
21 September 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Robust Causality Characterization via Generalized Dispersion Relations / Triverio, Piero; GRIVET TALOCIA, Stefano. -
In: IEEE TRANSACTIONS ON ADVANCED PACKAGING. - ISSN 1521-3323. - STAMPA. - 31:3(2008), pp. 579-593.
[10.1109/TADVP.2008.927850]

Original

Robust Causality Characterization via Generalized Dispersion Relations

Publisher:

Published
DOI:10.1109/TADVP.2008.927850

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1793166 since:

IEEE



IEEE TRANSACTIONS ON ADVANCED PACKAGING, VOL. 31, NO. 3, AUGUST 2008 579

Robust Causality Characterization via Generalized
Dispersion Relations

Piero Triverio, Student Member, IEEE, and Stefano Grivet-Talocia, Senior Member, IEEE

Abstract—The self-consistency of frequency responses obtained
via numerical simulations or measurements is of paramount im-
portance in the analysis and design of linear systems. In partic-
ular, tabulated responses with flaws and causality violations have
been demonstrated to be the root cause for numerical problems
and unreliability in modeling and simulation tasks. In this work,
we present the generalized dispersion relations as a robust and reli-
able tool for the causality characterization of frequency responses.
Several applications are presented, including causality and pas-
sivity verification for tabulated data and causality-controlled inter-
polation schemes. Practical examples illustrate the excellent per-
formance of the proposed techniques.

Index Terms—Causality, dispersion relations, Hilbert trans-
form, interpolation, passivity.

I. INTRODUCTION

E LECTRICAL interconnects play a key role in the per-
formance of high-speed digital systems. They must route

over long complex paths hundreds of digital signals, switching
at clock frequencies often in the gigahertz range. Therefore, a
proper interconnect design is crucial for the overall system per-
formance, in order to avoid signal integrity problems. A suc-
cessful design can only be carried out with accurate and reli-
able modeling and simulation tools in a computer-aided design
(CAD) environment.

A standard approach for interconnect simulation is macro-
modeling. Interconnects are commonly represented in standard
circuit simulators via black-box models obtained from input-
output frequency responses. The latter are available either from
direct measurements or from numerical field simulations. In
order to obtain well-posed models, the raw frequency data must
be physically consistent, i.e., coherent with the fundamental
properties of the original structure: causality, stability and pas-
sivity. Unfortunately, the consistency of measured frequency re-
sponses may be compromised by several factors like measure-
ment errors, wrong calibration procedures, and human mistakes.
Similarly, convergence errors, wrong settings, or unphysical as-
sumptions may lead to flawed results even when using state of
the art electromagnetic solvers. Since inconsistent data are one
of the main causes for CAD tools failure, robust methods to an-
alyze and possibly improve the quality of raw frequency data
are highly desirable.
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In this paper, we propose several algorithms for data qual-
ification based on a robust implementation of a special form
of dispersion relations. Dispersion relations are the counterpart
of the causality principle in the frequency domain. They con-
sist of a pair of integral relations strongly linking the real and
imaginary parts of any physical frequency response. Discov-
ered by Kramers [1] and Krönig [2], the dispersion relations
can be exploited for several purposes and, due to their global
validity, they have been used in almost all areas of physics, sci-
ence, and engineering. A brief history and a comprehensive set
of bibliographic references on dispersion relations can be found
in [3]. In electronics, dispersion relations have been used for
measured data reconstruction [4], correction [5], extrapolation
[6], time-domain inversion [7], and delay extraction [8].

A frequency response is causal when invariant upon appli-
cation of the dispersion relations, i.e., when it can be recon-
structed with no error from the dispersion relation operator. This
suggests a simplistic approach for causality check: apply the
dispersion relations and take the difference between the result
and the original data. If this difference is smaller than a pre-
scribed threshold, the original response is causal, otherwise it is
not causal. Such test is obviously ill-defined, since highly de-
pendent on the choice of the threshold. Moreover, application
of dispersion relations to practical data, typically known over
a limited bandwidth and at discrete frequencies only, is a very
critical task [9], [3], [10]–[12]. The approximation errors due to
the finite set of available samples may be so large to compro-
mise the resolution of the causality test.

Two conditions must hold for insuring a sound numerical
causality test. First, the numerical error in the evaluation of the
dispersion relations must be small. Second, a good estimate or
a bound for this error must be available, in order to quantify the
numerical resolution of the test. Causality violations will be de-
tectable only when larger than this numerical resolution.

This paper presents for the first time a numerical scheme
that fulfills both conditions, hence guarantees a sound causality
test for practical data. First, the minimization of the numerical
error is achieved by employing the so-called generalized disper-
sion relations, also known as dispersion relations with subtrac-
tions or generalized Hilbert transform, which are intrinsically
less sensitive to missing frequency points in the data (e.g., the
high-frequency portion of a bandlimited response). We present
an accurate scheme for their numerical evaluation, based on
singularity extraction. Second, we provide rigorous and tight
bounds for the unavoidable numerical errors due to both band-
width truncation and discretization. The combination of these
features allows the definition of a numerically robust causality
test. The excellent performance of the proposed technique is il-
lustrated by considering several possible applications. We re-
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mark that, although the applications presented in this work are
focused on electrical interconnects, the scope of this study is
quite general, since the main results are applicable to any field
of physics and science where linear and time-invariant systems
are encountered.

This paper is organized as follows. Section II presents some
background material on causality and dispersion relations. Also,
the notation that will be used throughout this work is introduced.
In Section III, the generalized dispersion relations are presented,
together with a detailed analysis of all sources of errors in-
volved in their numerical evaluation. This section includes a
detailed comparison of proposed approach with existing tech-
niques, showing how the state of the art is improved. In Sec-
tion IV, a robust and accurate causality check scheme based
on generalized dispersion relations is presented. In Section V,
the technique is applied to verify the passivity of tabulated scat-
tering responses. Finally, in Section VI, a causality-constrained
interpolation scheme is presented.

II. CAUSALITY AND DISPERSION RELATIONS

In this section, we recall some fundamental properties of
linear systems with particular emphasis on the causality prin-
ciple, from which dispersion relations derive.

A. Linear Systems and Causality

We consider linear and time-invariant (LTI) electrical -port
networks, with input and output identified by the -elements
vectors and , respectively. This description includes
common network representations, e.g., impedance ( being cur-
rents and voltages), admittance ( being voltages and cur-
rents), and scattering (both being power waves). In the
LTI case, the response can be written as the convolution
between the input and the impulse response [13]

(1)

For a network with ports, is a matrix of scalar func-
tions , each one representing the response observed at port

when an ideal impulse (a Dirac’s delta) is applied at port ,
with all other inputs vanishing. The matrix describes com-
pletely the system behavior and includes important information
about its fundamental physical properties. Causality, which is
one of these properties, is the main subject of this work.

The causality principle states that no effect can precede in
time its cause. The mathematical condition that identifies a LTI
causal system is defined by the following theorem [13].

Theorem 1: A LTI system is causal if and only if all the ele-
ments of its impulse response matrix are vanishing
for , i.e.,

(2)

B. Dispersion Relations

Dispersion relations are the frequency-domain counterpart of
(2), and any causal frequency response, defined as the standard
Fourier transform of the impulse response

(3)

must comply with them. They are of paramount importance,
since LTI systems are naturally described, analyzed and de-
signed in frequency domain. We provide in the following
paragraph a brief derivation of dispersion relations, in order
to present the necessary background material for the new
developments of Section III.

For simplicity, we consider a scalar impulse response , al-
though the whole derivation holds also in the multidimensional
case for any element of the matrix . Because of (2), any
causal impulse response satisfies

where is the sign function that equals 1 for and
for . Application of the Fourier transform leads to

(4)

where the integral is defined according to the Cauchy’s principal
value

(5)

If we separate now the real and the imaginary part of (4) we get

(6a)

(6b)

where . These equations are known as
Kramers–Krönig dispersion relations or Hilbert transform and
hold if and only if (2) is satisfied, as proved in [14]. Therefore,
they are the frequency domain condition for the causality of
a LTI system. We reinterpret now the above relations under a
slightly different standpoint. Equation (4) can be seen as the
application of a (Hilbert-transform) reconstruction operator

(7)

This operator maps any causal frequency response onto itself

(8)

equivalently, becomes the identity operator when applied to
causal responses. If instead we release the causality assumption
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on , we obtain , with a corresponding
reconstruction error

(9)

A nonvanishing reconstruction error indicates the presence of
causality violations in the original frequency response. This will
be the main numerical tool that we will further develop for
causality detection and characterization.

C. Practical Difficulties With Dispersion Relations

Two main difficulties arise when trying to apply (7). First,
the high-frequency behavior of for lumped or distributed
networks may not be decreasing to zero. It may not even be
bounded, as in the case of impedance/admittance representa-
tions. This implies difficulties in the definition of the Hilbert
transform integral, which holds only when is square in-
tegrable [14].

Even if the Hilbert transform integral is well defined, a second
practical problem must be faced in its numerical evaluation. In
fact, in practical applications the frequency response is obtained
either via numerical simulation or direct measurement and is
available only over a set of discrete frequency samples up to a
maximum frequency

(10)

We can further distinguish between the baseband case

(11)

and the bandpass case

(12)

with missing samples at low frequencies. In the following, we
will focus on the baseband case (11), and we will denote the
frequency range where data points are available as

(13)

with data for negative frequencies being recovered from basic
spectrum symmetries. Full details on the bandpass case will be
presented in the Appendix. Under these conditions, the useful-
ness of dispersion relations is subject to the availability of a
robust and efficient algorithm for their numerical computation.
This is a challenging task because of two reasons:

• Since the available data span a limited frequency range,
the integrals in (6) have to be restricted to , introducing
a truncation error. Unfortunately, this error may be very
large. In order to overcome this issue and achieve a high
accuracy, a more advanced form of dispersion relations will
be introduced in Section III.

• The discrete nature of the available data introduces a dis-
cretization error in the numerical evaluation of (6). Also, a
dedicated quadrature algorithm must be devised due to the
presence of the singular kernel , since standard
techniques may lead to very poor accuracies.

To show the significance of these two errors, we numerically
computed the dispersion relations (7) for the parameter of a

Fig. 1. Numerically computed reconstruction error for the � coefficient of
a simple transmission line (per-unit-length parameters � ���� nH/cm, �

��� pF/cm, � ������	� � �, length � � 
� cm), tabulated up to 5 GHz
(40 points). The contributions of truncation and discretization errors are shown
separately.

simple transmission line, tabulated from 0 up to 5 GHz at 40 fre-
quency points. The numerical computation of the integral in (7)
was performed with a conventional quadrature algorithm (trape-
zoidal rule), regardless of the singular nature of the integral. The
integration interval was restricted to the available bandwidth

GHz. Since the parameter is certainly causal, we
would expect (8) to be satisfied, or equivalently, the reconstruc-
tion error to be vanishing. Numerical results are very
different. As depicted in Fig. 1, the numerically computed re-
construction error is very large, because of both truncation and
discretization errors. Although the discretization error can be
somewhat controlled by a sufficiently fine frequency sampling,
the truncation error can be very large. This strongly limits the
usefulness of dispersion relations, unless a more careful formu-
lation and implementation is devised. This is the subject of the
next Section.

III. GENERALIZED DISPERSION RELATIONS

A. Dispersion Relations With Subtractions

The main limitation of standard Kramers–Krönig relations
(6) is their sensitivity to the high frequency data, which are not
available in practice. To overcome this serious issue, the use of
a generalized formulation of dispersion relations named disper-
sion relations with subtractions [15], [16] has been proposed in
[17], [18]

(14)

where the so-called subtraction points are spread over
the available bandwidth . In (14), the term denotes
the Lagrange interpolation polynomial [19] for

(15)

with the substraction points used as interpolation
knots. A complete derivation of these formulas can be found in
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[15], [16]. Here, we just observe that (14) can be interpreted as
the application of (4) to the auxiliary frequency response

(16)

which is constructed by subtracting the polynomial trend
from and dividing by the polynomial normal-

ization factor at the denominator. Note that the singularities of
at the subtraction points are only apparent, due to the

presence of the Lagrange polynomial , which equals
for .

Equation (14), also known as generalized Hilbert transform
[20], defines a generalized reconstruction operator . Clearly,
(7) can be obtained as a particular case of (14) by setting .
Similarly, we can define the real operators that gener-
alize (6) by extracting the real and the imaginary parts of (14)

(17)

where . As for (7), we have that
only causal frequency responses are mapped onto themselves
by the reconstruction operator , i.e.,

(18)

The generalized reconstruction operator has two important
advantages with respect to . First advantage is generality,
since results well defined for any frequency response having
a polynomial growth up to . Second, its sensitivity to the
high-frequency behavior of results drastically reduced.
This is essentially due to the presence of the polynomial at the
denominator in (14), which acts as a sort of “low-pass” filter.
These considerations are made more precise in the following.

B. Truncation Error

Integration in (14) is performed over the whole real line.
However, application to bandlimited responses imposes a
restriction of the integration interval to defined in (13).
Therefore, only an approximation of the reconstructed
frequency response can be evaluated, for , as

(19)

The last term includes the contribution of the Lagrange interpo-
lation polynomial over the complement set
that identifies the band which is not spanned by the data. If
this contribution is not included in the computation, the result
turns out to be very inaccurate, thus wasting the effort in using
the more sophisticated generalized dispersion relations. Since

the Lagrange polynomial is known analytically, the quantity
can be evaluated in closed form and reads

(20)

where

(21)

The expression (20) will be used for the numerical evaluation of
(19) in Section III-E. We now define the truncation error
by taking the difference between the bandlimited approximation
(19) and (14)

(22)

This error is a function of number and position of subtraction
points. A careful selection of these parameters allows to con-
trol this error almost up to arbitrary precision. In fact, when the
number of subtractions is increased, a smaller integrand is ob-
tained in (22), resulting in a smaller truncation error . It
turns out that a rigorous bound for can be formally de-
rived from (22). Under the hypothesis

(23)

and for , it can be proved (see Appendix B) that

(24)

where

(25)

and that this bound is tight. The case is particu-
larly important since it corresponds to the scattering responses
of passive networks, for which we have . From
(25) we can easily verify that the truncation error is bounded
between any pair of subtraction points and decreases when their
number is increased. Fig. 2 confirms these statements by de-
picting the truncation error bound for .

C. Optimal Displacement of Subtraction Points

The truncation error is frequency-dependent. It vanishes at
the subtraction points, and it reaches a maximum between each
pair of subtractions. The exact values of these maxima depend
on the actual location of the subtraction points. It is clear that
an optimal placement of these points is obtained when all these
maxima are equal, so that the truncation error can be uniformly
bounded by a constant throughout the bandwidth of interest.
Such condition is approximately reached when the subtraction
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Fig. 2. Truncation error bound (for � � �� � � �) as a function of the
number � of subtraction points.

Fig. 3. Truncation error bound for uniform and Chebyshev distributions of� �
� subtraction points �� � ��� � ��.

frequencies are placed according to a Chebyshev dis-
tribution [10]

(26)

This placement allows to minimize the truncation error bound
uniformly in the bandwidth

(27)

i.e., in the full bandwidth except two arbitrarily small inter-
vals at the bandwidth edges. Obviously, the truncation error di-
verges at the bandwidth edges due to the missing out-of-band
samples. A comparison between the truncation error for uniform
and Chebyshev distributions is depicted in Fig. 3. An intuitive
justification for this result can be given noting that the truncation
error increases when the Hilbert kernel gets close to the edges.
Therefore, an increased density of subtractions near the edges
guarantees a smaller truncation error. The optimal displacement
of subtraction points for the bandpass case (12) is discussed in
Appendix A.

D. Discretization Error

We focus now on the unavoidable discretization error arising
in the numerical evaluation of (19) via some quadrature rule. We
denote as the outcome from a given numerical quadra-
ture rule of order , whereas denotes the corresponding
discretization error

(28)

The discretization error may be very large if no special care is
taken in handling the singular kernel of the Hilbert transform. To
regularize the integral, we adopt a singularity extraction proce-
dure. The singular part of the integrand function is subtracted
from the integral and added separately, as shown in the fol-
lowing equation:

(29)

The second term in (29) represents the contribution of the singu-
larity and is evaluated in closed form using (21). The remaining
integral is smooth and well behaved, since the integrand func-
tion is now regular for and can be computed with any
quadrature routine.

In order to estimate the discretization error introduced by nu-
merical integration, one can opt for two different strategies, de-
pending on the application. The first strategy performs the com-
putation twice using two different integration methods with dif-
ferent orders . An estimate of the discretization error is
obtained by taking the difference of the two results

(30)

under the reasonable assumption that the higher order quadra-
ture rule provides a much better result, which can be used as the
reference for the error estimate.

The above technique usually gives reasonable estimates but
does not provide an upper bound of the discretization error.
A possible alternative is to derive a worst-case bound for the
adopted quadrature rule. As an example, conservative bounds
for the Simpson’s quadrature rule have been derived in [21].
Using this second strategy will guarantee that the actual dis-
cretization error is always smaller than the error bound. The
specific choice depends whether one prefers the results with
the highest resolution (first strategy) or the worst-case scenario
(second strategy). The latter will guarantee that no false posi-
tives are obtained in the causality test, to be presented in Sec-
tion IV.

Without any a priori information, a low-order quadrature rule
is preferable in order to build a robust numerical tool which is
applicable also to noisy data. Throughout this work, we use a
combination of Simpson’s and trapezoidal rule, using (30) to
estimate the discretization error.

E. Error-Controlled Evaluation of Dispersion Relations

The numerically reconstructed frequency response
defined via the generalized dispersion relations is obtained by
applying (19) to the set of discrete samples in (10). The first
term in (19) is the Lagrange interpolation polynomial and is an-
alytically known, see (15). The integral in the second term is
computed using the singularity extraction procedure (29) com-
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bined with some quadrature rule. Finally, the last term in (19) is
also known analytically and is given by (20).

Thanks to the systematic analysis of truncation and dis-
cretization errors, the worst-case error affecting the
numerical result

(31)

is known and is given by

(32)

In addition, the accuracy in the reconstruction can be greatly en-
hanced by increasing the number of subtraction points , thus
lowering down to the limit represented by discretiza-
tion error . The excellent accuracy of the proposed tech-
nique is demonstrated in the applications presented in the next
Sections.

F. Comparison With Existing Techniques

Before proceeding any further, we compare our approach
with previous works on dispersion relations, to show how the
state of the art is improved.

• In [5] and [10] the truncation error is minimized with an
extrapolation of the available data beyond the maximum
available frequency . This may somehow improve the
accuracy of the result, but does not allow neither a rigorous
arbitrary minimization nor an estimation of the truncation
error, as guaranteed by the proposed approach.

• Some earlier works on dispersion relations with subtrac-
tions [11], [10] neglect the Lagrange polynomial
under the integral sign in (14). Unfortunately, without that
term the integrand function in (14) turns out to be singular
for , therefore its numerical evaluation can be in-
accurate. This approximation might be acceptable only in
very particular cases. For example, in case of highly reso-
nant data as in [11] and [10], the subtraction points
can be placed where is small, resulting in a small
interpolation polynomial . It is clear that this so-
lution lacks generality and significantly limits the number
and position of subtractions.

• In [3] and [22], the integration interval in (14) is simply re-
stricted to available bandwidth without any special care.
This approach introduces large error terms, called “arti-
facts” in [3] and [22], which may compromise the bene-
fits of adopting a generalized form of dispersion relations.
We introduce instead (19), a new bandlimited version of
(14), that includes the additional term , related to
the out-of-band contribution of the Lagrange polynomial,
which is extracted analytically. Only when this term is in-
cluded one can rigorously prove that the truncation error
(22) is bounded by (25) and can be arbitrarily minimized
by increasing . Fig. 4 displays how neglecting the term

in (19) increases the recontruction error beyond the
bound (25). If is instead considered the reconstruc-
tion error always remains below the predicted bound.

• We finally cite the interesting work [9] that derives rigorous
bounds for the reconstruction error, with application to the

Fig. 4. Magnitude of the reconstruction error for the transmission line insertion
loss � of Fig. 1, obtained when the term � ���� in (19) is either considered
(solid line, our approach), or neglected (dashed line, as in [3] and [22]). The
truncation error bound � ��� is also depicted (dashed–dotted line).

dielectric permittivity and magnetic permeability. The ap-
proach is quite different from ours, and based on the prop-
erties of Stieltjes functions. The functions considered in [9]
have finite limit for and not a generic polynomial
growth, as considered in this paper. An extension of [9] to
this kind of functions is an interesting direction for future
research on the topic, and will allow a comparison with the
proposed approach.

IV. ROBUST CAUSALITY CHECK FOR TABULATED DATA

Measurement or simulation errors may destroy the causality
of tabulated frequency responses, otherwise guaranteed by
physical reasons. As documented in [17] and [23] even small
causality violations in the data may seriously compromise mod-
eling and simulation tasks, due to the physical inconsistency of
the flawed frequency samples. Therefore, a robust and accurate
procedure for causality verification of tabulated frequency data
is highly desirable, in order to certify a given dataset for safe
use in a CAD environment.

One possibility to infer causality from frequency-domain re-
sponses is to directly check condition (2) by computing the in-
verse Fourier transform of (10) via fast Fourier transform (FFT).
This procedure turns out to be very unreliable. In fact, the ban-
dlimited nature of the data may give rise to the well-known
Gibbs phenomenon and to aliasing effects [5], which superim-
pose to the true impulse response a significative error term,
thus distorting the causality check. Using the standard disper-
sion relations (4) is also unreliable, due to the possibly large
truncation error in the evaluation of the Hilbert transform. In
this section, we present an accurate and reliable method to as-
certain the causality of tabulated data, based on the generalized
dispersion relations.

A. Theoretical Derivation

A given frequency response is causal if and only if the
ideal reconstruction error

(33)
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is vanishing at all frequencies. However, in practice only the
numerical estimate

(34)

is available, differing from the ideal case because of truncation
and discretization errors. In order to unbias the causality test
from these terms and obtain a reliable identification of causality
violations, we explicitly take into account the bound in (32).
Two situations may occur.

When

(35)

we are confident that is not causal, because the
computed reconstruction error exceeds the bound that has
been derived for all possible sources of numerical errors.
When

(36)

any causality violation in the data is smaller than the
numerical resolution affecting the calculations, hence
it cannot be detected. Some control over the resolution
is provided by the number of subtraction points , as
discussed below. However, this resolution cannot be made
arbitrarily small, being intrinsically limited by the finite
number of frequency samples, known over a finite band-
width.

We now provide some insight on the effectiveness of (35) in
the detection of causality violations. To this end, we assume that
the available data for are composed by the true frequency
response , which is certainly causal, and a perturbation
term

(37)

This perturbation may be due, e.g., to measurement or simula-
tion errors during the extraction of the raw frequency responses.
Therefore, we define as identically vanishing outside the
available bandwidth. In general, we can split this perturbation
as

(38)

where is causal and is anti-causal, i.e., having
an inverse Fourier transform which is
vanishing for . Applying now (33) and (34) to (37), and
noting that the ideal reconstruction error for both and

is vanishing, we get the following expression for the
numerically computed reconstruction error

(39)

The above expression takes into account that any anti-causal
function satisfies , which leads to anti-

causal dispersion relations identical to (14), except for a sign
change in front of the integral. Since

our proposed test (35) will detect the causality violation when
the following condition holds

(40)

This expression involves only the anti-causal perturbation term
and its associated Lagrange polynomial. In (40), the left-hand
side can be interpreted as the effective causality violation “seen”
by the algorithm, while the right-hand side as its “resolution.”
Obviously, detection occurs when the violation is greater than
the resolution , which is given by (32). Increasing the
number of subtractions improves the detection capabilities
of the method because the truncation error is decreased,
thus enhancing the resolution up to the limit represented by the
discretization error .

There is only one situation when a large number of subtrac-
tions does not lead to any advantage. This case occurs when

decreases with faster than the trunca-
tion error, i.e., when the causality violation is very
smooth. Standard Fourier analysis arguments show that the
corresponding time-domain representation has a narrow
support or a fast decay rate away from . Such violation
is intrinsically difficult to detect, independently on the adopted
algorithm. Finally, we remark that the error bound (25) that
we derived is the strictest possible (see Appendix B), and it
provides the best resolution with a given bandwidth.

B. Example: Detection of Weak Causality Violations

We verified the above considerations with the following ex-
ample, which highlights also the excellent resolution of the pro-
posed method. The -parameters of the line considered in Fig. 1
have been perturbed with a Gaussian-shaped term

(41)

centered at . The above perturbation is obviously
noncausal, with and controlling respectively the amplitude
and bandwidth of the induced causality violation. We applied
the proposed causality check in order to detect this violation.
In Fig. 5, the norm1 of both frequency-dependent threshold

and reconstruction error are plotted
versus the number of subtractions , for different perturbation
amplitudes . Detection occurs when ,
i.e., when the solid curve emerges from the dashed one. As
evident from the top panel, even very weak causality violations
can be revealed by increasing the number of subtractions, due
to the reduction of the detection threshold . In the

1The adopted �-norm is defined as � � � � ��� � � � with � given by
(27).
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Fig. 5. Norm of the frequency-dependent threshold �� ���� and of the
reconstruction error �� ���� versus the number of subtractions �. The per-
turbation is centered at � � ��� GHz, has a semi-bandwidth � � ��� GHz,
and different amplitudes � � �� � �� � �� . The thickest solid line de-
notes the unperturbed case �� � ��. The 	-parameters of the line have been
computed at 1000 points (top panel) and 250 points (bottom panel).

Fig. 6. As in the top panel of Fig. 5, but with constant perturbation amplitude
� � �� and variable perturbation bandwidth � � ������ ��� GHz.

bottom panel the available frequency points have been reduced
from 1000 to 250. The increased discretization error limits the
reduction of to about . Therefore, the
detection of causality violations smaller than this baseline is
not possible.

We focus now on the effect of the perturbation bandwidth
on the causality check. If increases, the perturbation becomes
wider and smoother in the frequency domain, and narrower in
the time domain. As discussed above, such a causality violation
is intrinsically harder to be detected, as confirmed by the curves
depicted in Fig. 6.

Fig. 7. Model extraction from measured scattering data of a long interconnect.
The residual error of the rational model generated by VF is plotted versus model
order.

Fig. 8. Measured raw data (solid lines) and corresponding numerical recon-
struction with associated worst-case error bar (gray shaded areas) for the 	
(top panel) and 	 (bottom panel) scattering parameters of a long interconnect
link.

C. Example: Qualification of a Measured Dataset

We consider here a long interconnect link, whose scattering
parameters have been measured with a VNA in the frequency
range 10 MHz–10 GHz (courtesy of IBM). We apply the
proposed causality check technique to qualify the measurement
results. In fact, we suspect the presence of some inconsistency
in this dataset from the failure of a standard macromodeling
process. More precisely, we tried to compute with the popular
and robust vector fitting (VF) algorithm [24] a model for the
dataset. Fig. 7 shows the model error for different orders.
Clearly, VF is unable to improve the model accuracy beyond

, even if the model order is significantly increased.
Application of the proposed methodology indicates the pres-

ence of causality violations in the data. In the top panel of Fig. 8,
the imaginary part of the parameter is depicted (solid line),
together with its numerical reconstruction computed from the
real part via dispersion relations. The latter is depicted in the
plot with a gray shaded area, in order to take into account that
the numerical reconstruction is only available with an associ-
ated numerical error. The thickness of the shaded area is related
to the worst case error (32). The points which fall outside of this
region are inconsistent because they do not respect (36). Small



TRIVERIO AND GRIVET-TALOCIA: ROBUST CAUSALITY CHARACTERIZATION VIA GENERALIZED DISPERSION RELATIONS 587

causality violations have been found also in other scattering pa-
rameters, as shown in the bottom panel of Fig. 8 for . As
demonstrated in [23], causality violations in the raw data may
seriously compromise the accuracy and convergence speed of
VF. This happens because VF, while minimizing iteratively the
error between the estimated macromodel and the given data, en-
forces the model poles to be in the left half plane. As shown in
[23], this enforces both the model stability and causality. How-
ever, when the raw frequency data are not causal, this is an im-
possible task, since the frequency response of a macromodel that
is causal by construction will never match with good accuracy
noncausal data. More details on this issue, including the related
theoretical background, can be found in [23].

V. ROBUST PASSIVITY CHECK FOR TABULATED DATA

Passive components such as lumped elements (capaci-
tors, resistors, inductors) and interconnect structures (wires,
connectors, board and package lines) are unable to generate
energy. However, when the frequency response of a passive
component or subsystem is obtained through a measurement
or a simulation, errors may compromise the passivity of the
data, thus impairing the accuracy and the physical consistency
of the characterization. Moreover, CAD models derived from
non-passive data may be non-passive too, leading to wrong
and divergent simulations results, as well documented in the
literature [25], [23]. A passivity check procedure is therefore
important to qualify frequency datasets for safe use in CAD
design tools.

A. Theoretical Derivation

The basic passivity conditions for -parameters are given by
the following theorem [13], where the scattering matrix is
considered in the Laplace -domain.

Theorem 2: A scattering matrix represents a passive
system if and only if:

1) each element of is analytic2 in ;
2) is a nonnegative-definite matrix3 for all

such that ;
3) .
The superscripts and denote the complex conjugate and

the transpose conjugate, respectively. Since Theorem 2 implies
the knowledge of the scattering matrix in the whole
half plane, it is not suitable for practical purposes, when is
available only on the imaginary frequency axis, i.e., for .
If conditions 2) and 3) are restricted to , passivity can
be fully ascertained only for lumped stable systems [23]. To
remove this strong limitation we exploit the following theorem
[13], that holds for both distributed and lumped systems.

Theorem 3: A scattering matrix represents a passive
system if and only if

1) dispersion relations (14) hold for ;
2) is a nonnegative-definite matrix for all

;

2A complex function � ��� is analytic in a given region � if it has no singu-
larities in �.

3A complex hermitian matrix� � � is nonnegative-definite if � �� �
� for all complex vectors � �� �.

Fig. 9. Return loss � for a three-conductor transmission line. The results
of a field solver (solid lines) are compared to the responses of two different
VF-generated models: a model with stable poles only (dashed lines, inaccurate)
and a model allowing for unstable poles (dashed–dotted lines, very accurate).

3) .
In this Theorem, the restriction of conditions 2) and 3) to the

imaginary axis is compensated by condition 1), which states that
causality is a necessary condition for passivity. Thanks to The-
orem 3, we are able to investigate the passivity of a scattering
response from its knowledge on the frequency axis only.

Based on this powerful theorem, a numerical passivity test
for tabulated data can be established as follows. Condition 1)
requires to be causal. This condition can be verified with
the procedure discussed in Section IV. For condition 2), one
simply checks if all the singular values of are bounded by
one . Finally, condition 3) represents the spectrum symme-
tries valid for the Fourier transform of real valued signals. This
condition is always assumed to hold.

B. Example

We applied the proposed passivity check scheme to the scat-
tering parameters of three coupled lines, computed with an elec-
tromagnetic solver up to 4 GHz (courtesy of Nokia). The gen-
eration of a good macromodel for this dataset proved to be im-
possible, even with the robust vector fitting (VF) algorithm. In
Fig. 9, the raw frequency data are compared with the response
of two different models generated with VF. The first model has
been constructed following the standard procedure of rejecting
the poles with positive real part. The model is therefore stable
but it turns out to be very inaccurate. A satisfactory accuracy
could be achieved only with a second model, obtained by VF
by releasing the constraint of stable poles. The poles of both
models are depicted in Fig. 10, showing that the second model
includes poles in the right-hand plane and is therefore nonpas-
sive. In summary, both models are useless, either because of
poor accuracy or unstable behavior.

The proposed passivity check scheme was applied in order
to track the main reason for these difficulties. First, we verified
condition 2) of Theorem 3. Since all singular values of the scat-
tering matrix are uniformly bounded by one (see Fig. 11), this
condition is fulfilled. However, the data are not passive because
condition 1) is violated, as shown in Fig. 12, where the given
parameter is compared with its numerical reconstruction com-
puted via dispersion relations. Inconsistencies are clearly visible
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Fig. 10. Poles of the VF-generated models (Grad/s units): stable case (left) and
unstable case (right).

Fig. 11. Singular values of the scattering matrix as a function of frequency.

Fig. 12. Causality check result for the � parameter. Same notation as in Fig.
8.

at low frequency, denoting obvious causality violations. These
are indeed the root cause of the modeling problems.

VI. CAUSALITY-CONSTRAINED INTERPOLATION

In this section, we develop a causality-controlled interpola-
tion scheme based on the generalized dispersion relations. Pre-
liminary results on this scheme were first documented in [26].
The main advantage of the proposed algorithm is a superior ac-
curacy with respect to standard interpolation schemes, with the
additional guarantee of the causality in the result. As an ap-
plication example, we also show the usefulness of this tech-
nique in recovering a sound estimate of the system response
at missing low-frequency samples, including the dc (zero-fre-
quency) point. It is well known that such points are usually not
available via standard measurements or simulations.

A. Theoretical Derivation

We consider a tabulated frequency response (12) with the aim
of reconstructing the missing frequency data for .
This task can be easily accomplished by interpolating the real
and imaginary parts of with, for ex-
ample, splines. Unfortunately, this simple solution fails to pro-
vide a physically consistent result, since the independent recon-
struction of the real and imaginary parts does not preserve the
relations imposed by causality.

Physical consistency can be achieved by combining interpo-
lation and dispersion relations as follows. First, a reconstructed
imaginary part is obtained as

(42)

where denotes a standard (e.g., linear or spline-based) inter-
polation scheme using the available samples . The result
differs from the exact but unknown by some interpolation
error

(43)

This reconstructed dataset is used to fill the data gap as

(44)

In a second stage, the missing portion of the real part in
is reconstructed from using the general-

ized dispersion relations. More precisely, if we denote as
the numerical discretization of the real reconstruction operator
in (17), we define

(45)

The complete reconstructed real part is thus obtained as

(46)

The reconstructed response

(47)

is causal by construction regardless of the interpolation error
, since its presence is accounted for in the computation

of the real part. In fact, includes its generalized Hilbert
transform, since

(48)

It must be noted that, although the interpolation error
vanishes outside , its Hilbert transform may not.
However is very small outside the missing band-
width, vanishing at all subtraction points. Therefore, it can be
considered to be important only in the reconstructed frequency
gap , without significantly affecting the causality
of .
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Fig. 13. Exact � parameter of a transmission line (solid line) is compared
with the results of a standard spline-based interpolation (dashed–dotted line) and
our proposed causality-constrained interpolation (dashed line). Bounds imposed
by causality on the real part are also shown (shaded area).

In order to maximize the accuracy in the missing bandwidth
, a careful placement of the subtraction points is

in order. Two conflicting constraints must be considered. On one
hand, the subtraction points should be placed close to the edges
of the missing bandwidth, so that the truncation error is mini-
mized where needed. On the other hand, any pair of subtraction
points should not be too close, since an excessive proximity of
singularities in (19) increases the numerical discretization error.
We found that the following rule leads to an appropriate place-
ment of subtractions ( is supposed to be even)

(49)

with . The number of subtractions is determined
using the closed-form bound [25], in order to guarantee a trunca-
tion error in the missing bandwidth smaller than any prescribed
tolerance.

B. Analytic Example

We first demonstrate the performance of the proposed tech-
nique with an analytic example. We computed the param-
eter of a simple transmission line (per-unit-length parameters:

nH/cm, pF/cm, /cm, ,
length: cm) from 0.4 to 10 GHz. Then, we reconstructed

in the missing bandwidth (from 0 to 0.4 GHz) using a stan-
dard spline interpolation for both real and imaginary parts, and
the proposed causality-constrained technique. Fig. 13 reports
the results. The two interpolations for the imaginary part are
identical, whereas the real part estimates are quite different. The
proposed technique guarantees a significantly better accuracy
and satisfies the bounds imposed by causality (shaded area).

Fig. 14. Maximum error between the reconstructed � parameter obtained
from (47) with respect to the exact value, as a function of missing bandwidth.
Results from different interpolation techniques are shown: proposed method
(dashed line), proposed with standard Kramers–Krönig relations (solid line) and
splines (dashed–dotted line).

Spline interpolation fails to provide both a good accuracy and a
causal result.

The sensitivity of the reconstruction with respect to the extent
of the data gap was also tested. We varied the amplitude of the
missing bandwidth in the range GHz, and we com-
puted the corresponding interpolation error. Fig. 14 depicts this
error as a function of . This test shows that causality-con-
strained interpolation is 3–10 times more accurate than conven-
tional algorithms. In the same plot, we also report the poor ac-
curacy that one achieves if Kramers–Krönig relations (6) are
blindly used, instead of employing the proposed generalized
Hilbert transform operator.

The above results can be interpreted as follows. The causality-
constrained interpolation guarantees a better performance since
it resorts to interpolation for either the real or the imaginary part
only, the other one being accurately computed with dispersion
relations. Therefore, a careful choice for the part to be inter-
polated allows a reduction of the interpolation error. For the
case of a missing interval located around the zero frequency
(dc), it is always convenient to interpolate the imaginary part,
since it vanishes for because of basic spectrum symme-
tries. This condition provides an additional interpolation point
that increases the accuracy. The proposed technique can be also
applied to reconstruct data within any arbitrary bandwidth, not
necessarily centered at dc. In this case, since there is no a priori
information on which part should be preferred for interpolation,
the only advantage of the proposed scheme is the guarantee of
the causality of the result.

C. Application Example

We consider here a package to package differential link,
routed through the first package, a PCB, a connector, another
PCB, and then back through to the second package (courtesy of
Dr. K. Bois, HP). The scattering parameters of the interconnect
were measured with a 4-port vector network analyzer from 10
MHz to 20 GHz. Due to the interconnect length, the parameters
have very fast phase variations, as depicted in Fig. 15 for the
insertion loss .

In order to recover the missing dc point, both standard spline
interpolation and the proposed scheme were applied. The two
results turn out to be quite different, as shown in Fig. 16. This



590 IEEE TRANSACTIONS ON ADVANCED PACKAGING, VOL. 31, NO. 3, AUGUST 2008

Fig. 15. Insertion loss � (real part) of the differential I/O link. The frequen-
cies from 5 to 20 GHz are not shown for clarity.

Fig. 16. Insertion loss � for low frequencies, with the additional dc point es-
timated by the proposed method (dashed line) and standard spline interpolation
(solid line).

difference is due to the interconnect length, that makes the sam-
ples spacing (10 MHz) quite coarse. Since a real measurement
of the dc point was not available to validate the reconstruction
accuracy, we devised the following alternative test. The differ-
ential link is connected to 50- resistors on ports 2, 3, 4 and to
a voltage source with 50- internal impedance on port 1. The
voltage source applies a pulse of unit amplitude, 30 ns wide,
and with a 0.15 ns rise time. The voltage at the far end of the
line is depicted in Fig. 17 and shows how the large difference
between the two reconstructed dc points affects the accuracy of
the simulation result. Since the input pulse has a lower voltage
level of 0 V, the output voltage is expected to have a vanishing
dc baseline. However, the dc point obtained with spline inter-
polation leads to a transient response which is downshifted by
more than 0.2 V. If the dc point is instead recovered with the pro-
posed causality-controlled scheme, a much more realistic result
is achieved. This example clearly points out the dramatic impact
that simplistic data processing algorithms may have on the reli-
ability of CAD simulations.

VII. CONCLUSION

We presented a numerical technique based on the generalized
Hilbert transform, which allows a precise characterization of the
causality for tabulated frequency responses. Rigorous estimates
for the numerical errors due to both finite sampling frequency
and finite bandwidth have been derived and used in order to

Fig. 17. Far end response of the interconnect link to a periodic digital signal,
obtained with inverse FFT. Solid line was obtained from the raw dataset using
standard spline interpolation. Dashed line was obtained using the proposed
causality-constrained interpolation algorithm.

guarantee accuracy control and numerical robustness. The pro-
posed algorithms allow to verify both causality and passivity
of tabulated frequency responses coming from direct measure-
ments or numerical field simulations. Thus, the results of this
paper enable a data qualification process that can be inserted in
the CAD workflow, in order to accept or reject frequency data
based on physical consistency criteria. It is argued that many
typical modeling and simulation problems might disappear if
the root cause (flawed, inconsistent, or missing data) is removed
by a suitable data qualification process.

APPENDIX

A. Bandpass Data Case

We consider here the case of bandpass data (12), for which
the frequency response is available in

The proposed algorithms are valid also in this case, with the
minor modifications reported in this Appendix. If of (21)
is redefined as

(50)

all formulas in Sections III-B and III-D remain valid except
for the bound [25], which includes now an additional term ac-
counting for the missing low-frequency data

(51)

where is the number of positive subtractions points .
This expression can be derived following the same guidelines
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Fig. 18. Qualitative illustration of the optimal subtractions displacements for
the limiting cases � �� � � and � �� � �.

presented in Appendix B for the baseband case. A detailed proof
is therefore omitted to avoid duplications.

We discuss now the displacement of subtraction points that
should be adopted in the bandpass case in order to minimize the
truncation error. For simplicity, we consider an even number
of subtractions , symmetrically placed around . Only
the placement of the subtraction points
laying in the positive frequencies axis is discussed, since the
other points can be easily obtained by sym-
metry with respect to . First, we place the two edge sub-
tractions and close to and , respectively,

(52)

(53)

The position of the other subtraction points depends on the ratio
. We start by considering the two limiting cases

and . In the first case, since
the available data cover the entire bandwidth
except for a very small interval , subtractions
must be dense near and rare at low frequency,
where the missing bandwidth is very small. A
displacement similar to (26) is therefore optimal, provided that
subtractions are not placed in . So we adopt the
following rule

(54)

for , which leads to a Chebyshev-like
distribution of subtractions in . This distribution is depicted
in Fig. 18 (top). In the second case, when ,
subtractions must be concentrated near both and

. A Chebyshev distribution in the interval is
therefore adopted

(55)

with . This distribution is depicted in
Fig. 18 (bottom). Based on the two displacements and

, a nearly-optimal grid for any value of can
be obtained as a convex combination of the two

(56)

We experimentally verified that (56) with approxi-
mately minimizes the truncation error bound (51) for any value

Fig. 19. Magnitude of the truncation error bound for � � � subtractions, for
different � �� ratios (solid line: � �� � ����, dashed–dotted
line: � �� � ���, dashed line: � �� � ����).

Fig. 20. As in Fig. 19 but for 16 subtraction points.

of . Figs. 19 and 20 show how the proposed displace-
ment rule approximately minimizes the truncation error bound
for very different ratios of , ranging from 0.01 to
0.99 and for different numbers of subtraction points (
and , respectively). We remark that this empirical rule,
although being not optimal in mathematical sense, is sufficient
for practical applications.

B. Mathematical Proofs

We report here a detailed proof for the bound [25] on the
truncation error (22) for the baseband case. Starting from (22)
and taking the magnitude, we can write

(57)

Let us denote with and the individual contributions to
the integral in (57) due to the negative and positive frequencies,
respectively

(58)

(59)
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Under the assumption (23), integrals (58) and (59) can be
bounded with a closed form expression. For , we have the
following chain of inequalities

(60)

The key step of this derivation is the partial fraction expansion
of the second line. An analogous calculation shows that is
bounded by

(61)

A direct substitution of (60) and (61) into (57) leads to (25),
concluding the proof.

This bound is the tightest possible for the considered class
of functions, defined by (23). In fact, there exists a particular
frequency response for which the magnitude of the truncation
error (22) equals the bound (25). This response reads

(62)

as can be verified by direct substitution. This proves that a
tighter bounds does not exist, hence the proposed treatment of
truncation errors is indeed optimal.

Finally, we remark that the above proofs are easily adapted to
the bandpass case (12) with minor modifications, leading to the
bound (51), which can be shown to be tight, as for the baseband
case.
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