
20 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Control and Management Plane in a Multi-stage Software Router Architecture / Bianco, Andrea; Birke, ROBERT RENE'
MARIA; J., Finochietto; Giraudo, Luca; F., Marenco; Mellia, Marco; A., Khan; D., Manjunath. - STAMPA. - (2008), pp.
235-240. (Intervento presentato al convegno IEEE Workshop on High Performance Switching and Routing tenutosi a
Shanghai, China nel MAY 15-17 2008) [10.1109/HSPR.2008.4734449].

Original

Control and Management Plane in a Multi-stage Software Router Architecture

Publisher:

Published
DOI:10.1109/HSPR.2008.4734449

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1793796 since:

IEEE

Control and Management Plane in a Multi-stage
Software Router Architecture

A.Bianco *, R.Birke *, J.Finochietto t, L.Giraudo *, F.Marenco *, M.Mellia *, A.Khan :j:, D.Manjunath :j:

* Dip. di Elettronica, Politecnico di Torino, Italy, Email: {firstname.lastname}@polito.it
t CONICET - Universidad Nacional de Cordoba, Argentina, Email: {jorge.finochietto}@ieee.org

:j: lIT Bombay, India, Email: azeem@it.iitb.ac.in

Abstract-Software routers based on Personal Computer (PC)
architectures are receiving increasing attention in the research
community. However, a router based on a single PC suffers from
limited bus and Central Processing Unit (CPU) bandwidth, high
memory access latency, limited scalability in terms of number
of network interface cards, and lack of resilience mechanisms.
Multi-stage architectures created by interconnecting several PCs
are an interesting alternative since they allow to i) increase
the performance of single-software routers, ii) scale router size,
iii) distribute packet-forwarding and control functionalities, iv)
recover from single-component failures, and v) incrementally
upgrade router performance. However, a crucial issue is to hide
the internal details of the interconnected architecture so that the
architecture behaves externally as a single router, especially when
considering the control and the management plane.

In this paper, we describe a control protocol for a previously
proposed multi-stage architecture based on PC interconnection.
The protocol permits information exchange among internal PCs
to support: i) configuration of the interconnected architecture,
ii) packet forwarding, iii) routing table distribution, iv) manage
ment of the internal devices. The protocol is operating system
independent, since it interacts with software routing suites such
as Quagga and Xorp, and it is under test in our labs on a small
scale prototype of the multi-stage router.

I. INTRODUCTION

The request for high-performance switching and trans
llliSSlon equipment in modem routers keeps growing, due
to the continuous increase in the diffusion of information
and communications technologies and new multimedia and/or
bandwidth-hungry applications and services like VoIP, IPTV
and file sharing. Routers are able to support the perfor
mance growth by offering an ever-increasing transmission and
switching speed, mostly due to the technological advances in
microelectronics.

However, contrary to what occurred for PCs - where
standards were defined, allowing the development of an open,
multi-vendor market - the field of networking equipment in
general, and of routers in particular, has always been charac
terized by the development of proprietary architectures. This
means incompatible equipments and architectures, especially
in terms of configuration and management procedures, as well
as the requirement to train network administrators to handle
several proprietary architectures or to be limited to a single
vendor. Thus, the final cost of equipments is high with respect
to performance and equipment complexity. Software routers
based on off-the-shelf PC hardware and open-source software

are appealing alternatives to proprietary network devices be
cause of the wide availability of multi-vendor hardware, the
low cost, the continuous performance evolution driven by the
PC-market economy of scale and the large availability of open
source software for networking applications, such as Linux,
the Berkeley Software Distribution (BSD) derivatives, Click
[1], XORP [2], and Quagga [3].

Indeed, despite the limitations of bus bandwidth and central
processing unit (CPU) and memory-access speed, current PC
based routers have a traffic-switching capability in the range
of a few gigabits per second, which is more than enough
for a large number of applications. Moreover, performance
limitations may be compensated by the natural PC architecture
evolution, driven by Moore's law. However, high-end perfor
mance and large size devices cannot be obtained easily today
with routers based on a single PC. In addition to performance
limitations, several other objections can be raised to PC-based
routers such as: software limitations, scalability problems, lack
of advanced functionalities, inability to support a large number
of network interfaces, as well as the inability to deal with
resilience issues to match the performance of carrier-grade
devices.

To overcome some of the limitations of software routers
based on a single PC, we proposed to create a large router
exploiting multi-stage-switching architectures [4]. However,
this device needs an internal control protocol to coordinate
the routing process among the several pes of the multi-stage
router, while maintaining a high level of independence from
the used software (kernel and control plane).

Due to the need of high number of input/output ports and
high bandwidth, the number of PCs in the multi-stage architec
ture could be large. Thus, many internal elements need to be
controlled and configured. Furthermore, to limit management
costs and complexity, the interconnected structure must appear
to other network routers as a single entity router, which implies
special coordination requirements. In this paper, we describe
a control protocol for the previously proposed multi-stage
architecture based on PC interconnection. The protocol permits
information exchange among internal elements to support:
i) configuration of the interconnected architecture, ii) packet
forwarding, iii) routing table distribution, iv) management of
the internal devices.

978-1-4244-1982-1/08/$25.00 ©2008 IEEE 235

Authorized licensed use limited to: Politecnico di Torino. Downloaded on February 2, 2009 at 12:44 from IEEE Xplore. Restrictions apply.

II. RELATED WORK

Multi-stage switching architectures were previously pro
posed in different research areas to overcome single-machine
limitations [5]. Initially studied in the context of circuit
oriented networks to build large-size telephone switches
through simple elementary switching devices, multi-stage ar
chitectures were traditionally used in the design of parallel
computer systems and, more recently, considered as a viable
mean to build large packet-switching architectures.

Indeed, the major router producers have proposed proprie
tary multi-stage architectures for their larger routers [6], [7]
that follow traditional multi-stage, telephony-derived switch
ing architectures. In most cases, the routing functionality is
distributed among cards installed in different interconnected
racks. Such systems target high-end routers, with performance
and costs that are not comparable with those of PC-based
router architectures.

High-end routers typically are based on a synchronous
behavior, whereas our proposed solution is fully asynchronous.
Therefore, our solution does not require a global clock distri
bution, a complex task that requires large power consumption
and limits router scalability. Furthermore, the synchronous
behavior often brings about the internal switching of fixed-size
data units, which implies segmentation of the variable-sizes
IP packet at inputs and especially, re-assembly procedures at
outputs, another complex and power-consuming task.

Similarly to our approach, the IETF is interested in dis
tributed router architecture. The Forwarding and Control Ele
ment Separation (ForCES) Working Group [8] aims at propos
ing standards for the exchange of information between the
control plane and the forwarding plane, when the control and
forwarding elements are either in the range of a small number
of hops or even in the same box. A distributed implementation
of the control plane on software router architectures was
proposed in [9], where the focus is mainly on control plane
issues. The ForCES approach is rather general and does
not contain features which are fundamental and peculiar of
our architecture, such as device identification, device role as
balancer, master or slave, etc.

A. Multi-stage architecture

Our reference multi-stage architecture is shown in Fig.l.
The key advantages of the proposed architecture are the ability
to:

• overcome performance limitations of a single-PC-based
router by offering multiple, parallel data paths to packets.

• upgrade router performance by incrementally adding
more switching elements or incrementally upgrading each
switching element.

• scale the total number of interfaces the node can host,
and, as a consequence, the router capacity.

• automatically recover from faults of any PC/element.
• support a fully asynchronous behavior.
• provide functional distribution, to overcome single-PC

CPU limitations, for example allowing the offioading of

CPU intensive tasks, such as filtering/cryptography, to
dedicated PC.

The distributed router is composed by three different stages:

• first stage: an array of Load Balancers (LB) used to
distribute the load across the routers at the back-end stage.
This stage supplies the input/output ports of the multi
stage router. Since the task is simple, they can also be
easily implemented in hardware using FPGAs, although
standard PCs can be employed.

• interconnection network: this is a standard Ethernet net
work, eventually with multiple paths between the LBs
and back-end forwarding engines (FE) to support fault
recovery and to upgrade the switching capability of the
router.

• back-end: an array of PCs running a software routing
program to act as a FE.

In addition to these elements, the multi-stage architecture
needs a control element, named Virtual Control Processor
(CP), which controls and configures all the elements of the
router, such as to present the whole architecture as a single
entity to external agents.

III. CONTROL AND MANAGEMENT PLANE

The multi-stage architecture requires a control protocol to
coordinate the behavior of the different elements. The main
issues to consider in the design of such a protocol are:

• virtual CP definition and identification
• route distribution
• fault recovery
• security

A. Virtual CP

The task of the virtual CP is to mask the internal architecture
of the multi-stage router and let it appear as a single entity
to the outside entities considering both human users and
other routers. Therefore, the virtual CP must manage the
routing protocols and interfaces. These tasks need the ability
to redirect control messages to the correct destination and to
execute configuration tasks from a centralized interface.

B. Route distribution

Every FE must have the same routing table, but only the
virtual CP has the needed information to build it acting as the
public end point for the routing protocols. Thus, the control
protocol must distribute the routing information to all the FE at
the back-end stage. The protocol must include packet recovery
mechanisms to prevent inconsistencies in the routing tables.

C. Fault recovery

The control protocol must have the ability to react to failures
occurred to any element of the router, activating procedures to
substitute broken elements or to reconfigure the network. The
most critical point of failure is the virtual CP, so the control
protocol must monitor its functions and eventually substitute
the virtual CPo

236

Authorized licensed use limited to: Politecnico di Torino. Downloaded on February 2, 2009 at 12:44 from IEEE Xplore. Restrictions apply.

Fig. 1. Multi-stage architecture: the router is composed by three stages and by a control element to mask the internal architecture to an external observer.

D. Security

Security mechanisms are necessary to prevent malicious
router manipulation like injection of false routes.

IV. THE DIST PROTOCOL

DIST is the protocol designed and developed in our labs to
implement the control and management plane requirements in
the multi-stage router architecture. The protocol is managed by
demons running on every FE, together with traditional routing
software. Each demon cooperates strictly with the routing
software working as a "plugin". The current implementation
supports both Xorp and Quagga.

We chose to create DIST as a plugin instead of directly
interfacing with the kernel to be more operating system
independent. Furthermore, it would be out of our objectives
to write our own implementation of the routing protocols.

The virtual CP is implemented by choosing one FE as
master node. This node runs all the routing protocols; LBs
redirect all the routing protocol traffic to the master node.
The master communicates with the other FE (slaves) using a
master-slave communication paradigm. Every FE is identified
with a 16 bit number (randomly selected at start-up) included
in all generated messages, and the multicast group to join
to receive and send control information is well-known. The
element 10 can be separated in two parts, element type (2 bit)
and element id (14 bit); the node type could be master, slave
or balancer.

Since the number of active elements in the multi-stage
architecture could be large due to the need of supporting high
switching capability, significant signaling information may be
exchanged between the FEs. To limit the amount of bandwidth
allocated to signaling and the resources devoted to this task,
the DIST protocol exploits IPv4 multicast transmissions. A
single copy of every signaling message can be send to all other
elements, without knowing the details of other nodes, thus
reducing the amount of generated traffic. The choice of using
multicast addresses forces the use of UDP as the transport
protocol, which does not supply any reliability mechanism:

the control protocol must supply custom procedures to detect
and resolve errors or missing packets.

A. Route distribution

The master receives routing table updates from the control
plane software via LBs and must distribute the information to
the slaves using specific messages of the signaling protocol
(route add/delete messages). The routing information is de
scribed in an independent format to allow the interoperability
of different routing softwares (i.e. Quagga or XORP). When
an update is send, the master increments the sequence number
used to identify the different routing table updates messages.

When a slave receives an update message (or an hello
packet), the header field. is parsed to establish the sequence
number of the message; the current message can be accepted
only if all the previous updates have been received and
accepted. In this case, the packet is processed and sent to
the routing software which updates the local routing table. No
acknowledgment is sent to the master, to prevent scalability
problems due to ack storm.

If the sequence number is ahead of the expected one, the
slave sends a negative acknowledgment (NACK) to the master
with the expected sequence number, triggering a retransmis
sion of all packets starting from the lost packet. This procedure
was defined to avoid sending many NACKs when a burst of
packet is lost. The master serves only one NACK in every hello
interval, to prevent multiple retransmissions of messages.

A ring buffer is used by the master to store the last N update
packets sent. The size N of the ring buffer is a key parameter
of the protocol, because it determines how far in the past a
packet can be lost and still recovered. If the sequence number
of the lost packet is less than the actual sequence number
minus N, this error recovery scheme fails.

To overcome this limitation, we introduce an alternative
method to synchronize the routing table; if the slave detects
more than N consecutive missing updates, it sends a full
routing table download request to the master. This download
is done using a reliable TCP connection. This also solve the
issue of synchronizing the routing table of newly connected

237

Authorized licensed use limited to: Politecnico di Torino. Downloaded on February 2, 2009 at 12:44 from IEEE Xplore. Restrictions apply.

FEs e.g. to recover from a previous fault or to upgrade the
multi-stage router capability.

The fact that the routing infonnation can be acquired
trough two concurrent methods may lead to inconsistencies.
To avoid this, while the master is making a full routing table
transfer, updates of the routing table are put temporarily on
hold, storing updates coming from routing software. When
the transfer ends, both master and slave resume the nonnal
operations by processing the stored updates.

B. Hello packets

A lost packet is identified only when the slave receives an
update containing a sequence number larger than the one it
is expecting. If no updates are sent, the packet loss remains
undetected. To avoid this and to manage FEs ups and downs,
the protocol uses hello packets. Every node sends periodically
a hello packet, once packet in every period named hello time
interval. The hello packet coming from the master contains
the sequence number of the last message, so that slaves can
detect a possible packet loss.

The hello packets are also used to advertise the presence
of an element allowing automatic (re)configurations and as a
heartbeat mechanism for fault recovery. Finally, they are used
to distribute the initial sequence number of update packets.

C. Automatic configuration

One important configuration task is to select who FE acts
as the master. This is done during the master election phase:
when a new FE joins, it chooses a random ID and sets the
candidate master ID to its own ID. Then, for three hello time
periods, it only sends and listens to hello packets, updating
the list of alive FEs.

At every received hello packet, the FE verifies the sender
type. If the type is set, to master the multi-stage router has
already a master and the master election phase ends. If the
sender type is set to slave, the sender ID and the candidate
master ID are compared. If the sender ID is smaller than the
candidate master ID, the sender becomes the new candidate
master. At the end of the master election phase, every element
knows the master ID and it will accept route updates only if
generated by the master.

Since the initial ID is chosen at random, a problem that may
occur is the presence of two elements with the same ID. To
solve this problem, a new command message is introduced.
When an element receives an hello packet with the sender
ID equal to its own ID, it sends immediately a packet which
signals the problem to the sender. When the sender receives a
notification of duplication, it changes its ID choosing randomly
a new ID and it postpones the end of the master election phase.
This insures that at the end of the master election phase every
element has an unique ID.

Another automatic configuration procedure is needed for the
LBs. When a LB sees a packet with type set to "master", it
updates the filters for the routing protocols so as to redirect
the traffic to the proper address of the master FE. The load
balancing is done according to the values contained in a table
of active slave FEs.

D. Fault Recovery

One of the requirements for the distributed control plane
is fault recovery. If a node fails, an automatic reconfiguration
of the system must be started to minimize the effect on the
whole system. The failures are detected verifying the table of
active FEs. The table contains the ID of all active FEs (Le. FEs
that sent a packet "recently") and the time at which the last
packet was received from the corresponding FE. This table is
checked periodically. Any entry which is older then five hello
time periods is considered unavailable, is dropped and a fault
recovery mechanism is started.

The action taken depends on the node type. The most critical
failure is the failure of the master node. In this case the slaves
start a slightly modified master election phase to speed up
the process. During nonnal operation, at every hello packet
reception, a FE keeps track of the smallest slave sender ID
and selects it as backup master. Again, since the hello packets
are received by all FEs, every FE makes the same choice.
When the master is dropped from the list of active elements,
the backup master becomes immediately the new master and
sends an hello packet to advertise other nodes and to stop their
master election phases.

If a slave fails, it is simply dropped from the table of
active nodes. Therefore, the LB will not send any traffic to
it anymore.

A failure of a LB is considered equivalent to a link/interface
failure. No special recovery mechanism is implemented in this
case.

E. Security

In the first version of the protocol, security was not con
sidered one of the main issues. Therefore, the only security
mechanism implemented is a filter at the LBs, dropping all
messages coming from outside and using the internal DIST
multicast address.

v. TESTBED SETUP

In this section, we evaluate the time needed to distribute
route infonnation between master and slaves FEs in the multi
stage back-end. This is the only additional delay introduced
in our multi-stage architecture with respect to the delays of
a traditional single-stage router. Our aim is to verify if the
penalty introduced by the need of internal route distribution
is negligible with respect to the time needed to recompute
the new routes when an update is received through a routing
protocol message.

We realized a small scale prototype of the multi-stage
architecture in our labs, as shown in Fig.2. Three identical PCs
form the backplane of FEs. A forth PC simulates an exterior
router sending route updates to the multi-stage router using
the OSPF routing protocol. A fifth PC records the traffic trace
from which the timing infonnation is extracted off-line. In this
scheme, the LBs are missing since they are not participating
directly in the route distribution.

The use of the sniffer allows us to have a single measure
ment point avoiding timing synchronization problems between

238

Authorized licensed use limited to: Politecnico di Torino. Downloaded on February 2, 2009 at 12:44 from IEEE Xplore. Restrictions apply.

1.4 Distribution
Elaboration

Route add I delete

1.2

~ 0.8Cl)

S
E:: 0.6

0.4

0.2

0
10 50 100 500 1000

Fig. 2. Network topology used in measurements.
Number of routes

Fig. 3. Average update time versus number of routes using XORP

3

2.5

LS-update --
Dist route add .

10 20 30 40 50 60 70 80 90 100

Number of routes

O....,.;;""..---a..-......Ioo-_..a..-.--r.I..----.l""-----'-_.....-.----'

o

0.5

~ 2
Cl)

S
E=: 1.5

Fig. 4. XORP OSPF timeouts.

Observe that the elaboration time is about one order of
magnitude larger than the distribution time. This means that
the overhead introduced in the multi-stage architecture due to
the route distribution process is really limited. However, the
elaboration time is faily long (about 1 s). This is not dependent
on our protocol, but it is a consequence of the behaviour of
the XORP OSPF daemon, that starts a timer at the first packet
reception to aggregate LS updates before updating the routing
table. At the end of the timer, received packets are elaborated.
Then, a new timer is scheduled. This is clearly shown in Fig.4.

Fig.5 shows the total average update time but when using
Quagga. Again, the elaboration time is about one order of
magnitude larger than the distribution time, meaning that
the route distribution time introduced by our protocol is
negligible. Quagga does not aggregate LS-updates; therefore,
the elaboration time is much smaller. Also, the distribution
time is smaller compared to XORP. This is due to a more
complex internal scheduling scheme adopted in XORP with
asynchronous inter-process communication based on callback

VI. MEASUREMENT RESULTS

The first measurements concern the route distribution. We
want to determine the overhead introduced by the route
distribution.

To this aim, we use the OSPF router to send OSPF LS
updates to the master node. After the elaboration of a LS
update, the route is passed to the DIST plugin and a route
update is sent to the slaves. The slaves update the routing
table and send an explicit ack to the sniffer.

We consider the difference in the timestamp between the LS
update and the DIST route update message as the elaboration
time of the OSPF packet. We consider the difference between
the DIST route update message and the last ack received from
the slaves as the route distribution time.

Fig.3 shows the total average time needed to update a route
within the multi-stage router using XORP. The total time is
split into elaboration time and distribution time.

different PCs. However, to be able to better measure the
times of each elaboration phase, the DIST daemons have
been slightly modified to send explicit acks at the end of
each significant phase. These acks are sent using a broadcast
address to allow the sniffer to catch them, and are ignored by
all other PEs.

The tests were performed using both XORP 1.5 (CVS
version 2007/08/24) and Quagga 0.99.5 as routing software.
The test results were averaged over five runs.

The hardware used in our experiments is:

• OSPF Router Pentium IV (2.4 GHz, 512 KB cache),
1GB RAM, Fast Ethernet, Linux 2.6.20-16-generic
(ubuntu 7.04)

• Back-end Pentium III (800 MHz, 256 KB cache),
384 MB RAM, Fast Ethernet, Linux 2.6.20-16-generic
(xubuntu 7.04)

• Sniffer Pentium IV (2.4 GHz, 512 KB cache), 512 MB
RAM, Fast Ethernet, Linux 2.6.20-16-generic (ubuntu
7.04)

• Switch 3Com OfficeConnect Gigabit Switch 8 working
at 100 Mbit/s

239

Authorized licensed use limited to: Politecnico di Torino. Downloaded on February 2, 2009 at 12:44 from IEEE Xplore. Restrictions apply.

20 r--------------------,
Distribution -
Elaboration --

XORP -
Quagga --

15

10050

Lost Packets

10

0.01

0.001

0.1

1000500100
Number of routes

5010
o

10

5

Fig. 5. Average update time versus number of routes using Quagga. Fig. 6. Resynchronization time with N consecutive lost routes.

functions, which introduces some overheads.
The second measurements concern the error recovery me

chanism based on the negative acknowledgments. To simulate
packet losses, we disconnect the network cable from a slave
FE. Then, we generate a number N of routes. When routes
have been distributed, the isolated slave is reconnected to
the multi-stage router. When the slave receives the first hello
packet from the master, it synchronizes its routing table using
a single cumulative NACK. The time interval between the
master hello packet and the end of the route distribution to
the previously isolated slave FE is extracted offline from the
sniffer's packet trace.

First, we did functional tests to verify that lost packets are
correctly recovered and that the routing tables are synchro
nized. As expected, from Sec.IV-A, this is true as long as the
burst of lost packets is smaller than the size of the transmit
ring buffer N. Later, we measured the time needed to recover
N lost routes. This time is extracted from the sniffer packet
trace using the timestamp of master hello packets and the last
acknowledgement sent by the isolated slave.

To avoid recovery failures, we set the size of the transmit
ring buffer to 1000 messages. Fig.6 shows the results.

As expected, the recovery time is proportional to the number
of lost packets. This is true for both XORP and Quagga
plugins. However, better looking at the timescales, notice that
the XORP plugin is about one order of magnitude slower,
although the same operations are done in both plugins. The
reason is again the more complex internal scheduling scheme
adopted in XORP. This is confirmed also by the average time
needed to send a NACK when a hello packet is received: 30ms
in the XORP plugin versus 3ms in the Quagga plugin.

VII. CONCLUSION

We described a control protocol needed to control the be
haviour of PCs acting as forwarding elements in our proposed
multi-stage router architeture. The protocol interacts directly
with software routing suites such as Quagga and Xorp, to be
operating system independent.

We showed that the protocol works correctly, allowing the
multi-stage architetures to behaves externally as a single-stage
router. The protocol is able to deal with internal elements
failures and recovery. The additional delay needed to distribute
routes to internal elements is negligible with respect to the time
needed to recompute new routes. This shows that the delay
performance penalty introduced by the multi-stage architecture
is not a major issue and is largely compensated by its property
of scalability and robustness to failures.

ACKNOWLEDGMENT

This work was done within the research project
Bora-Bora (Building Open Router Architectures
Based On Router Aggregation, URL: http://www.tlc
networks.polito.itlprojectslboraboral) funded by the Italian
Ministry of University and Research.

REFERENCES

[1] E. Kohler, R. Morris, B. Chen, 1. Jannotti, M. F. Kaashoek The Click
Modular Router, ACM Trans. Compo Sys., vol. 18, no. 3, Aug. 2000,
pp.263-97.

[2] M. Handley, O. Hodson, E. Kohler, Xorp: An Open Platform for Network
Research, Proc. 1st Wksp. Hot Topics in Networks, Princeton, NJ,
Oct. 28-29, 2002.

[3] GNU, Quagga, http://www.quagga.net
[4] A. Bianco, J. M. Finochietto, G. Galante, M. Mellia, F. Neri Multi-stage

Switching Architectures for Software Routers, IEEE Network "Advances
in Network Systems", ISSN: 0890-8044, July 2007

[5] J. Duato, S. Yalamanchili, L. Ni, Interconnection Networks: An Engineer
ing Approach, IEEE Compo Soc. Press, 1997.

[6] Cisco Systems, Carrier Routing System, http://www . cisco.
com/application/pdf/en/us/guest/products/ps5763/
cl031/cdccont 0900aecd800f8118.pdf

[7] Juniper Networks,-Routing Matrix, http://www.juniper.net/
solutions/literature/white-papers/200099.pdf

[8] IETF, Forwarding and Control Element Separation (ForCES), http:
//www.ietf.org/html.charters/forces-charter.html

[9] H. Hagsand, M. Hidell, and ~ Sjodin, Design and Implementation of
a Distributed Router, Proc. 5th IEEE Int. Symp. Sig. Proc. Info. Tech.,
Athens, Greece, Dec. 18-21, 2005.

240

Authorized licensed use limited to: Politecnico di Torino. Downloaded on February 2, 2009 at 12:44 from IEEE Xplore. Restrictions apply.

