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On Optimal and Near-Optimal Turbo Decoding
Using Generalizednax™ Operator

Stylianos Papaharalabdglember, |IEEE, P. Takis MathiopoulosSenior Member, |EEE,
Guido MaseraSenior Member, IEEE, and Maurizio MartinaMember, |EEE.

Abstract—Motivated by a recently published robust geometric  linear programming problem. In particular, a constructe
programming approximation, a generalized approach for approx-  gorithm was presented in order to find the best piecewisatine
imating efficiently the max™ operator is presented. Using this ap- (PWL) approximation terms of the bivariate: function. Their

proach, themax™ operator is approximated by means of a generic
and yet very simple max operator, instead of using additional research has shown that the exact number of PWL terms

correction term as previous approximation methods require. depends on the approximation error resulting from the oali
Following that, several turbo decoding algorithms are obtained bivariatelse function.

with optimal and near-optimal bit error rate (BER) performance In this letter, we modify and apply for the first time the
depending on a single parameter, namely the number of pleceW|se0ptima| approximations presented in [11] to decode turbo

linear (PWL) approximation terms. It turns out that the known : S . . .
Max-Log-MAP algorithm can be viewed as special case of this codes noting that the bivariatee function is equivalent to

new generalized approach. Furthermore, the decoding complexity the max* operator. Consequently, a generalized approximation
of the most popular previously published methods is estimated, for the max* operator is obtained using: (i) a small number

for the first time, in a unified way by hardware synthesis results, of efficient PWL terms that ease a hardware implementation;
showing the practical implementation advantages of the proposed 54 (jj) the very simplenax operator. The main feature of this
approximations against these methods. approximation is that there is no need to use any correction
Index Terms—Turbo codes, iterative decoding. term, in contrast to all previously published methods [4]-
[8]. Furthermore, it turns out that the known Max-Log-MAP
algorithm can be viewed as special case of this new approach,
. INTRODUCTION when two PWL terms are considered. Our research has shown

VER the past decade or so several algorithmic aH]at. py considering fo_ur PWL. approximation Ferms with the

proaches aiming to simplify the well-knowmax* oper- additional use of scaling as in [3], the resulting turbo code
ator [1] for decoding turbo codes [2] have been proposed aRER performance is essentially identical to the perforneanc
analyzed. These algorithms include: Improved Max-Log-MAPf the optimal Log-MAP algorithm. Hardware synthesis réesul
[3], Constant Log-MAP [4], Linear Log-MAP [5], Average have shown that. by con§|der|ng three PWL approximation
Log-MAP [6], and recently the algorithms in [7], [8]. Thetgrms, the r.esultlng algorlthm outperfor.ms most of the pre-
penalty paid for such approximations is a small bit errdficusly published methods, i.e. [S]-{8], in terms of ocapi
rate (BER) performance degradation as compared with tREE@ Savings, and achieves near Log-MAP performance.
performance achieved by the optimal Log-MAP algorithm [9].
However, although these sub-optimal algorithms are compu- |l. REDUCED COMPLEXITY TURBO DECODING

tationally simpler as compared with the optimal solution, a |n this section the most important reduced complexity turbo
additional correction term is required to be added toithex  decoding algorithms are reviewed. Consider an information
operation in order to minimize performance degradation. sequence ofV bits denoted withi = [u,ua, ..., ux]. This
Geometric programing is an optimization problem used &equence is turbo encoded, then each coded bit is binary
various fields, such as information theory, analog/RF dirciphase-shift keying (BPSK) modulated, taking values from th
design, power control of wireless communication networksiphabet{+1} with equal probabilities, and transmitted with
and statistics [10]. However, its application to turbo d#ing bit energyE;, over an additive white Gaussian noise (AWGN)
has not been investigated so far. Recently, the authorslih [Ehannel with one-sided power spectral densNy. At the
have dealt with the convex log-sum-expsd) function and receiver the turbo decoder estimates the transmitted seque
considered a robust geometric programming problem as robygs bits.
The max* operation, i.e. Jacobian logarithm, used in turbo
S.'Pa_paharalabos and P. T. _Mathiopoulos are with the Itestir Space decoding is defined as [1]
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than two arguments, the Jacobian logarithm is applied recaifl considered implementations of thaax* operation are
sively. For example, considering three arguments, it gield pure combinational architectures, registers have beetegla
at the architecture inputs and output. This allows setting a
unique clock frequency constraint for all considered cases
For the Log-MAP algorithm, a look-up table (LUT) substi-fcx = 200 MHz. Synthesis results obtained in terms of area
tutes f.(Jx, — x2|), which is usually implemented with eightoccupied by the combinational part on a 130 nm standard cell
values [9]. If LUT is omitted, then the Log-MAP simplifiesCMOS technology are given in Table Il for precision metrics
to the Max-Log-MAP algorithm. In the past, several reducegpresented with 8, 10 and 12 bits, respectively. Thesdtsesu
complexity decoding algorithms have been obtained by aphow, on the one hand, that the proposed 3 approximation
proximating f.(|z; — z»|) with different methods, e.g. seeoutperforms most of the previously published methods, i.e.
[4]-[8], a summary of which is presented in Table I. [5]-[8]. In particular, its occupied area is 35% smallentliaat
Having evaluated the performance of reduced complexitgquired by the Log-MAP algorithm and it is only inferior to
decoding algorithms given in Table | and as shown in Fig. the Constant Log-MAP algorithm by 8%. On the other hand,
(for the turbo code simulation parameters see the nexosgcti the proposed = 4 approximation has comparable complexity
it is concluded that at BER of0—*: (i) The Max-Log-MAP with the method in [7] and outperforms [5], [6], [8].
is the worst performing algorithm with approximately 0.4 dB Performance evaluation results have been obtained for the
degradation as compared with Log-MAP; (ii) The maximurmost efficient method, i.e. Constant Log-MAP, the= 3
performance degradation of reduced complexity algorithsis andr = 4 proposed approximations, and these are illustrated
compared with Log-MAP is approximately 0.1 dB; and (iiin Fig. 2. A 16-states turbo code is considered with coding
the Linear Log-MAP and also the algorithm of [7] achieve theate equal to 1/2 and generator polynomiéls33/23), in
best, i.e. near Log-MAP performance. A thorough complexityctal form representing the feed-forward and backward -poly
estimation of these algorithms is reported in the next sacti nomials, respectively. Furthermore, an information segae
of N = 10% bits is assumed, whereas the total number of
[1l. OPTIMAL max* APPROXIMATIONS AND THEIR transmitted frames i$0°. A pseudo-random turbo interleaver
APPLICATION TOTURBO DECODING is considered and at the receiver a maximum of 10 decoding it-

From pure mathematical curiosity, the authors in [11] havs'rations arg perforrr_led. In qrder to reduce computer simulat
instead of approximating.(jz; — x|), approximated (1) as time, a genie stopping rule is assumed at the turbo decader. |

a whole, i.e. thenax* operator directly. Hence, (1) become<omputer-based simulations the scaling factor, denoté yi
was constant when varying the number of decoding iterations

max™ (x1, 22)~ max(k o1+ T, . .., Kokr1+A*xa+-pi)having the following values: (i) 0.65 for Max-Log-MAP; (ii)
(3) 0.9 for Log-MAP; (iii) 0.85 for Constant Log-MAP; and (iv)
where k;, \;, and p; are real positive values and> 2. The (.75 for the rest of the algorithms.
best PWL apprOXimationS of theax* OperatOI’ with different As shown in F|g 2, the best performance is achieved by
number of terms are shown in Table Il. The approximatiofhe Constant Log-MAP algorithm and the proposed= 4
error reduces in the order af2/r* and for practical applica- approximation followed by the = 3 approximation. In more
tions 5 < r < 10 has been considered [11]. It is underline@etail, at BER of10~* and with respect to the Log-MAP
that in case of turbo decoding, the= 2 approximation is algorithm: (i) The Constant Log-MAP algorithm has perfor-
identical to the Max-Log-MAP algorithm. ~ mance degradation of approximately 0.03 dB; (i) The- 4
Performance evaluation results for various values,afith  approximation has comparable performance with the Constan
the additional use of scaling as in [3], have shown that at BERyg-MAP algorithm; and (iii) Ther = 3 approximation has
of 107 (i) Both » = 5 andr = 4 approximations achieve performance degradation of 0.05 dB. However, both- 3
essentially identical to the Log-MAP performance; andXhe and » = 4 approximations offer practical implementation

r = 3 approximation has performance degradation of less thg@vantages with respect to other methods.
0.03 dB against the Log-MAP algorithm. In order to ease a

hardware implementation, the= 3 andr = 4 approximations
have been modified, respectively as IV. CONCLUSION

max* (21, ze, x3) = max” {max*(z1,x2),x3}. (2

max*(z1,x2)~ max[z1,0.5 % (x1 + 22 + 1),22]  (4) It has been shown that the@ax* operator used in turbo

decoding can be simplified into different number of PWL
max* (z1, )~ max(z1,0.25 # 21 + 0.75 % 2 + 0.5, approximation terms in an efficient way 'usiqgax only
(5) operation. The proposedl = 3 approximation is 0.05 dB
0.75 % 21 + 0.25 * 22 + 0.5, 22). inferior to the Log-MAP algorithm but 35% much simpler.
In terms of implementation, synthesizable VHDL descripFurther, it outperforms, in terms of occupied area savings,
tions have been produced for theax* approximations of (4) most of the previously published methods, such as Linear Log
and (5) as well as for Log-MAP with LUT, Max-Log-MAP MAP [5], Average Log-MAP [6], and the algorithms from
and the algorithms shown in Table I. In order to derive faii7], [8]. The proposed- = 4 approximation is only 0.03 dB
comparisons, the same area optimization effort of the ggigh inferior to the Log-MAP algorithm and it it less complex than
tool must be guaranteed for all cases. To this purpose,wtho the methods presented in [5], [6], [8].
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TABLE |
THE MOST IMPORTANT REDUCED COMPLEXITY TURBO DECODING ALGORIHMS USING DIFFERENT APPROXIMATION INf¢(|z1 — z2]) OF (1).

Constant Log-MAP [4] Linear Log-MAP [5] Average Log-MAP [6]
3/8, if |[x1 —xz2| <2 In2+0.5%(x1 +x2), if |z —2a2]<2%In2
fe(lz1 — z2]) { 07/ otiLe:‘Wiseﬂ max(ln2 — 0.25 * |1 — x2|,0) { 0, (@1 2) otr‘leiwiseQI
Ref. [7] Ref. [8] Max-Log-MAP
fe(Jz1 — z2)) In2 * 2~ [#1—22] max(0,In2 — 0.5 % |[x1 — z2|) 0
TABLE I 0
BEST APPROXIMATIONS OF THEmax* OPERATION USING DIFFERENT 10 o Max-Log-MAP
NUMBER OF PWL TERMS AND DEPLOYINGmax ONLY OPERATION[11]. —% Average Log-MAP
—&- Ref. [8]
No. of Resultingmax* Approximation No. of Approx. — Constant Log-MAP
Terms ¢) max Ops. | Error —¥- Log-MAP
2 (21, 22) 1 0.693 —— Linear Log-MAP
max{ei, T2 : -A- Ref. [7]
max(z1, : -
3 0.5 % (z1 + x2) + 0.693, 2 0.223
2) o
max(z1, % 10 o RN
0.271 * 1 + 0.729 * 22 + 0.584,
4 0.729 x 1 + 0.271 * z2 + 0.584, 3 0.109
x2)
max(z1, O NGOG TN
0.167 * 1 + 0.833 * xo + 0.45,
5 0.5 % x1 + 0.5 x x2 + 0.693, 4 0.065
0.833 x 1 4+ 0.167 % xo + 0.45,
T32) }
L0 ,
TABLE Il 0.75 Eb/No (dB 1.25 1.5
OCCUPIED AREA COMPARISON(SQUARE pm) OF DIFFERENTmax* 0 (dB)
APPROXIMATIONS ON A130NM STANDARD CELL TECHNOLOGY AND
VARIOUS PRECISION METRICS REPRESENTATIONS Fig. 1. Turbo code BER performance comparison with the most itapbr

(1]

(2]

(3]
(4]

(5]

(6]

(7]

(8]

9]

Algorithm 8 bits 10 bits 12 bits
Max-Log-MAP 250.133 | 312.666 | 373.182
Log-MAP 1022.72 | 1276.888| 1613.76
r =3 of (4) 653.573 | 831.086 | 1006.583
r =4 of (5) 883.534 | 1149.804| 1426.160
Constant Log-MAP [4]| 599.108 | 764.519 | 931.946
Linear Log-MAP [5] | 978.342 | 1264.784| 1559.296
Average Log-MAP [6] | 1069.116 | 1363.627 | 1555.261
Ref. [7 891.602 | 1135.684| 1377.748
Ref. [8 1137.701| 1456.418] 1758.988
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