptotic expansions at a cohe-
sive crack tip analogous to the Williams (1957) expansions at a traction-free
crack tip for any traction-separation law that can be expressed in a special
polynomial form.

3 Polynomial cohesive law for quasi-brittle materials

In order to obtain the separable asymptotic field at a cohesive crack tip (in
terms of r and θ functions, see Fig. 1) in quasi-brittle materials, Karihaloo &
Xiao (2007) reformulate the softening law into the following polynomial form:
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where σy and ft are the stress normal to the cohesive crack faces and the
uniaxial tensile strength, respectively; w and wc are the opening displacement
of the cohesive crack faces and the critical displacement at the real crack tip;
αi are fitting parameters. Equation 1 can represent a wide variety of softening
laws. For example, Karihaloo & Xiao (2007) showed that the experimental
results of Cornelissen et al. (1986) for normal concrete can be fitted very well
by Eq. 1 with: α1 = −0.872, α2 = −16.729, α3 = 67.818, α4 = −110.462,
α5 = 83.158 (see Fig. 2). The above mentioned shape coefficients are used in
the present work.

4 Asymptotic fields at the tip of a crack with normal cohesion and

Coulomb friction

The mathematical formulation follows closely that used by Karihaloo & Xiao
(2008), so only a brief description will be given here. Muskhelishvili (1953)
showed that, for plane problems, stresses and displacements in the Cartesian
coordinate system (see e.g. Fig. 1) can be expressed in terms of two analytic
functions φ(z) and χ(z) of the complex variable z = reiθ

σx + σy = 2[φ′(z) + φ′(z)] (2)

σy − σx + 2iτxy = 2[zφ′′(z) + χ′′(z)] (3)

2µ(u+ iv) = κφ(z)− zφ′(z)− χ′(z) (4)

where a prime denotes differentiation with respect to z and an overbar complex
conjugate. In Eq. 4, µ = E/[2(1 + ν)] is the shear modulus; the Kolosov
constant is κ = 3−4ν for plane strain and κ = (3−ν)/(1+ν) for plane stress;
E and ν are Young’s modulus and Poisson’s ratio, respectively.

For a general mixed mode I+II problem, the two analytic functions φ(z) and
χ(z) can be chosen as series of complex eigenvalue Goursat functions (Sih &
Liebowitz (1968))

φ(z) =
∑

n=0

Anz
λn =

∑

n=0

Anr
λneiλnθ (5)



χ(z) =
∑

n=0

Bnz
λn+1 =

∑

n=0

Bnr
λn+1ei(λn+1)θ (6)

where the complex coefficients are An = a1n + ia2n and Bn = b1n + ib2n . The
eigenvalues λn and coefficients a1n, a2n, b1n and b2n are real.

Substituting complex functions 5 and 6 into 2, 3 and 4, the complete series
expansions of the displacements and stresses near the tip of the crack can be
written:

2µu =
∑

n=0

rλn

{

κ[a1n cosλnθ − a2n sinλnθ] + λn[−a1n cos(λn − 2)θ+

a2n sin(λn − 2)θ] + (λn + 1)[−b1n cosλnθ + b2n sinλnθ]
}

(7)

2µ v =
∑

n=0

rλn

{

κ[a1n sinλnθ + a2n cosλnθ] + λn[a1n sin(λn − 2)θ+

a2n cos(λn − 2)θ] + (λn + 1)[b1n sinλnθ + b2n cosλnθ]
}

(8)

σx =
∑

n=0

rλn−1
{

2λn[a1n cos(λn−1)θ−a2n sin(λn−1)θ]−λn(λn−1)[a1n cos(λn−3)θ

− a2n sin(λn − 3)θ]− (λn + 1)λn[b1n cos(λn − 1)θ − b2n sin(λn − 1)θ]
}

(9)

σy =
∑

n=0

rλn−1
{

2λn[a1n cos(λn−1)θ−a2n sin(λn−1)θ]+λn(λn−1)[a1n cos(λn−3)θ

− a2n sin(λn − 3)θ] + (λn + 1)λn[b1n cos(λn − 1)θ − b2n sin(λn − 1)θ]
}

(10)

τxy =
∑

n=0

rλn−1

{

λn(λn − 1)[a1n sin(λn − 3)θ + a2n cos(λn − 3)θ]+

(λn + 1)λn[b1n sin(λn − 1)θ + b2n cos(λn−1)θ]
}

(11)
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The imposition of continuity conditions on normal stress component of Eq. 10
(σy|θ=π = σy|θ=−π) along the cohesive zone gives:

(a2n + b2n) sin(λn − 1)π = 0 (14)

The imposition of continuity conditions on tangential stress component of
Eq. 11 (τxy|θ=π = τxy|θ=−π) along the cohesive zone gives:

[(λn − 1)a1n + (λn + 1)b1n] sin(λn − 1)π = 0 (15)

Equations 14 and 15 are satisfied for sin(λn − 1)π = 0 or for b2n = −a2n. In
other words the asymptotic solutions can be collected in two classes. The first
class is characterized by integer eigenvalues:

λn = n+ 1, n = 0, 1, 2 . . . , w = 0, δ = 0 (16)

the second class is characterized by the remaining cases (non integer eigenval-
ues):

b2n = −a2n, b1n = −λn − 1

λn + 1
a1n, w 6= 0, δ 6= 0 (17)

The imposition of the Coulombian friction condition (τxy|θ=π = −µf σy|θ=π)
along the cohesive zone, for the first class of solutions, gives:

λn = n+1, na2n + (n+2)b2n = −µf (n+2)(a1n + b1n) n = 0, 1, 2 . . . (18)

and, for the second class of solutions, gives:

(µfa1n − a2n) cos(λn − 1)π = 0 (19)



Since both factors in Eq. 19 may vanish independently of each other, it ap-
pears that, for the crack with normal cohesion and Coulombian friction, the
eigenvalues and asymptotic fields are not unique. Additional assumptions have
to be made to ensure uniqueness. Assuming that µfa1n−a2n 6= 0, Eq. 19 gives:

cos(λn − 1)π = 0, λn =
2n+ 3

2
, n = 0, 1, 2 . . . (20)

This assumption does not lead to any loss of generality. Now, it is possible to
complete the expressions of the asymptotic fields.

In the case of integer eigenvalues, substituting Eq. 18 in 10 gives:

σy|θ=±π = −τxy|θ=±π

µf

=
∑

n=0

(n+ 2)(n+ 1)rn(a1n + b1n) cos(nπ) (21)

In the case of non-integer eigenvalues, substituting Eqs. 17 and 20 in 12 and 13
gives:
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r
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2

µ
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2
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2
π (23)

In Eq. 20 n = −1 corresponds to the singular terms, which are excluded a
priori (K1 = K2 = 0).

5 The iterative solution procedure

For each position of the fictitious crack tip (shortening FCT) the following
iterative procedure is applied:
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Since the material outside the fracture process zone (shortening FPZ) is linear,
it is possible to compute the external load multiplier (hovt) and the tangential



stress at the FCT (τxy,FCT ) by imposing that the stress field is not singular
(stress intensity factorsK1 = K2 = 0). All these linear constraints are included
in the operator f .

Since w,δ,σy,τxy are compatible with the asymptotic solution, operator g in-
cludes the constraints described by Karihaloo & Xiao (2008) and not repeated
here.

At the first iteration (i = 0) w = δ = 0 is assumed along the FPZ. According
to this approach hovt and τxy,FCT are not defined a priori but are obtained
from the analysis related to a pre-defined position of the FCT. If τxy,FCT is less
than or equal to the local critical value, the solution obtained can be accepted.
On the contrary, if τxy,FCT exceeds the local critical value, the associated load
level can be seen as an overestimation of the real critical value which remains
unknown. Of course it is possible to reduce the load level but in that case K1

becomes negative, a contact problem arises along the FPZ and the dilatancy
condition has to be imposed. This special form of contact problem is beyond
the scope of the present work.

In the well established literature on mechanical behaviour of concrete joints
(see Červenka et al. (1998)), softening depends only on weff =

√
w2 + δ2.

In the asymptotic expansion used, softening depends only on w. Therefore,
during the iterative procedure, wc changes as follows:

wi+1
c =

√

w2
eff,c − (δi)2 (25)

In this model, the sliding rate (δ̇) is independent from the opening rate (ẇ).
With the terminology commonly used in plasticity, we can say that the failure
criterion adopted is non-associative.

6 Numerical example

As an example of application, the benchmark problem proposed in 1999 by
the International Commission On Large Dams ICOLD (1999) was analyzed
(dam height 80 m, base 60 m, see Fig. 3).

For simplicity, the same value of Young’s modulus (E = 32.5 GPa) and Pois-
son’s ratio (ν = 0.125) was assumed. Figure 4 shows the Mohr envelope of peak
and residual strength for the joint (cohesion c=0.7MPa, Φ = 30o). The stress
σx is positive (tension) along the lower edge of the crack. Figure 4 shows its
contribution to the achievement of the critical condition. As the crack grows,
the value of σx at the FCT (also called T-stress) reduces. For conservative



reasons, the tensile strength of the joint and the related fracture energy are
assumed as negligible. In case of linear softening the ICOLD benchmark sug-
gests the assumption of a critical value of the crack sliding displacement equal
to δc = 1 mm in the case of w = 0. Since the shape of the softening law as-
sumed in the present paper is based on the results of Cornelissen et al. (1986),
the previous value was increased to δc=2.56 mm. This choice is motivated by
keeping constant the fracture energy GII

F in the case w = 0. Since the crack is
open, beyond this value no stress transfer occurs.

6.1 Water lag

The well established literature on water driven fracture (see Desroches et al.
(1994)) assumes that the water penetrates into the crack but does not reach
the FCT. The fraction of FPZ not reached by the water is called water lag.
According to the experimental results of Reich et al. (1994), it is assumed that
the water penetrates into the FPZ up to the conventional knee point of the
softening law (w > weff,c × 2/9 = 2.56 × 2/9 = 0.569 mm). At the points
where the water penetrates, the pressure is the same as in the reservoir at the
same depth. The concrete and the rock are assumed to be impervious. The
asymptotic expansion used is based on the assumption τxy|θ=π = −µfσy|θ=π

therefore it can be applied only in the region not reached by the water. Figure 5
shows the evolution of the water lag as a function of the FCT position. The
free parameters of the expansion are calibrated in this region. In the remaining
part of the FPZ ordinary shape functions are used. For example, when the
distance of the FCT from upstream edge is 15 m Figs. 6, 7 and 8 show that
the total solution perfectly fits the asymptotic curve in terms of crack opening
and sliding displacement and in terms of tangential cohesive stress (the normal
component is negligible as required by the benchmark).

6.2 Loading conditions

The dam is analyzed under self-weight, reservoir filling and imminent failure
flood loading conditions. In the numerical analysis the role of external load
multiplier was played by the water level above the dam crest also called over-
topping water heigth (shortening hovt = hiff − hc, see Fig. 3). Under the
conservative assumptions previously described related to the material proper-
ties, the crack starts before the water level reaches the dam crest (hovt < 0).

Figure 9 shows the evolution of (τ/c) at the FCT as a function of the FCT
position. Based on the foregoing discussion, we can conclude that the asso-
ciated load level hovt shown in Fig. 10 is just an overestimation of the real
level. This model behaviour is due to the low value of cohesion suggested by



the benchmark. For higher values of cohesion the solution shown in Fig. 11
and 10 is completely acceptable. Figure 10 gives the maximum value of hovt

which is also the maximum load carrying capacity of the dam. Figure 11 shows
the evolution of the horizontal crest displacement as a function of the FCT
position and Fig. 12 the deformed mesh along the joint.

7 Conclusions

• The reference volume involved in the fracture process of a dam joint is so
large that it cannot be tested in a laboratory: a numerical model is needed.

• The use of the asymptotic expansions proposed by Karihaloo & Xiao (2008)
at the tip of a crack with normal cohesion and Coulomb friction can over-
come the numerical difficulties that appear in large scale problems when
the Newton-Raphson procedure is applied to a set of equilibrium equations
based on ordinary shape functions (Standard Finite Element Method). The
assumption of a different law of sliding, for which the asymptotic expansion
is not available in the literature, can induce a very slow rate of convergence.

• In this way it is possible to analyze problems with friction and crack prop-
agation under the constant load induced by hydro-mechanical coupling.

• In the analysis of the dam-foundation joint penetrated by the water, for each
position of the FCT, the two conditions K1 = K2 = 0 allow us to obtain the
external load level and the tangential stress at the FCT. If the joint strength
is larger than the value obtained, the solution is acceptable, because the
tensile strength is assumed negligible (according to the benchmark) and the
condition K1 = 0 is sufficient to cause the crack growth. Otherwise the load
level obtained can be considered as an overestimation of the critical value.

• For the boundary condition analyzed, after an initial increasing phase, the
water lag remains almost constant.

• For the boundary condition analyzed, the maximum value of load carrying
capacity is achieved when the water lag reaches its constant value.
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Stupkiewicz, S. & Mróz, Z. (2001). Constitutive models for rock discontinuities
with dilatancy and surface degradation, Journal of Theoretical and Applied
Mechanics 3 (39): 707–739.
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Fig. 1. Stresses near the crack tip.
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Fig. 2. Non dimensional cohesive stress (σ/σc) vs. non dimensional crack opening
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���

���

�����	��
 �

� 
 �




����������

Fig. 3. Gravity dam proposed as benchmark by ICOLD (1999).



Fig. 4. Failure criterion.
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Fig. 6. Crack opening displacement vs. distance r.
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Fig. 7. Crack sliding displacement vs. distance r.
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Fig. 8. Nondimensional tangential cohesive stress (τ/c) vs. distance r.
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Fig. 9. Tangential stress ratio τxy/c at FCT vs. FCT position.
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Fig. 10. Overtopping height hovt vs. FCT position.
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Fig. 11. Horizontal crest displacement vs. FCT position.



Fig. 12. Deformed mesh.


