
03 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A case study for NoC based homogeneous MPSoC architectures / Tota, Sergio Vincenzo; Casu, MARIO ROBERTO;
RUO ROCH, Massimo; Macchiarulo, Luca; Zamboni, Maurizio. - In: IEEE TRANSACTIONS ON VERY LARGE SCALE
INTEGRATION (VLSI) SYSTEMS. - ISSN 1063-8210. - STAMPA. - 17:3(2009), pp. 384-388.
[10.1109/TVLSI.2008.2011239]

Original

A case study for NoC based homogeneous MPSoC architectures

Publisher:

Published
DOI:10.1109/TVLSI.2008.2011239

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1793711 since:

IEEE

384 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 3, MARCH 2009

Special Section Briefs

A Case Study for NoC-Based Homogeneous
MPSoC Architectures

Sergio V. Tota, Mario R. Casu, Massimo Ruo Roch,
Luca Macchiarulo, and Maurizio Zamboni

Abstract—The many-core design paradigm requires flexible and
modular hardware and software components to provide the required
scalability to next-generation on-chip multiprocessor architectures. A
multidisciplinary approach is necessary to consider all the interactions
between the different components of the design. In this paper, a com-
plete design methodology that tackles at once the aspects of system level
modeling, hardware architecture, and programming model has been suc-
cessfully used for the implementation of a multiprocessor network-on-chip
(NoC)-based system, the NoCRay graphic accelerator. The design, based
on 16 processors, after prototyping with field-programmable gate array
(FPGA), has been laid out in 90-nm technology. Post-layout results show
very low power, area, as well as 500 MHz of clock frequency. Results show
that an array of small and simple processors outperform a single high-end
general purpose processor.

Index Terms—Multiprocessor systems-on-chip (MP-SoC), network-on-
chip (NoC).

I. INTRODUCTION

T HE unrelented trend toward higher computation performance
had led so far to an increase of the complexity and the number

of the functional units of single monolithic microprocessors. Recently,
this trend has started to slowdown even if the number of transistors is
expected to continue to double every three years [1]. Power-thermal
issues as well as design complexity have begun to limit the perfor-
mance growth-rate compared with the increasing number of transis-
tors available in a single die [2]. One way to cope with this produc-
tivity gap is the “tile-design” concept which underlies a simple yet ef-
fective paradigm: parallelization through replication of many identical
blocks placed each in a tile of a regular array fabric. Instead of fo-
cusing on improving the complexity of a single block, the solution aims
at delivering performance through several replicas of the same basic
blocks. This approach has the major positive consequence of making
systems design a matter of instantiation capability instead of archi-
tecture complexity, an objective which has to be pursued through in-
novative scalable hardware/software solutions. The resulting architec-
ture can be certainly seen as an on-chip multiprocessor system. There-
fore, we will refer to such system as a “homogeneous” multiprocessor
systems-on-chip (MP-SoC), although the recent literature seems to re-
serve the MP-SoC acronym to the case of “heterogeneous” processors.
MP-SoC design is a multidisciplinary research activity that encom-
passes on-chip communication infrastructures, microprocessor archi-
tectures, programming models, codesign/cosimulation flows and flex-
ible methodologies for system level modeling and exploration.

Manuscript received December 10, 2007; revised April 04, 2008. First pub-
lished February 06, 2009; current version published February 19, 2009.

S. V. Tota, M. R. Casu, M. R. Roch, and M. Zamboni are with the Dipar-
timento di Elettronica, Politecnico di Torino, I-10129 Torino, Italy (e-mail:
sergio.tota@polito.it; mario.casu@polito.it; massimo.ruoroch@polito.it; mau-
rizio.zamboni@polito.it).

L. Macchiarulo is with the Department of Electrical Engineering, University
of Hawaii, Honolulu, HI 96822 USA (e-mail: lucam@hawaii.edu).

Digital Object Identifier 10.1109/TVLSI.2008.2011239

Network-on-chip (NoC) is seen as the interconnection methodology
for such systems [3]. The motivations for this choice are the better
scalability of performance with the increasing number of processing
elements (PEs) compared to standard on-chip busses, the high regu-
larity which improves layout and particularly the allocation of wiring
resources and the layered design approach which enables tackling the
SoC complexity.

The computation is usually performed by a microprocessor. Even if
it is always possible to implement hard-wired PEs, a programmable ar-
chitecture gives the required flexibility to adapt and reuse the system
in different scenarios. The possibility of reusing the same chipset in
different devices is the only solution to face the growing costs of R&D
as well as of mask-sets [4]. The performance of latest application-spe-
cific integrated processors (ASIPs) together with the high availability of
transistors is making the design of custom hard-wired logic always less
convenient (time-to-market, respin risks). Furthermore, current ASIPs
offer a high level of configurability. It is now possible to optimize the
code execution adding hardware support for frequent/computation-in-
tensive operations.

Mastering the complexity of an MP-SoC requires new approaches
to replace the standard design flow. Nowadays, the register transfer
level (RTL)-to-netlist methodology has reached its maximum of ef-
ficiency and must be substituted with proper electronic system level
(ESL) methodologies [5].

Our research activity focused on the intersection among the var-
ious aspects of this new paradigm: the integration of a scalable NoC
communication infrastructure, a configurable microprocessor design,
an appropriate distributed programming model and a methodology for
system level modeling and exploration. All these aspects have been
taken into account and we show their effective integration by means
of a significant case of study. The most recent work on NoC design
and implementation is in [6] which discusses physical design aspects
in terms of automated floorplan, timing, and power issues. However,
system-level modeling aspects were not discussed nor the field-pro-
grammable gate array (FPGA) prototipation of a real-life application
as it is done in this work.

Section II discusses the ESL methodology used for system level
analysis and exploration. Its goal was to provide the required abstrac-
tion in order to obtain the necessary visibility of different blocks inter-
actions. It was then possible to analyze different candidate architectures
and communication schemes, each of them with different tradeoffs in
terms of power, performance, and cost. In Section III, we motivate and
discuss the design choices concerning the NoC topology and routing,
the switch and its interface to the processing element, as well as the
software abstraction of the network based on a set of lightweight appli-
cation programming interfaces (APIs) compliant with a subset of the
message passing interface (MPI) protocol more suited for an embedded
environment, the embedded MPI (eMPI) APIs. Section IV presents a
case-study, the NoCRay graphic accelerator: a parallel graphics ray
tracer rendering engine mapped first on FPGA for prototyping and then
implemented on a 90-nm standard-cell ASIC technology. Conclusions
are finally drawn in Section V.

II. SYSTEM LEVEL MODELING

The IP-XACT [7] standard has been used for system level modeling
of the MP-SoC NoC-based environment and for automatic RTL gener-
ation of the target architecture. This standard is tool-independent thus

1063-8210/$25.00 © 2009 IEEE

Authorized licensed use limited to: Mario Casu. Downloaded on July 27, 2009 at 10:16 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 3, MARCH 2009 385

Fig. 1. MP-SoC NoC-based system level modeling with the IP-XACT ESL
methodology.

any IP-XACT compliant library can be easily integrated in a custom
design flow. To the best of our knowledge, there are no other works
publicly available about the usage of the IP-XACT standard for NoC
ESL modeling. Two basic IPs have been described using the IP-XACT
standard, the switch, discussed in Section III-B and the Tensilica LX
configurable processor [8]. These models have been then integrated in
the Mentor Graphics Platform Express framework [9].

The switch model configurator allows to set a number of options
like the routing algorithm (Wormhole or Deflection Routing), the net-
work size, and topology (Mesh or Folded Torus) and the bit width of
the connections. On the basis of the configurator constraints, a VHDL
RTL model is generated accordingly. In the IP-XACT description of
the switch we also included the definitions of the inputs/outputs (I/Os),
which are called connectors. Only connectors of the same type can be
linked together. The switch has two different types of connectors: the
switch-to-PE and the switch-to-switch connector. In this way, during
system level design, no errors are possible since only compatible inter-
faces can be linked together.

We used the high degree of configurability of the Tensilica LX pro-
cessor to add a custom point-to-point interface in order to interconnect
it to the switch with the result of embedding the Network Interface
within the processor. In this way, we could use the same connector def-
inition of the switch for the IP-XACT description of the processor. We
included the instruction set simulator (ISS) model, automatically gen-
erated by the Tensilica Xplorer processor configuration environment
[8], in the IP-XACT definition of the processor making it possible to
speedup the simulation time compared to a RTL HDL model.

Once a given system configuration has been selected, it is possible to
perform a co-simulation both for system exploration and software de-
velopment. The generator automatically creates the top-level descrip-
tion of the system and the models of each IP. In our case as previously
described, we used an ISS model for processors instances and RTL
VHDL models for switches instances. The generator also automati-
cally generates scripts for the co-simulation environment, the Mentor
Graphics Seamless framework [9]. With this approach, it is possible to
quickly build different configurations, test them, and then start the soft-
ware development in parallel with the physical implementation.

Fig. 1 is a screenshot of the IP-XACT ESL environment used for
system-level exploration. In the top-left window a list of available IPs
is shown including our NoC models. Dragging and dropping a selected
model into the graphic window automatically generates the given in-
stance and interconnects the IP I/O with compatible interfaces of other

IPs. The graphic window on top-right shows a configuration with 16
Tensilica processors and 16 NoC switch instances. Once the system
has been properly built it is possible to generate different views like
the RTL or co-simulation one (bottom-right window).

III. NOC AND PROCESSING ELEMENT DESIGN

A NoC-based design consists of a number of different components
like the network topology, the routing algorithm, the network-interface
and the programming models. Even if it is possible to generate different
topologies and routing algorithms during the system-level modeling
step described in Section II, a specific configuration has been chosen for
the case-study consisting in the use of the folded-torus topology and the
deflection-routing algorithm. The motivation of this choice was chiefly
the intention to keep area overhead of the network on the system as
small as possible, possibly at a cost of some performance degradation.
Since the use of deflection routing may imply out-of-order arrival of the
elementary constituents of a packet, the flits, a network-interface, with
reordering capabilities, has been embedded as part of the processor
hardware, which is made possible by its ISA configurability.

Custom NoC instructions facilitated the implementation of the sup-
port for a subset of the message passing interface (MPI) programming
model. It was possible to port current parallel MPI applications into the
on-chip environment as shown in Section IV.

A. Topologies and Routing

Intrinsically 2-D networks such as meshes and tori better suit a sil-
icon implementation. Wire lengths can be more accurately controlled
thus providing better scalability properties of the mesh-like networks
in terms of electrical performance, as detailed in [10]. A mesh topology
can be implemented in a straightforward way by connecting all the
switches to their physical neighbors, thus guaranteeing the minimal in-
terconnection length. A more flexible configuration is that of the bidi-
rectional torus, where the symmetry of the network is guaranteed for
any node and any node-to-node connection, at the expense of higher
wiring requirements. Furthermore, in this way, it is also possible to re-
duce the average packet latency. This topology has been used in this
work.

Concerning the network routing strategies, the Deflection Routing al-
gorithm has been adopted to implement the switch even if with our ESL
flow it is possible to chose the worm-hole strategy as well. Deflection
Routing, uses a full-blown packet-switching methodology by allowing
different routing for every flit of the same packet. The basic idea of DF
is that of choosing the presently “best” route for each incoming flit,
without ever keeping more than one flit per input channel (thus the al-
ternative name of “Hot Potato” routing). Deflection routing does not
suffer from deadlock by construction (see [11] for a thorough analysis)
while livelock may be an issue, as well as the case of non-minimal la-
tencies due to the “deflection” of flits from their ideal path. However,
in our previous works (see [12]), with a benchmark suite of parallel
applications we observed sporadic cases of single flits delivered with
high latency (larger than average) that did not significantly hamper ex-
ecution times. In this case too we did not observe any overhead due to
excess of latency.

The advantages of deflection-routing are that the switch area is
greatly reduced, as its storage requirements are the theoretically
minimal ones (as much memory as the incoming flits), no bottleneck is
created by long packets as in wormhole routing, and no back pressure
mechanism is necessary. The expense is that of introducing a poten-
tially out-of-order reception of flits belonging to the same packets at
the destination. These considerations have been taken into account
during the implementation of our network interface as discussed in
paragraph C.

Authorized licensed use limited to: Mario Casu. Downloaded on July 27, 2009 at 10:16 from IEEE Xplore. Restrictions apply.

386 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 3, MARCH 2009

B. Switch Design

The switch is perhaps the most critical element in NoC. On the one
hand, it has to receive and deliver flits at very high rates in order to sus-
tain network throughputs of tens to hundreds of gigabits per second,
requiring clock rates of hundreds of megahertz. On the other hand, the
switch logic complexity might be quite relevant, then possibly limiting
the switch clock frequency. One of the designer’s option is to break
the logic depth by inserting pipeline stages, then raising the frequency
to the desired level. However, the increased throughput comes at the
cost of an additional switch internal latency that increases by the same
amount of added pipe stages. Depending on the model of computa-
tion and the communication protocol implemented by the processing
elements of the MPSoC environment, the latency increase has a direct
impact on the overall performance degradation. Therefore, it should be
kept at its minimum, even at the cost of some frequency reduction. Be-
sides throughput and latency, two other factors are of great importance
in the design of NoC switches. Silicon area and power consumption.
It must be observed that for NoC topologies like meshes and torus,
there is one switch for each processing element. It is then necessary
to reduce switch area and power to a limited fraction of the processor
ones. Typically, buffers consume the largest part of the switch area as
it emerges from previous published works. The Aethereal framework
[13] is one of the first works in this sense where a switch with guar-
anteed services (GEs) as well as best-effort services (BESs) has been
implemented, using a time-division-multiplexing (TDM) and a Worm-
hole, respectively. The architecture is highly dominated by memory
elements leading to an area of 0.24 mm� for the switch in a 130-nm
CMOS technology.

A more recent work [14] proposes a six-port 57 GB/s Double-
Pumped Nonblocking Router Core based again on the wormhole
routing algorithm. While this implementation provides high-perfor-
mance, the cost in terms of area is high as well requiring almost two
million transistors per switch with an area of 12.2 mm� in a 150-nm
CMOS technology. An implementation of a complete MP-SoC system
using this switch has been recently proposed [15] showing that
such a complex architecture does not let the system to scale due to
thermal/power-consumption issues.

In this sense, deflection routing is better suited than wormhole where
at least twice the amount of registers is needed, due to the need for
buffers to implement flit-level flow control. At the same time, deflec-
tion routing has drawbacks like possible out-of-order flits delivery and
limitation of the payload due to addressing information put into all flits.
In this case, we privileged the smaller area of the switch and the ab-
sence of flit-level flow control. However, in case the application re-
quires wormhole, the IP-XACT supporting tool allows to quickly re-
design the system by instantiating the proper switch IP and the pro-
cessing core with the proper network interface.

According to this rationale, a 5-ports (one devoted to the PE) de-
flection routing-based switch has been designed and physically imple-
mented, with minimum latency (one clock cycle) and 32 bit wide flit
size on a 90-nm CMOS standard-cell technology. All such parameters
reflect the Tensilica processor ones which has a 32-bits register file and
works at 500 MHz. We put much effort in meeting a target clock rate
of 500 MHz without additional pipeline stages in the switch. We thus
avoided clock-rate conversions and serialization/deserialization issues.
Moreover, speeding-up the network with pipelined switches when the
processors are not fast enough may lead to over design not justified
for the majority of the applications, included the one developed in the
case-study discussed further on, and will inevitably add latencies to
the PE-to-PE communication. We obtained, after the layout, an area
of 0.012 mm�, a total power consumption of 3 mW (of which 45 �W
of leakage with a switching activity of 30% at 500 MHz). These re-
sults show that the overhead of the switch implementation, in terms of

area and power consumption, if compared with other typical blocks of
a MP-SoC design, i.e., memories and processors, is very low.

C. Network Interface and NoC Programming Model

The high degree of configurability of the Tensilica LX processor was
used to implement a high-speed direct link between each processor and
the switch using the TIE ports. This I/O is directly connected to the pro-
cessor register-file. When a packet of length � flits must be sent, the
interface puts a sequence number into all flits. An address in the form
�-� is put as well. In order to speedup the operation and to afford the
maximum throughput of a single clock cycle for sending each flit, an
additional counter for the sequence number and a lookup table (LUT)
for addressing has been instantiated within the processor core and is
supported by custom TIE instructions. The sequence number is clev-
erly used at the receiver to avoid any buffer for sorting out-of-order
received flits. When a flit arrives, the PE: 1) reads a flit from the NoC
storing it into a register and 2) uses the sequence number of the given
flit as an offset address for the storage into the processor local data
memory. Another register contains the base address. A double buffer
technique has been implemented to support one clock cycle read oper-
ations. The size of the sequence-number field determines the size of the
logic packet. The additional hardware consists of a small adder and two
registers, which are seamlessly integrated by the Tensilica core devel-
opment tool in the processor pipeline. In the NoCRay implementation
3 bits out of 32 are reserved for the sequence number, thus a maximum
of 8 flits are possible within the logic packet. In this configuration the
area overhead of the network interface is 0.014 mm� that is around
5% of the processor itself. In general the link parallelism can be cus-
tomized to accommodate the flit size for a given implementation with
a gate count overhead between 2–5 k gates for 32–64 bit wide flits. In-
terestingly, building a microprocessor system with the native processor
bus (called PIF) instead of the NoC would require a bus controller with
almost the same area, according to the Tensilica development tool.

The choice of embedding the interface with the processor allowed
the ISA and consequently the compiler to support all NoC I/O thus fa-
cilitating the development of an ad-hoc scalable programming model.
This is necessary because the scalability of the hardware infrastructure
must be fully supported by the software layer. In this work, a scal-
able paradigm, natively parallel and architecture independent has been
implemented: the MPI programming model [16]. Zhonghai et al. [17]
analyze different programming models suitable for NoCs including
the Message Passing but this implementation appears to be too com-
plex and it seems more suitable for Operating Systems. The full MPI
standard provides a wide range of communication primitives particu-
larly suitable for computer networks; a more lightweight implemen-
tation might be preferable for an on-chip environment. We defined a
subset of MPI primitives that we called eMPI with two basic primitives:
send() and receive(). These functions are supported by the extended LX
processor instruction set. When invoked, the send() automatically seg-
ments the variable size data into a number of fixed size flits, computes
the header and injects the flits into the network. The receive() function
reads an incoming flit and analyzes the sequence number to check for
out-of-order data and performs reordering if needed.

D. Flow-Control and Synchronization

Although flow-control is not needed at flit-level because of the use of
deflection routing, still it is needed at packet level as well as synchro-
nization and these functions are supported by the basic eMPI primi-
tives send() and receive(). We decided to implement them as blocking
routines. Therefore, once a pair of processor open a communication,
by exchanging a request-reply single flit packet, they will stop doing
anything else but sending/receiving flits. This choice can be limiting in
terms of performance (for instance, multiple outstanding transactions

Authorized licensed use limited to: Mario Casu. Downloaded on July 27, 2009 at 10:16 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 3, MARCH 2009 387

Fig. 2. Basic architecture of each processor couple. The Instruction RAM is
shared between the two instances.

are not allowed) but on the one hand simplifies hardware and software
design as well as testing. On the other hand it solves the problem of
flow-control. Since flits are sent/received at the same rate—1 per clock
cycle—there are no stalls to back-propagate.

Concerning synchronization, the barrier() eMPI blocking primitive
is implemented as a semaphore. This function will release the control
back to the application only when the number of synchronization flits
received from other processors equals the expected one. This means
that in a pool of processors, some will send synchronization flits and
some will wait for one or more of them.

IV. CASE STUDY: THE NoCRay GRAPHIC ACCELERATOR

Graphic applications are one of the most suited for the MP-SoC NoC
environment since they are highly parallelizable and they require both
high computation capabilities as well as scalable communication in-
frastructures. In this section, the hardware/software (HW/SW) system
components previously described have been then used to design a mul-
tiprocessor graphic accelerator that we called NoCRay. The system has
been modeled and co-simulated using the virtual platform generated
with our ESL flow. We were able, thanks to this development environ-
ment, to design in parallel the software layer and the hardware, tar-
geting both an FPGA prototype and a 90-nm ASIC technology.

A. Parallel Raytracing Algorithm

The SPLASH-2 shared-memory parallel raytracing algorithm [18]
has been used as a starting point. Basically, it renders a three-dimen-
sional scene using a hierarchical uniform grid which is used to represent
the scene, and early ray termination and anti-aliasing are implemented.
A ray is traced through each pixel in the image plane, and reflects in un-
predictable ways off the objects it strikes. Each contact generates mul-
tiple rays, and the recursion results in a ray tree per pixel. The image
plane is partitioned among processors in contiguous blocks of pixel
groups, and distributed task queues are used with task stealing.

This algorithm has been ported into the distributed-memory pro-
gramming model using our eMPI APIs and fitted to the on-chip em-
bedded environment. The code requires 32 kB of Instruction Ram and
32 kB of Data Ram (see Fig. 2). The instruction code is shared between
two adjacent processors to reduce memory requirements.

Every line of the image is assigned to a specific processor belonging
to the work-pool and each processor can be identified by the Proces-
sorID Register (see Fig. 2) thus the same firmware can be uploaded to
all the processor instances using the Test Access Port (TAP) controller.
The code was written in such a way to self-adapt to a generic number of

Fig. 3. Flit structure with 8-bit Header and 24-bit Payload (R-G-B).

Fig. 4. Image generated by the NoCRay FPGA prototype.

processors, making the software as well scalable as the underling hard-
ware; with one basic instance of the processor and of the firmware, the
design of a MP-SoC architecture becomes a matter of cloning. More-
over, the fact that adjacent processors share the same code, leaves room
for further hardware optimization. In this case two processors share
a single Instruction Memory with dual-port capabilities as shown in
Fig. 2.

Each image line is segmented into blocks of 256 pixels. As soon
as a processor ends line computation, sends it through the NoC to the
Master Processor which has another TIE custom interface to an Eth-
ernet controller. Computed pixels are sent through the ethernet inter-
face to a host computer which displays the image into a screen. With
this approach the architecture can compute images of any size without
the need of any external memory. Since the computation is highly dom-
inated by floating point operations, a hardware 16-bit multiplier has
been added to the Tensilica LX base processor to improve performance.
Its effect on the system-level performance could be immediately tested
prior to implementation thanks to the ESL co-simulation flow.

In each NoC flit, 24 bits out of 32-bits are dedicated to the pixel
payload (Red, Green, Blue, 8 bits each), while 8 bits are for the header
(see Fig. 3). The latter is composed of three sub-fields: the valid-bit�,
the destination address ���, and the packet sequence number ���,
that is used to help the reordering phase as described in Section III-C.

B. Hardware Implementation

The design has been first mapped on a Xilinx Virtex-4 LX-160 FPGA
with 8 processors running at 33 MHz. It uses 90036 4-input LUTs and
an equivalent gate count of 17.3M. The FPGA prototype successfully
runs the application and the computed image was acquired and dis-
played shown by the host computer (see Fig. 4). With a host gdb debug
server running an OCDemon, using a Wiggler JTAG interface, it was
possible to upload the firmware and debug each processor separately.

We then implemented the NoCRay architecture on a 90-nm stan-
dard-cell technology. In Fig. 5, the manual floorplan is shown. The
manual floorplan was required in order to obtain a symmetric design
as well as to keep the switch-to-switch wire length as low as possible.
The floorplain reflects the folded-torus physical layout mentioned in
Section III-A.

Authorized licensed use limited to: Mario Casu. Downloaded on July 27, 2009 at 10:16 from IEEE Xplore. Restrictions apply.

388 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 3, MARCH 2009

Fig. 5. Manual floorplan of the NoCRay architecture.

Fig. 6. NoCRay multiprocessor architecture FPGA execution time.

C. Results

The final chip has an area of 34 mm� and a total power consump-
tion of 600 mW, of which 50.6 mW of leakage while the maximum
switch-to-switch distance is 2.5 mm. Processors give a total contribu-
tion of 3.24 mm� for the area and 480 mW for the power consumption
while memories a total of 17.92 mm� and 74 mW. The contribution of
the switches in terms of area is of 0.46 mm� and of 48 mW in terms of
power consumption. Since an over-the-cell routing was not used, the
total switch-to-switch routing area overhead is of 4.216 mm�. Buffer
insertion and timing-driven physical design has been done to reach the
500 MHz target frequency.

The FPGA system has been benchmarked varying both the number
of active processors, between 1 and 8, and the image size, from 32 �
32 to 756 � 512.

Fig. 6 shows the execution time for each image-size/active-proces-
sors configuration of the FPGA prototype. The results have been com-
pared with the execution time needed by an Intel Centrino running at
2 GHz. Considering that the FPGA implementation has a clock fre-
quency of almost 2 orders of magnitude less then the Centrino pro-
cessor, performance comparison clearly shows that, even if not taped-

out, the ASIC implementation of the proposed architecture, running at
a still relative lower frequency (400–500 MHz) could anyway outper-
form the Centrino with a less complex design. The Centrino processor
has been chosen just as a reference architecture for easy results com-
parison. Commercial GPUs will be used as a performance comparison
in a future work.

V. CONCLUSION

In this paper, a modular and scalable methodology for MPSoC de-
sign has been proposed. Different aspects of the design flow have been
tackled. A system level modeling approach for design exploration and
co-simulation based on the latest ESL technologies, microprocessor
characteristics for an efficient NoC link, a high-speed low-area de-
flection-routing switch implementation, an efficient Network Interface
solution and a scalable programming model based on the MPI par-
adigm have been all proven in the design of a graphic parallel ap-
plication, the NoCRay MP-SoC Raytracer. The design has been first
prototyped on FPGA and then implemented on a 90-nm standard-cell
ASIC technology. Results show the feasibility of the proposed design
flow achieving good results when compared with a general-purpose
high-speed processor.

REFERENCES

[1] “International Technology Roadmap for Semiconductors,” [Online].
Available: http://www.itrs.net

[2] J. Held, J. Bautista, and S. Koehl, “From a few cores to many: A Tera-
scale computing research overview,” in Intel Development Forum, San
Francisco, CA, Sep. 2006.

[3] , A. Jerraya and W. Wolf, Eds., Multiprocessor Systems-on-Chip. San
Francisco, CA: Elsevier Morgan Kaufmann, 2005.

[4] C. M. Weber, C. N. Berglund, and P. Gabella, “Mask cost and prof-
itability in photomask manufacturing: An empirical analysis,” Trans.
Semicond. Manuf., pp. 465–474, Nov. 2006.

[5] T. Kogel, R. Leupers, and H. Meyr, Integrated System-Level Modeling
of Network-on-Chip Enabled Multi-Processor Platforms. Dordrecht,
The Netherlands: Springer, 2006.

[6] A. Pullini, F. Angiolini, P. Meloni, D. Atienza, M. Srinivasan, L. Raffo,
G. De Micheli, and L. Benini, “NoC design and implementation in 65
nm technology,” in Proc. 1st Int. Symp. Networks-on-Chip (NOCS),
2007, pp. 273–282.

[7] The SPIRIT Consortium, Napa, CA, “The SPIRIT Consortium,” 2008.
[Online]. Available: http://www.spiritconsortium.org

[8] Tensilica Inc., Santa Clara, CA, “Tensilica website,” 2008. [Online].
Available: http://www.tensilica.com

[9] Mentor Graphics Inc., Wilsonville, OR, “Mentor Graphics Inc. web-
site,” 2008. [Online]. Available: http://www.mentor.com

[10] C. Grecu, P. Pande, A. Ivanov, and R. Saleh, “Timing analysis of net-
work on chip architectures for MP-SoC platforms,” Microelectronics
J., vol. 36, no. 9, pp. 833–845, 2005.

[11] , M. Steenstrup, Ed., Routing in Communication Networks. Engle-
wood Cliffs, NJ: Prentice-Hall, 1995, pp. 263–305.

[12] S. V. Tota, M. R. Casu, and L. Macchiarulo, “Implementation analysis
of NoC: A MPSoC trace-driven approach,” in Proc. ACM Great Likes
Symp. VLSI, Philadelphia, PA, Apr./May 2006, pp. 204–209.

[13] K. Goossens, J. Dielissen, and A. Radulescu, “AEthereal network on
chip: Concepts, architectures, and implementations,” IEEE Des. Test
Comput., vol. 22, no. 5, pp. 414–421, Sep.–Oct. 2005.

[14] S. Vangal, N. Borkar, and A. Alvandpour, “A six-port 57 GB/s double-
pumped nonblocking router core,” in Dig. Symp. VLSI Circuits, Jun.
2005, pp. 268–269.

[15] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz,
D. Finan, P. Iyer, A. Singh, T. Jacob, S. Jain, S. Venkataraman, Y.
Hoskote, and N. Borkar, “An 80-Tile 1.28TFLOPS network-on-chip
in 65 nm CMOS,” in Proc. ISSCC, 2007, pp. 98–589.

[16] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, MPI:
The Complete Reference. Boston, MA: MIT Press.

[17] Z. Lu and R. Haukilahti, Networks on Chip. Norwell, MA: Kluwer,
2003, pp. 239–260.

[18] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 programs: Characterization and methodological consid-
erations,” in Proc. 22nd Symp. C. A., Santa Margherita Ligure, Jun.
1995, pp. 24–36.

Authorized licensed use limited to: Mario Casu. Downloaded on July 27, 2009 at 10:16 from IEEE Xplore. Restrictions apply.

