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Mark ov basesfor sudoku grids

RobertoFontanafabioRapdlo andMaria PieraRogantin

1 Intr oduction and preliminary material

In recentyears,sudokuhasbecomeavery populargame.In its mostcommonform,
the objective of the gameis to completea 9 x 9 grid with the digits from 1 to 9.
Eachdigit mustappearonceandonly oncein eachcolumn,eachrow andeachof
the nine 3 x 3 boxes. It is known that the sudokugrids are special casesof Latin
squaresn the classof gerechte designs see[2]. In [7] the connectionsbetween
sudokugrids andexperimentaldesignsareextensvely studiedin the framework of
AlgebraicStatisticsIn this paperwe shov how to represensudokugamesin terms
of 0 — 1 contingenyg tables.The connectiondetweencontingeng tables,desiq
of experiments,andthe useof sometechniquefrom Algebraic Statistcs allows
us to study and describethe set of all sudokugrids. Although the methodology
is simple and can be easily statedfor generalp? x p? (p > 2) sudokugrids, the
computationsare very intensive andthen limited to the 4 x 4 case However, we
expectthatour work couldform a prototypeto understandhe connectiondetween
designedxperimentsandcontingeng tablesfor the generakase.

A sudokugrid canbe viewed asa particularsubsetof cardinality p? x p? of the
p? x p? x p? possibleassignmentsf a digit betweenl and p? (or moregenerally
p? symbols)to the cells of the grid. Underthe point of view of designof experi-
ments,a sudokucan be constleredasa fraction of a full factorialdesignwith four
factorsR,C, B, S, correspondingdo rows, columns pboxesandsymbols with p? lev-
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els each. The three position factors R,C and B are dependent; in fact a row and a
column specify a box, but the polynomial relation between these three factors is
fairly complicated. A simpler approach consists in splitting the row factor R into
two pseudo-factors Ry and Ry with p levels each, and analogously the column factor
C into € and C;. Then the box factor B corresponds to Ry and Cj. The factors R;
and C; are named “the band” and “the stack™ respectively, and the factors R, and
C are named as “the row within a band” and “the column within a stack™. Finally,
given a digit k between 1 and p2, the factors S| and Sy provide the base-p represen-
tation of k— 1. It should be noted that two factors for symbols are introduced only
for symmetry of representation.

Hence, the full factorial has six factors R;, Ry, Ci, C3, S1 and Sp, with p levels
each. In this work we keep our exposition simpler using the integer coding for the
levels 0,...,p— 1.

As an example, in a 4 X 4 sudoku, if the symbol 3 (coded with 10, the binary
representation of 2) is in the second row within the first band (R; = 0,Ry = 1) and
in the first column of the second stack (C; = 1,C; = 0), the corresponding point of
the design is (0,1,1,0,1,0).

As introduced in [7], a sudoku grid, as fraction of a full factorial design, is speci-
fied through its indicator polynomial function, and a move between two grids is also
a polynomial. With such a methodology, three classes of moves are described: per-
mutations of symbols, bands, rows within a band, stacks, columns within a stack, de-
noted by ., transposition between rows and columns, denoted by .#>, and moves
acting on special parts of the sudoku grid, denoted by .#3. While all the moves in
A and 5 can be applied to all the sudoku, a move in .#3 can be applied only to
those sudoku having a special pattern. An example of a move in .3 is illustrated
in Figure 1. This move acts on two parts of the grid defined by the intersection of a
stack with two rows belonging to different boxes, and it exchanges the two symbols
contained in it. But such a move is possible only when the symbols in each selected
part are the same. Similar moves are defined for bands and columns, respectively.
The relevance of the moves in .#3 will be discussed in the next sections.

00 01 10 11 00 0 10 11 00 01 10 11
00 00 x|y 00 y[x
ol 0l 0l
10 10 :>10
11 11 y|=x 1 x|y

Fig. 1 A move in the class .#3.
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2 Movesand Mark ov basesfor sudoku grids

Theapplicdion of statisticaltechniquegor coningeng tablesin the framework of
the designof experimentsand in particularto sudokugrids, is not straightforvard.
In fact, a sudokugrid is not a contingeng table asit containslabelsinsteadof
counts.To describea sudokugrid as a coningeny table, we needto considera
px pXxXpxpxpx ptablen, with 6 indicesry,r»,c1,C2,51 ands,, eachranging
betweer0 andp— 1. Thetablen is a 0 — 1 tablewith ny 1, c,s,5, = 1 if andonly
if the (rq,rz,c1,¢2) cell of the grid containsthe symbol(s,s;) andis 0 otherwise.
Noticethatny,r,c,c,s;5, iS thevalueof theindicatorfunctionof thefractioncomputed
in thedesignpoint (ry,r2,¢1,C2,51,52). This approacthasbeenalreadysketchedn
[7]. A similarapproachs also describedn [1] for differentapplications.

A 0— 1 contingeng taldle mustsatisfysuitableconstraintsn orderto represat
a sudokugrid. The validity conditionsare expressedasfollows. Eachsudokugrid
musthave oneandonly onesymbolin eachcell, in eachrow, in eachcolumnandin
eachbox. Thefour constrains translatento thefollowing linearconditionson n:

p-1 p-1
z nr1r2C1C231$Q = 1vrlar27C17C2 Z nl‘lrzchZSlSQ = 1v rl7r2331732
s1,5=0 €1,62=0
p—-1 p—-1
Z nl’lr261C25152 = l v Cl7 C27 sﬂn % z nr1r201025152 = l v rl; C17 sﬂn & .
ry,r2=0 r2,c2=0

Thereforewe have a systemwith 4p* linear conditionson n andthe valid sudoku
gridsarejustits integernon-negative solutions.

Givenanintegerlinear systemof equationsaninteger (possiblynegative) table
m is amoveif, for eachnon-ngative solutionn of thesystemn+m andn —m are
again solutionsof the system, whennon-nejative.

As introducedin [5], a Markov basisis afinite setof moves % = {my, ..., my}
which makes conrectedall the non-nejative integer solutionsof the above system
of equationsGiven ary two sudokun andn’, thereexists a sequencesf moves
mi,,...,M;, in % andasequencef signsg;,,.. ., &y, (eij = +1forall j) suchthat

H
n=n+¥S gm;
JZl J J
andall theintermediatesteps

h
n-+ zgijmij forall h=1,....H
=

areagain non-n@ative integer solutionsof thelinearsystem.
While all thelinear constraintsn our problemhave corstanttermequalto 1, it is
known thatthe computatiorof a Markov basisis independenbn the constanterm
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of the linear system seee.qg.[5]. Thereforewe canselectthe subset%’i of % of

themovesm of % thatcanbeaddedatleastto onesudokugrid, n, in orderto obtain

agpin a valid sudokugrid, n+ m. In the sameway, we denotewith 2" the subset
of % formedby the elementgshatcanbe subtractedy at leastonesudokugrid to

obtainagainavalid sudokugrid. It isimmediateto checkthat%’i = 2" Thus,we

denotethis setsimply with 27 andwe referto the movesin £ asto the feasible
moves

Theapproactwith Markov basesnablesisto connecieachpair of sudokugrids
andto generatell the suddu grids startingfrom a givenone.

Theactwal computatiorof aMarkov basisneedgpolynomialalgorithmsandsym-
bolic computationsWe refer to [6] for more detailson Markov basesand how
to computethem. Although in mary problemsinvolving contingeng tablesthe
Markov basearesmallset of moves,eay to computeand to handle jn the caseof
sudokugridswe have alarge numberof moves.Currently the problemis computa-
tionally notfeasiblealrealy in the caseof classicald x 9 grids.

3 The 4 x 4 sudoku

In this sectionwe considerthe caseof 4 x 4 sudoku,i. e., p= 2. Using4t i 2 [11],
we obtainthe Markov basisZ. It contains34, 920 elementswhile it is known that
thereareonly 288 4 x 4 sudokugrids, listed in [7]. Using suchlist and somead-
hocmodulesarittenin SAS- | M. [10], we have exploredthis Markov basisfinding
someinterestingfacts.

e Feasiblemoves. Among the 34,920 moves of the Markov basis# thereare
only 2,160 feasiblemoves. To provide a term of comparisonwe remind that
the cardinaliyy of the set of all the differencesbetweentwo valid sudokuis
288-287/2 = 41,328andwe have checled that39,548 of themaredifferent.

e Classificationof moves.If we classify eachof the2, 160movesgeneratecby #f
accordingto boththe numberof sudokuthatcanuseit andthe numberof points
of thegridsthatarechangedy themove itself, we obtainthefollowing table.

# of Sudokuthat| # of Pointsmoved | Total
canusethemove| 4 8 10 12

1 0 0 1,536 192|1,728
2 0 336 0 0| 336
8 9% 0 0o o] 96
Total 96 336 1,536 192] 2,160

— The96 movesthatchanget pointsandcanbeuseds timesareall of type .#3,
like the onereportedin Figurel. We have alsoverified thatthesemovesare
enoughto connectall the suddku grids.
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— The336movesthatchanges pointsandcanbe usedby 2 tablescorrespond
to anexchangeof two symbols rows andcolumns.For example two of them

are:

4|3 34

3 4| = 4 3 =
4 3 3 4 412131 311|214
3 4 4 3 311|124 41213]|1

— Theremainingl, 728 movesare suitablecompositionsof the previous ones.
Forinstancethemove

3 411 1 3|4
113{2|= 312|1
2|3 4 3|4 2
1142 2|14

is the compositionof a permutationof two symbols, a permutationof two
rows andtwo movesof type./Z5.

4 Partially filled 4 x 4 grids

Usually, a classicalsudokugameis given as a partially filled grid that mustbe
completedplacing,in the emptycells, the right symbols.In framevork of the de-
signof experimentghis procedureorrespadsto augmentnexisting designunder
suitablepropertiesin this casethoseof the gerechte designsFor a peoplewho pre-
paresthe sudokugrids, it is importantto know whereto placethe givensandwhich
symbolsto put in themin orderto obtaina grid with an uniquecompletion.The
non-emptycellsin asudokugameareshortlyreferredasgivens In this sectionwe
usethe Markov basego study all possiblegivensfor the4 x 4 grids.

Noticethatthedefinitionsof Markov basesandfeasile movesleadusto thefol-
lowing immediateresult. Whenthe Markov basiscorrespondindo a configuration
of givenshasno moves,thenthe partially filled grid canbe completedn a unique
way.

When somecells of the grids containgivens,we have to determinea Markov
basiswhich doesnot acton suchcells. This problemis thenreducedo the compu-
tation of Markov basedor tableswith structuralzeros,aseachgiven fixes4 cells
of thetablen. Theoreticallythe computatiorof Markov basedor tableswith struc-
tural zerosis a known problem,seee.g.[8]. A way to easily obtain all Markov
basedor the partially filled sudokushoul consistin the computationof a special
Markov basisfor the completeproblem known asUniversal Markov basis see[9].
An UniversalMarkov basisis a specialMarkov basisconsistenwith all configu-
rationsof structuralzeros.More precisely a Markov basisfor a configurationwith
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structuralzerosis formedby the movesof the UniversalMarkov basisfor the com-
pleteproblemby removing the moveswhich involve thefixedcells.In our problem,
this meanghatthe UniversalMarkov basisfor thecompletegrid would be sufiicient
alsofor all partially filled grids. Noticethatthe Markov basiscomputedwith 4ti2
andpresentedbore is not Universa.Unfortunately the dimensionf the problem
make the computatiorof the UniversalMarkov basesurrentlyunfeasible.

A differentapproachis to computeand analyzethe Markov basisfor all the
possiblechoicesC of the cells of the grid that shouldnot be modified. For 4 x 4
sudokuit meanghatwe shouldrun 4ti2 over 216 configurationscorrespondingo
all the possible subsetof the cells of the grid. To reducethe computationaleffort
we have exploited somesymmetrieof the sudokugrids, creatinga partition of all
the possibleC andcomputingthe Markov basisZc only for onerepresentatie of
eachclass.An approactto sudokubasedn symmetriess alsopresentedn [4].

Theconsideredymmetriecorrespondo movesin .1 (permutation®f bands,
of rows within a band,of stacksandof columnswithin a stack)andin .#5 (trans-
position)describedn Sectionl, movesthat canbe appliedto all the sudoku.We
describenow the constructbn of the classeof equivalence.

Let T, e, e5.¢, PEthetransformatioracting on the positionof a cell:

Tl ey.e5.04(11,12,C1,C2) = (I1,12,C1,C2) + (€1,€2,€3,84) Mod2  with & € {0, 1} .

The permutatiorof a bandcorrespondso (e1, 2, €3,€4) = (1,0,0,0), the permuta-
tion of therowswithin boththebandscorrespondso (e;, €2, €3,€4) = (0,1,0,0), and
thecompositiorof boththepermutationgorrespondso (e1, e2,€3,e4) = (1,1,0,0).
Analogouslyfor stacksandcolumns.

Let y. bethetranspositiorof the postion of acell:

Ye(r1,r2,C1,C2) = (C1,Cp,r1,r2) (€= 1)+ (r1,rz,c1,c2) (€= 0) withee {0,1}

where(A) is 1if theexpressiomA is trueand0 otherwise.
Givene = (ep, €1, €,€3,€4,65), let Te bethe composition:

Te = Tepepe003.008 = Yoo © Ty epe3.04,© Vo With & € {0, 1} .

We noticethatthetransformatiorro o,0,0,0,0 is theidentity and thatthetransposi-
tion ye is consideredoth asthefirst andthelasttermin 1o becausein general,it
is notcommutative with T, e, e, ¢, We alsopointoutthatthe 64 transformationge
do not necessarilycover all the possibleonesbut they leadto significantreduction
of theproblem.

Givena subsebf cellsC, we denoteby 1(C) thetransformatiorof all the cells
of C. We saythattwo choicesCy andDy, with k fixed cells, areequialentif there
existsavectore suchthat:

Dy = Te(Ck)
andwe write Cy ~ Dy. In Figure2 a classof equivalenceof gridsis shown.
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Fig. 2 The 16 gridsof anequivalenceclasswith 2 fixedcells,containirg the givens.
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Now we shaw thatit is enoughto computethe Markov basisonly for onerepre-
sentatve of eachclass.

Givena sudokutablen we derote by Te(n) the transformatiornre appliedto all
thecellsof the sudoku:

Te(nl'l,l'z,CLCz,SLSQ) = nTe(rl,rz,Cl,Cz),Sl,Szv r1,r2,C1,C2 .

In the sameway T canbeappliedto amove m.

Let C andD bein thesameclassof equivalenceD = 1,(C), and%é and%’é be
the correpondingsetsof feasiblemovesin the Markov basesbtainedfrom C and
D. Then:

#h=1te(#L) with T (#L) = {fe(m), me 2} .

In fact,givenm € %’é it follows thatthereexist a sudokun anda sign € such
thatn 4 &€ m is still asudokuand:

fe(n+£ m) fe((n+£ m)rlﬁrzﬁclycz-,sl-,sz)

(n+¢&m) Te(r1,r2,€1,C2),51,%2

= Nrg(rirac1.00)50.5 T € Mie(riraci.co)81.9
Te(n) + & Te(m) .

ThereforeTe(m) is afeasble move for the sudokufe(n). Moreover asm doesnot
actonthecellsC, Te(m) doesnotactonthecells 7¢(C). It follows thatTe(m) is in

B! .

Te(C)
EeI'his methodologyallows us to significantly redwce the computation,approxi-
mately of 96%, as summarizedn the following table,wherek is the numker of

fixedcells andneq_d_ is thenumberof equivalenceclasses.

k |[1—15/2—14]3_13[4_12[5-11]6-10 7-9] 8 | Total
(5 16 | 120 | 560 |1,820|4,368|8,008|11,44012 870] 65,534
Negol| 1 | 9 | 21| 78 | 147 | 291 | 375 | 456 | 2,300

In view of this reducton, we have first computeda Markov basis%c for one
representatie C for eachof the 2,300 equivalenceclasseof the subsetf cells,
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using4t i 2. Then,usingsorre ad hoc modulesin SAS-IML, we have determined
the feasiblemoves,%é andthe numberof sudoku#.7¢ that canuseat leastone
move. The following table displaysthe resultsof all the 2,300 runs, classifiedby

thenumberof fixed cellsk andthe cardinalityof 4.

#c\k|1|2|3|4| 5|6 | 7| 8| 9 |10|11|12(13|14|15
0 0({0|0|0| 2 |21|92|221{271|250|141{76|21|9| 1
24 |0j0jO|jO|O|8|7|5|]0]0|0|0|0|0]O
72 |0j0jO0O|O|3|3|0j0]0O]0O0O|0|0|0O|0O]O
96 (0|0 0| 0| O |50(158/186|/ 96|40 6 20|00
120 |0|0j|0|0O| 4|22 4] 0| 00| 0|0|0O|0O]|O
168 |0|0|0|7|29|86|56(18| 3 | 0| O0O|0|0|0]|O
192 |0|0|{0|2|18|61|50(24|5|1|0|0|0|0]|O
216 |o0j0OjO|O| 7| 0O|]O|]O0O|O|JO|O|O0O|O|O]|O
240 |0j0|0|4|43|16| 2| 0| 0|J0O|0O0|0O|0O|O]|O
264 |0|0|0O|16| 8| 2| 0| 0| 0]0O0O|0|0O|0O|0O]O
288 |1|9|21|49|33|22| 6 | 2| 0] 0|0|0|0|0O]|O
Total |1|9(21|78|147|291|375|456|375|291|147|78|21| 9 | 1

We canhighlight someinterestingfacts.

With 1,2 or 3 fixed cells al the 288 sudokucan use at least one move, and
thereforeno choiceof givensdetermineshe completionof the grid univocally.
With 4 fixed cellsthereare 49 patterns(or more preciselyequialentclassef
patternsthatdo not determinethe completionof the grid univocally. Moreover
for 7 paternsthereare 288— 168 = 120 givensthat determinethe comgetion
of the grid univocally; similarly for 2 patternsthereare288— 192 = 96 givens
that determinethe completionof the grid univocally, and so on. Here we have
the verification that the minimum numberof givensfor the uniquanessof the
completionis 4.

With 5 fixed cells thereare2 patterndor which ary choiceof givensdetermines
the completionof thegrid univocally.

With 8 fixed cells thereare 2 patternsfor which ary choiceof givensdo not
determinethe completionof the grid univocally. Neverthelesdor eachpattern
with 9 fixed cellsthereis a choiceof givenswhich makesuniquethecompletion
of the grids. Then,the maximumnumberof fixed cell for which ary choiceof
givensdo not determinethe completionof thegrid univocally is 8.

With 12 fixed cells thereare 2 patternsfor which 96 choicesof givensdo not
determinehe completionof the grid univocally.

With 13 14 and15fixedcellsary choiceof givensdetermineshe completionof
thegrid univocally.

Figure 3.a shawvs that the samepatternof 4 cells (the shadesones)leadsto a

uniquesolution,if thegivensarechoserlikein theleft partof thefigure,or to more
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than one solution, if the givens are chosen like in the right part of the figure. Figure
3.b is analogous to Figure 3.a but considers a pattern of 12 cells.

1{2]4]3 2lal1]3|ft]2]3]4
) 3lal2]1 13424312
‘ 4(1]3]2 al2]3|1|l2]1]4]3
2314 sli)z2]all3]4]2]1
2413 slifalalfi]3]4]2
b) 13]4]2 24324031
42131 al21]3|la]2]1]3
3124 1[3]2]4]f3]1]2]2

Fig. 3 Fixed a pattern, different choices of givens produce or not the uniqueness. Patterns with 4
and 12 fixed cells.

Figure 4 shows a pattern of 5 cells for which any choice of the givens corresponds
to a unique solution.

Fig. 4 A pattern of 5 cells for which any choice of the givens produces a unique solution.

S Further developments

The use of Markov bases has allowed to study the moves between 4 X 4 sudoku
grids, with nice properties for the study of partially filled grids. However, our the-
ory has computational limitations when applied to standard 9 x 9 grids. Therefore,
further work is needed to make our methodology and algorithms actually feasible
for 9 x 9 grids. In particular, we will investigate the following points.

(a) To simplify the computation of Markov bases, using the special properties of
the sudoku grids. For instance, some results in this direction is already known
for design matrices with symmetries, see [1], and for contingency tables with
strictly positive margins, see [3].

(b)To characterize the feasible moves theoretically. In fact, in our computations the
selection of the feasible moves and the results in Section 4 are based on the
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knowledgeof thecompletdist of sudokugrids. This approachis thenunfeasible
in the9 x 9 case.

(c)To male easythe computationof the UniversalMarkov basisfor our problem,

in orderto avoid explicit computationdor the study of the sudokugrids with
givens.
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