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Abstract

Modeling and simulating gas flows in/around micro-devices are a challenging task in both science

and engineering. In practical applications, a gas is usually a mixture made of different components.

In this paper we propose a lattice Boltzmann equation (LBE) model for microscale flows of binary

mixture based on a recently developed LBE model for continuum mixtures [P. Asinari and L.-S. Luo,

J. Comput. Phys. 227, 3878 (2008)]. A consistent boundary condition for gas-solid interactions

is proposed and analyzed. The LBE is validated and compared with theoretical results or other

reported data. The results show that the model can serve as a potential method for flows of binary

mixture in the microscale.
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I. INTRODUCTION

As an efficient mesoscopic method, the lattice Boltzmann equation (LBE) method has

gained much success in simulating complex fluid systems such as the hydrodynamics of

multi-phase/multi-component fluids, magneto-hydrodynamics, colloidal suspensions, chem-

ical reactions, flows in porous media, etc. [1–3], where the application of other methods

may be difficult or impractical. Recently there have been some attempts to apply the LBE

method to gaseous microscale flows with non-continuum effects [4–18]. For such flows, the

mean-free-path of the gas (λ) may be comparable to the typical device dimension (h), and

consequently the flow is far from the thermodynamical equilibrium and the hydrodynamic

models such as the classical Navier-Stokes equations for continuum flows are no longer valid.

On the other hand, the Boltzmann equation is valid for gas flows with any Knudsen numbers

Kn = λ/h [19], and therefore the LBE, which is a discrete scheme of the Boltzmann equation

[20, 21], is believed to have the potential for simulating microscale gas flows.

Although a number of works have shown that the LBE is capable of simulating gas

flows with a finite Knudsen number, most of the available models are designed for single-

component gases, and much less attentions have been paid to gas mixtures. As far as the

authors know, there are very limited works reporting the applications of LBE to micro flows

of binary mixtures [22–24]. In Ref. [22], the authors developed a LBE model based on a

kinetic model similar to that of Hamel [26], and applied the model to the micro Couette flow

to investigate the relationship between the slip coefficients and the species concentration of

a binary mixture. It was found that although the tendency of slip coefficient is in good

agreement with the kinetic theory and direct simulation Monte Carlo (DSMC) results, the

implementation details such as the boundary condition and the specification of relaxation

time, were not provided in that paper. Szalmás made a theoretical analysis of a similar

LBE model, and proposed a boundary condition for the LBE based on the solution of the

half-space Kramers problem [24]. In Ref. [23], Joshi et al. studied the Knudsen diffusion

of a ternary mixture in a microchannel using a LBE based on the Sirovich model [27]. The

Knudsen diffusivity is incorporated into LBE heuristically by matching the LBE results

to those of the dusty gas model (DGM). Although the LBE was shown to be able to give

good predictions for non-continuum diffusion with this correlation, the method needs further

validations.
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Although the above mentioned works have shown that the LBE can capture some in-

teresting phenomena in gas mixtures, the LBE models utilized there were all based on the

BGK approximation to the Boltzmann equation. As revealed in some recent studies [14–16],

the lattice BGK (LBGK) model is exposed to some disadvantages in treating micro flows

even for a single gas, while the LBE with multiple relaxation times (MRT-LBE) can over-

come these limitations. Therefore, it is expected that a MRT-LBE model would have better

properties in modeling micro gas mixtures than LBGK models.

The first MRT-LBE model for binary mixtures was proposed in Ref. [25]. In comparison

with other models, this LBE model has two distinct features, (i) the model uses a multi-

relaxation-time collision operator where the self-collision and cross-collision among species

are both incorporated, (ii) the model has a consistent baroclinic coupling between the species

dynamics and the mixture, and satisfies the indifferentiability principle, both of which have

not been adequately addressed in previous models. The original version of this LBE model

is primarily designed for continuum mixtures. In this work, we will generalize this model

to micro flows of binary mixtures. The extension includes two parts. First, a relationship

between the relaxation times and the mean-free-paths of the species and mixture is proposed,

and second a boundary condition for modeling gas-wall interaction is developed to capture

the velocity slip occurring at a wall.

The remainder of this paper is organized as follows. In Sec. II we present a brief intro-

duction of the MRT-LBE model proposed in Ref. [25]. In Sec. III we extend the LBE model

for micro flows, where a relationship between the relaxation parameters and the individual

and mixture mean-free-paths is derived, and a boundary condition for gas-wall interaction

is proposed. Finally, we present some numerical simulations to validate the proposed model

in Sec. IV.

II. MRT-LBE FOR BINNARY MIXTURES

The LBE model with multiple relaxation times for a binary mixture proposed in [25] can

be written as

fσi(x + ciδt, t + δt) − fσi(x, t) = Ωσi(f), (1)

for i = 0, 1, · · · , q−1 (q is the number of discrete velocities) and σ = a and b, where fσi(x, t)

is the distribution function for species σ associated with the gas molecules moving with the
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discrete velocity ci at position x and time t, Ωσi(f) is the discrete collision operator defined

by

Ωσi = −
∑

j

(M−1
SM)ij [fσj − f

(eq)
σj ], (2)

where M is a q×q transform matrix projecting fσi onto the moment space mσ = Mfσ, where

fσ = (fσ0, fσ1, · · · , fσ,q−1)
T; S = diag(τ0, τ1, · · · , τq−1)

−1 is a non-negative diagonal matrix

with τi being the relaxation time for the i-th moment. As τi = τ , the MRT model reduces

to the BGK model. It is noted that the transform matrix M and the relaxation matrix

S are identical for both species in the original model proposed in [25], which can also be

generalized to have different components for different species.

The equilibrium distribution function in Eq. (1) depends on the gas density, velocity,

and temperature:

f
(eq)
σi = wiρσ

[

ασi
+

ci · u
c2
s

+
(ci · u)2

2c4
s

− u2

2c2
s

]

, (3)

where ασi is a parameter dependent on the molecular mass mσ and the velocity ci, c2
s = RT

is a model-dependent parameter, where R = kB/mr with kB being the Boltzmann constant,

mr = min (ma, mb) the reference mass, and T the temperature. For an isothermal system,

cs is related to the lattice speed c = δx/δt, where δx and δt are the lattice spacing and time

step, respectively. The mass density ρ and velocity u of the mixture and those of the species

(ρσ and uσ) are defined respectively as

ρ =
∑

σ

∑

i

fσi, ρu =
∑

σ

∑

i

cifσi, ρσ =
∑

i

fσi, ρσuσ =
2τd − 1

2τd

∑

i

cifσi+
ρσu

2τd

. (4)

Obviously, ρ = ρa + ρb and ρu = ρaua + ρbub. The number density of the species and

mixture are nσ = ρσ/mσ and n = na + nb, respectively. It is noted that in the original LBE

model [25], the σ-species velocity is defined as ρσūσ =
∑

i cifσi. This definition neglects

discrete effects of the diffusion force [28]. Actually, this can be seen more clearly from the

difference between uσ and ūσ:

ρσ(ūσ − uσ) =
ρσ(uσ − u)

2τd − 1
= −δt

2
p dσ,

where p is the total pressure and dσ is the diffusion force which will be defined later. This

neglect may yield some additional errors in the macroscopical momentum equation as shown

in Ref. [28], while the definition in Eq. (4) can avoid such discrete anomalies. Similar
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approach was also proposed and discussed in [29], and Ref. [30] proposed a systematic way

for defining a consistent velocity by means of variable transformation.

It is noted that the collision term in the LBE (1) includes the effects of both self and

mutual collision among gas molecules of identical and different species because the equilibria

f
(eq)
σi uses the barycentric velocity u of the mixture instead of the individual velocity uσ. It

is easy to verify that the LBE model of (1) also satisfies another important thermodynamic

requirement, i.e. the indifferentiability principle [31], which means that the LBE (1) for the

mixture collapses to the equation for a pure species if two species are identical.

In this work we consider the two-dimensional nine-velocity (D2Q9) LBE model where

the discrete velocities ci are defined by c0 = 0, c1 = −c3 = c(0, 1), c2 = −c4 = c(1, 0),

c5 = −c7 = c(1, 1), and c6 = −c8 = c(−1, 1); The weights in the equilibrium distribution

functions are w0 = 4/9, w1 = w2 = w3 = w4 = 1/9, and w5 = w6 = w7 = w8 = 1/36;

ασi = sσ = mr/mσ for i 6= 0 and ασ0 = (9 − 5sσ)/4, and cs =
√

RT = c/
√

3. With out loss

of generality, we shall take c as the velocity unit in the present work. Then, the transform

matrix M is given by

M =













































1 1 1 1 1 1 1 1 1

−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1

0 1 0 −1 0 1 −1 −1 1

0 −2 0 2 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

0 0 −2 0 2 1 1 −1 −1

0 1 −1 1 −1 0 0 0 0

0 0 0 0 0 1 −1 1 −1













































. (5)

The corresponding discrete velocity moments of the distribution functions are

mσ = (ρσ, eσ, εσ, jσx, qσx, jσy , qσy, pσxx, pσxy)
T. (6)

These moments have clear physical significance: mσ0 = ρσ is the density, mσ1 = eσ is related

to the total energy, mσ2 = εσ is a function of energy square, (mσ3, mσ5) = (jσx, jσy) ≡
∑

i cifσi are relevant to the momentum components, (mσ4, mσ6) = (qσx, qσy) depend on

the heat flux, and mσ7 = pσxx and mσ8 = pσxy correspond to the diagonal and off-diagonal
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components of the stress tensor, respectively. The relaxation matrix corresponding to the

nine moments is

S = diag(τρ, τe, τε, τd, τq, τd, τq, τs, τs)
−1, (7)

where τρ can take any value since ρσ is a conserved variable, while the other relaxation times

should be chosen according to the transport coefficients.

The hydrodynamic equations for the LBE (1) can be derived using the asymptotic anal-

ysis. The mass and momentum equations for each species are as follows,

∂tρσ + ∇ · (ρσuσ) = 0, (8a)

∂t(ρσuσ) + ∇ · (ρσuu) = −∇pσ + ∇ · Sσ − ωdρσwσ, (8b)

where pσ = c2
ssσρσ = nσkBT is the partial pressure, wσ is the friction force between specifies

due to velocity difference,

wσ = uσ − u =
ρς

ρ
(uσ − uς), ς 6= σ, (9)

and ωd = 1/(τd − 0.5)δt; S
σ is a stress-tensor-like term defined by

Sσ
αβ = ν [∂α(ρσuβ) + ∂β(ρσuα)] + (ζσ − ν)∇ · (ρσu)δαβ (10)

where ν and ζσ are the shear and bulk viscosities, respectively:

ν = c2
s

(

τs −
1

2

)

δt, ζσ = c2
s(2 − sσ)

(

τe −
1

2

)

δt. (11)

Based on the species equations (8), we can obtain the mass and momentum equations

for the mixture:

∂tρ + ∇ · (ρu) = 0, (12a)

∂t(ρu) + u · ∇ · (ρu) = −∇p + ∇ · S, (12b)

where p = pa + pb = nkBT is the total pressure, and S is the total stress given by

Sαβ = ν [∂α(ρuβ) + ∂β(ρuα)] +
∑

σ

(ζσ − ν)∇ · (ρσu)δαβ (13)

For near incompressible flows,

Sαβ ≈ µ [∂αuβ + ∂βuα]

where µ = ρν is the dynamic viscosity of the mixture.
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In the diffusive scale where ∂t ∼ ǫ2, ∇ ∼ ǫ, and u ∼ ǫ, the leading order of Eq. (8b) gives

that

uσ − u = −∇pσ

ωdρσ
= −Dσ∇ ln ρσ, (14)

where

Dσ =
c2
ssσ

ωd

= c2
ssσ

(

τd −
1

2

)

δt (15)

is the self-diffusivity. From Eq. (14), we can obtain the velocity difference between the

individual species (σ and ς),

ωd(uσ − uς) = −∇pσ

ρσ
+

∇pς

ρς
= − pρ

ρσρς
dσ, (16)

where dσ is the diffusion force,

dσ = ∇xσ − (yσ − xσ)∇ ln p = −dς , (17)

in which yσ = ρσ/ρ and xσ = nσ/n. By definition of mutual diffusivity,

xσxς(uσ − uς) = −Dσςdσ,

we have

Dσς =
ρkBT

ωdmσmςn
=

mrρ

mσmςn
c2
s

(

τd −
1

2

)

δt. (18)

It can be verified that

Dab =
ρ2

mambn2

∑

σ

yσDσ.

Based on Eqs. (11) and (18) the Schmidt number of the mixture can then be expressed as

Sc ≡ ν

Dσς
=

mambn

mrρ

τs − 0.5

τd − 0.5
. (19)

It is seen that the relaxation times τs, τe, and τd are completely determined by the

transport coefficients, and the others can be chosen with much freedom in order to enhance

numerical stability [32].

III. EXTENSION OF THE MRT-LBE TO MICRO FLOWS

In order to simulate micro flows of gas mixture using the MRT LBE (1), we must first

address two fundamental problems: (i) how to incorporate the Knudsen effect into the LBE,

and (ii) how to model the gas-wall interactions through a suitable boundary condition. These

two topics will be discussed in order.

7



A. Relationship between relaxation times and mean-free-paths

From the Chapman-Enskog analysis of the Boltzmann equation, it is known that the

dynamic viscosity and mutual diffusivity of a binary mixture can be expressed as [33]:

µ =
x2

aRa + x2
bRb + xaxbR

′
ab

x2
aRa/µa + x2

bRb/µb + xaxbRab
, Dab =

3E

2nm0
, (20)

where m0 = ma + mb, and

Rσ =
2

3
+

mσ

mς
A, R′

ab = Ta + Tb, Rab =
E

2µaµb
+

4A

3EMaMb
, (21)

with

Tσ =
E

2µσ
+

2

3
− A, Mσ =

mσ

m0
.

The parameter A and E depend on the inter-molecular potential. For instances, for a binary

mixture of hard-sphere molecules [33],

A =
2

5
, E =

√

2kBTm0

πMaMb

1

8d2
ab

where dab = (da + db)/2 with dσ being the diameter of molecules of species σ. It is evident

from Eq. (20) that the viscosity and diffusivity of the mixture are both complicated functions

of the individual viscosities and concentrations.

On the other hand, it is known from the kinetic theory that the mean-free-path λσ of the

single gas σ can be determined from the dynamic viscosity µσ as [19],

λσ =
µσ

pσ

√

πkBT

2mσ
. (22)

The above expression can be generalized to a binary mixture (e.g., [34, 35]),

λ =
µ

p

√

πkBT

2mx
. (23)

where mx = ρ/n = xama + xbmb.

For the D2Q9 LBE model described in the above section, the viscosity of the mixture is

related to the relaxation times τs, and therefore we can obtain the following τs − λ relation-

ship,

λ =

√

πmx

2kBT
c2
s

(

τ − 1

2

)

δt =

√

πmx

3mr

(

τs −
1

2

)

δt, (24)
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FIG. 1: (Color online) Schematic of the flow geometry and lattice arrangement.

where we have used the fact that c2
s = kBT/mr = 1/3 for the D2Q9 model. The relaxation

time τd can also be related to the mean-free-path. For instance, for a binary mixture of hard

sphere gases, the mean-free-path of each species is

λσ =
1√

2niπσ2
i

, σ = a, b. (25)

The mutual diffusivity of the mixture can then be expressed as

Dab =
3E

2nm0
=

3

2

√

m0kBT

mamb

[

1√
xaλa

+
1√
xbλb

]−2

. (26)

Therefore, according to Eq. (18) the relaxation time τd can be determined from Dab as

(

τd −
1

2

)

δt =
3

2

√

3m0mamb

mrm2
x

[

1√
xaλa

+
1√
xbλb

]−2

. (27)

It should be noted that τs and τd can also be recast in terms of the Knudsen numbers of the

mixture and/or species since Kni = λi/h.

B. Kinetic boundary condition for the MRT LBE

Suitable boundary conditions must be supplied for the MRT LBE (1) in practical appli-

cations. Some schemes, such as the discrete Maxwell’s diffuse-reflection (DMDR) scheme

and the combined bounce-back/specular-reflection (BSR) scheme, have been proposed for

MRT-LBE in the case of single gas [15]. It was shown that for single component flows these

two schemes are actually identical in a parametric range where both are applicable, and both

contain some discrete effects [15] that should be corrected. In this work we will concentrate

on the BSR scheme since its applicable range is wider than the DMDR one.
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For simplicity we consider a flat surface as sketched in Fig. 1. The lattice is arranged so

that the solid wall locates at j = 1/2, where j is the index of the grid line at yj = (j−0.5)δx.

After the streaming step,

fσi(x + ciδt, t + δt) = f̃σi(x, t),

where f̃σi(x, t) = fσi(x, t)+Ωσi(x, t) is the post-collision distribution function, we can obtain

the new distribution functions at all nodes of j > 1. But for nodes at j = 1, only f 1
σ0, f 1

σ1,

f 1
σ3, f 1

σ7, and f 1
σ8 can be determined in the streaming step, while the remaining distribution

functions, f 1
σ2, f 1

σ5, and f 1
σ6, must be specified according to the kinetic boundary conditions

at the wall. For the BSR scheme, these unknown distribution functions are given by

f 1
σ2 = f̃ 1

σ4 + 2rσρσc2 · uw/c2
s,

f 1
σ5 = rσf̃

1
σ7 + (1 − rσ)f̃ 1

σ8 + 2rσρσc5 · uw/c2
s,

f 1
σ6 = rσf̃

1
σ8 + (1 − rσ)f̃ 1

σ7 + 2rσρσc6 · uw/c2
s, (28)

where 0 ≤ rσ ≤ 1 is the portion of the bounce-back part. Note that rσ may be different for

different species.

Now we analysis the hydrodynamic behavior of the LBE (1) under the boundary condition

of (28). The method employed here is similar to that used in previous studies [12, 14]. To

simplify the analysis, we consider the half space shear flow over a stationary wall (Kramers’

problem, [19]) where the wall located at y = 0 and the gas in the y > 0 region is sheared by

imposing a fixed velocity gradient at y = ∞. The flow is assumed to be unidirectional and

satisfy the following condition,

∂φ

∂t
= 0, ρσ = const, vσ = uσy = 0, v = uy = 0,

∂φ

∂x
= 0, (29)

where φ is an arbitrary flow variable. Under such conditions, by expanding the left-hand

side of the LBE (1) into a Taylor series in δt up to second-order, we can obtain that

ciy∂yfσi +
δt

2
c2
iy∂

2
yfσi = Ω′

σi(f), (30)

where Ω′
σ = M−1S′M[fσ − f

(eq)
σ ] with S′ = S/δt. Multiplying both hand sides of Eq. (30) by

the transform matrix M, we can get the following equations for the moments:

∂ypσxy +
δt

2
∂2

y

[

2ρσūσ

3
+

qσx

3

]

= −ρσ(ūσ − u)

τdδt

, (31a)
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∂ypσxy +
δt

2
∂2

y

[

2ρσūσ

3
+

qσx

3

]

= −qσx + ρσu

τqδt

, (31b)

∂y

[

2ρσūσ

3
+

qσx

3

]

+
δt

2
∂2

ypσxy = −pσxy

τsδt

, (31c)

where

ρσūσ ≡ jσx = ρσuσ +
ρσ(uσ − u)

2τd − 1
, ρu =

∑

σ

ρσuσ =
∑

σ

ρσūσ.

Equations (31a) and (31b) give that

qσx = −ρσu +
τq

τd
ρσ(ūσ − u), (32)

while Eqs. (31a) and (31c) give that (neglecting terms of O(δ2
t ))

(

1 − 1

2τs

)

∂ypσxy = − 1

τdδt

ρσ(ūσ − u), (33a)

∂y

[

2ρσūσ

3
+

qσx

3
− 1

2τd
ρσ(ūσ − u)

]

= − 1

τsδt
pσxy, (33b)

from which we can obtain

ν∂2
y

[

ρσūσ +
τd + τq − 3/2

τd
ρσ(ūσ − u)

]

=
ρσ(ūσ − u)

τdδt
, (34)

where ν = 1
3
(τs − 0.5)δt. Taking summation of Eq. (34) over σ leads to

∂2
yu = 0, (35)

which means that the LBE (1) is actually a second-order scheme for this equation. The

solution of Eq. (35) is

u = us + γy, (36)

where us is the slip velocity of the mixture velocity dependent on the boundary condition,

and γ is the specified velocity gradient at y = ∞. Equations (34) and (35) indicate that

ν

(

2τd + τq −
3

2

)

δt∂
2
y(ūσ − u) = ūσ − u, (37)

or

ν

(

2τd + τq −
3

2

)

δt∂
2
y(uσ − u) = uσ − u, (38)

whose solution is

uσ = u + lσe
By + kσe

−By, B =

[

ν

(

2τd + τq −
3

2

)

δt

]−1/2

(39)
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where lσ and kσ are two constants depends on the boundary condition of the species velocity.

Since ∂yuσ is finite as y → ∞, lσ must be zero, and thus the velocity of species σ is

uσ = us + γy + kσe
−By. (40)

Because ρu = ρσuσ + ρςuς , the parameter kσ must satisfy ρσkσ + ρςkς = 0. Substituting uσ

and u into Eq. (33b) we can obtain that

pσxy = −τsδt

3
ρσ

[

γ −
(

2 +
2τq − 1

2τd − 1

)

kσBe−By

]

. (41)

In order to determine the slip velocity us and the constant kσ, we now turn to the bound-

ary condition given by Eq. (28). First, based on the relationship between the distribution

functions fσ and the moments mσ, we have

F σ
56 ≡ fσ5 − fσ6 =

1

3
jσx +

1

6
qσx +

1

2
pσxy, (42)

and

F̃ σ
87 ≡ f̃σ8 − f̃σ7 =

1

3
j̃σx +

1

6
q̃σx −

1

2
p̃σxy, (43)

where the post-collision moments are given by

j̃σx = jσx −
1

τd

(jσx − ρσu), (44a)

q̃σx = qσx −
1

τq
(qσx + ρσu), (44b)

p̃σxy =

(

1 − 1

τs

)

pσxy. (44c)

With the aids of Eqs. (36), (40), and (41), we can obtain that

F σ
56(y1) =

ρσ

6

[

us − (τs − 0.5)δtγ + Λ1kσe−By1γδt

]

, (45)

F̃ σ
87(y1) =

ρσ

6

[

us + (τs − 0.5)δtγ + Λ2kσe−By1γδt

]

, (46)

where y1 = δx/2 is the first grid point, and

Λ1 =
4τd + 2τq + (4τd + 2τq − 3) τsδtB

2τd − 1
, Λ2 =

4τd + 2τq − 6 − (4τd + 2τq − 3) (τs − 1)δtB

2τd − 1
,

(47)

It is noted that the BSR scheme given by Eq. (28) gives that

F σ
56(y1) = (1 − 2rσ)F̃ σ

87(y1), (48)
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which can be written explicitly as

raus −
1

2
[(1 − 2ra)Λ2 − Λ1] e

−Bδt/2k =
1

c2
s

(1 − ra)νγ, (49a)

rbus +
1

2
[(1 − 2rb)Λ2 − Λ1] e

−Bδx/2k =
1

c2
s

(1 − rb)νγ, (49b)

where k is an unknown parameter such that ka = ybk and kb = −yak. The solution of this

system is

us =

[

[1 − 2(rayb + rbya)]Λ2 − Λ1

(raya + rbyb − 2rarb)Λ2 − (raya + rbyb)Λ1

− 1

]

νγ

c2
s

, (50a)

k =
2(ra − rb)e

Bδx/2

(raya + rbyb − 2rarb)Λ2 − (raya + rbyb)Λ1

νγ

c2
s

, (50b)

It is interesting to notice that in the special case of ra = rb = r, we have

us =
(1 − r)

r

νγ

c2
s

, k = 0, (51)

which means that the species and mixture velocities are identical and the profile is linear.

Particularly, us = 0 as r = 1, i.e. the pure bounce-back gives the no-slip boundary condition.

In general cases, however, k is nonzero and the velocity of each species will deviate from the

linear profile in a region near the wall.

C. Realization of slip boundary condition

In the slip regime, the effects of gas-wall interaction on the bulk flow can be modeled by

a slip boundary condition. The slip velocity at a flat wall can be expressed as [19, 36, 37],

us = cmλγ, (52)

where cm is called as velocity slip coefficient (VSC). Based on the solution of the linearized

Boltzmann equation for binary mixtures, Ivchenko et al. obtained an expression for the

VSC [36],

cm =
pM1/2

µ

5π

8

∑

σ

[

(2 − ασ)xσbσ

(

K1 +
4bσ

πM
1/2
σ

K2

)]

, (53)

where 0 < ασ ≤ 1 is the accommodation coefficient of the gas-wall interaction for σ species,

and M = mx/m0; bσ is related to the intermolecular potential of the gases [33, 38],

bσ =
xσRσ + xςTς

p[x2
aRa/µa + x2

bRb/µb + xaxbRab]
, (54)

13



where the notations can be found in Eq. (21), and K1 and K2 are given by

K1 =

∑

σ(2 − ασ)xσbσ
∑

σ ασxσM
1/2
σ

K2 , K2 =
1

4(xaba + xbbb)
=

p

4µ
. (55)

It is clear that the VSC cm is a function of the species concentration, viscosities, intermolec-

ular potentials, and gas-wall interactions.

Comparing Eq. (53) with Eq. (50a), we can see that in order to realized the velocity

boundary condition (52) in the MRT-LBE (1), the control parameter rσ in the BSR scheme

must be chosen such that
[

[1 − 2(rayb + rbya)]Λ2 − Λ1

(raya + rbyb − 2rarb)Λ2 − (raya + rbyb)Λ1
− 1

]

ν

c2
s

= cmλ. (56)

There are many choices for rσ satisfying this condition, and the simplest one is to take

ra = rb = r; In this case, we can obtain from the above condition that r should be chosen as

r =

[

1 +
cm

3

√

πmx

2kBT

]−1

=

[

1 + cm

√

πmx

6mr

]−1

, (57)

where we have made use of kBT/mr = 1/3 for the D2Q9 model. In the limiting case

of a single gas (ma = mb), the above result is consistent with the result obtained in a

previous study [15]. It is noted that other choices of ra and rb satisfying Eq. (56) are also

possible. For example, it is shown that in the case of a single gas rσ is related to the physical

accommodation coefficient ασ [14, 15], i.e.

1 − rσ

rσ
= χ

2 − ασ

ασ
,

where χ is a constant dependent on the LBE model. Therefore, we can provide the following

supplement constraint for Eq. (56):

ra

rb

=
αa

αb

αb + χ(2 − αb)

αa + χ(2 − αa)
.

This constraints ensures that ra 6= αb if αa 6= αb, which is more reasonable. However, ra

and rb would be much complicated in this case. Since different choices of ra and rb influence

the species slip only but have no effects on the mixture slip, in this work we shall use the

simplest formulation, i.e. Eq. (57).

IV. NUMERICAL RESULTS

We first validate the analytical results presented in the above section. The MRT-LBE

(1) is applied to the Kramers problem of a binary mixture with different molecular mass

14
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FIG. 2: (Color online) Velocity distributions of each species and mixture. Dashed lines: analytical

results given by Eq. (40); symbols: MRT-LBE results.

ratios and concentrations. The mean-free-path of the mixture is set to be the length unit

(λ = 1.0), and the outer boundary is put at y = 10λ where nonslip boundary condition

is applied. The relaxation time τs is determined from λ according to Eq. (24), τd is then

chosen as τd = 0.5 + (mamb/mrmxSc)(τs − 0.5), and τq is set to be identical to τd; the other

relaxation times are chosen as follows: τρ = 1.0, τe = 1.1, and τε = 1.2. It is found in

our simulations that the choice of the last three relaxation times has little effects on the

numerical results. The simulations are carried out on a mesh of size Nx × Ny = 4 × 100,

which means there are about 10 grid points in the Knudsen layer whose size is of order λ.

Periodic boundary conditions are applied to the two boundaries at x = 0 and x = 4, while

the BSR scheme is applied to the solid wall with different values of ra and rb. It is assumed

that ma ≤ mb so that mr = ma in all of our simulations.

The velocity distributions of the species and mixture predicted by the MRT-LBE with

different parameters are measured and compared with the theoretical results given by Eq.
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FIG. 3: (Color online) Slip length as a function of rb with na = 0.7, nb = 0.3, ma = 1, mb = 2,

Sc = 0.8. Solid lines: analytical results given by Eq. (50a); symbols: MRT-LBE results.

(40), where us and kσ are determined by Eq. (50). The molecular masses are set to be

ma = 1 and mb = 2, respectively, and the number density is assumed to be na = 0.7 and

nb = 0.3. Figure (2) shows the result with Sc = 0.6 and 1.2 at different values of ra and

rb. It is clearly seen from these figures that the numerical results are in excellent with the

theoretical ones. Results with other parameters are also obtained (not shown here), and

excellent agreement is again observed. The dependence of slip velocity of the mixture, us,

on the control parameters ra and rb in the BSR boundary scheme are also measured. In

Fig. (3) the slip length predicted by the LBE are presented together with the theoretical

result given by Eq. (40). Again, excellent agreement between the numerical and theoretical

results are demonstrated.

The LBE model together with the BSR boundary condition is also applied to the Kramers

problem of several binary mixtures composed of practical gases (Ar, CO2, H2, He, and N2).

The gases are all modeled as hard-sphere molecules. At standard temperature and pressure,

the diameters of Ar, CO2, H2, He, and N2 are 3.659, 4.643, 2.745, 2.193, and 3.784 in unit

of rA, respectively, and the molecular masses of these gases are 39.944, 44.011, 2.016, 4.003,

and 28.013, respectively [33]. In the simulations, we take the properties of species a as
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FIG. 4: (Color online) Velocity slip coefficient as a function of concentration of species a when

αa = αb = 1.0. Solid lines are LBE results and symbols (×) are results of linearized Boltzmann

equation (Ref. [36])

reference units, i.e. ma = 1, na = 1, and da = 1, and the corresponding properties of

species b are obtained according to the ratios of physical values. With these parameters, the

viscosities and mean-free-paths of species and mixtures, and the mutual diffusivity, can be

obtained as described in Sec. III. The relaxation times τs and τd can then be determined

from Eqs. (24) and (27), respectively. The control parameters ra and rb in the BSR scheme

are set to be identical, i.e. ra = rb = r where r is specified according to Eq. (57), with cm

given by Eq. (53).

In Fig. 4, the simulated velocity slip coefficients of several binary mixtures are shown

as a function of the mole fraction of species a when the accommodation coefficients of both

species are taken to be αa = αb = 1. The results are also compared with those of the

linearized Boltzmann equation presented in Ref. [36] where the Lennard-Jones potential is

used to model the gases. It is clearly observed that in each case the simulated VSC is in good

agreement with the results of the Boltzmann equation, and the nonlinear dependence on the

mole concentration is clearly shown. The discrepancies between the LBE predictions and the

data in Ref. [36] are due to the different treatments of the intermolecular interactions in the

two methods: in the present work, hard-sphere potential is used to model the interaction,

while the Lennard-Jones potential is used in Ref. [36]. Despite of these discrepancies, the

overall agreement between the results of these two methods is rather good.
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V. SUMMARY

In the present work we have developed a LBE model for microscale flows of binary

gas mixtures. The model utilizes a collision operator with multiple relaxation times so

that it has good numerical stability and can be applied to mixtures with tunable Schmidt

number. A kinetic boundary condition (BSR scheme) that combines the bounce-back and

specular-reflection schemes are proposed to model the gas-wall interactions. The scheme

was analyzed based on the Kramers problem. It is shown that the velocity of the mixture

is a linear function of the distance to the wall, while the species velocities are nonlinear in

a region near the wall, each of which decreases or increases exponentially to the mixture

velocity. It is also shown that the slip behavior of a binary mixture is influenced by the

relaxation times, the Schmidt number, the control parameters in the BSR scheme, and the

compositions of the species. A strategy for realizing a slip boundary condition using the

BSR scheme was also proposed.

Some numerical simulations were carried out to validate the theoretical results of the

proposed LBE and boundary condition. It is shown that the numerical results are in excellent

agreement with the analytical results. The LBE is also applied to slip flows of several

practical binary mixtures. The simulated VSCs as a function of species concentration is

compared with those of linearized Boltzmann equation, and good agreement is observed. In

the present work we have concentrated on velocity slip of binary mixtures. Slip behaviors

due to concentration and/or temperature gradients will be investigated in future works.
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