
23 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Multiplierless, Folded 9/7 - 5/3 Wavelet VLSI Architecture / Martina, Maurizio; Masera, Guido. - In: IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS. II, EXPRESS BRIEFS. - ISSN 1549-7747. - STAMPA. - 54:9(2007),
pp. 770-774. [10.1109/TCSII.2007.900354]

Original

Multiplierless, Folded 9/7 - 5/3 Wavelet VLSI Architecture

Publisher:

Published
DOI:10.1109/TCSII.2007.900354

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1788971 since:

IEEE

1

Multiplierless, folded 9/7 - 5/3 wavelet
VLSI architecture

Maurizio Martina, Member IEEE, Guido Masera, Member IEEE

Abstract—This paper proposes a multiplierless VLSI archi-
tecture for the famous 9/7 wavelet filters. The novelty of this
architecture is the possibility to compute the 5/3 wavelet results
into the 9/7 data-path with a reduced number of adders compared
to other solutions. The multiplierless architecture has been
characterized in terms of performance through simulations into
a JPEG2000 environment and compared to other solutions.
Implementation on a 0.13 µm standard cell technology shows
that the proposed architecture compared to other multiplierless
architectures requires a reduced amount of logic with excellent
performance.

Index Terms—JPEG2000, Wavelet, Multiplierless Implementa-
tion, Filter Bank, VLSI

I. INTRODUCTION

The Discrete Wavelet Transform (DWT) is widely employed
in many image and video compression systems due to its
excellent decorrelation properties [1]. In particular, many
famous coders have been proposed to effectively compress
images or frames processed via the DWT [2]. Besides, the
DWT is employed in JPEG2000, the new standard for image
compression, where the 9/7 [3] and the 5/3 [4] wavelet filters
are employed as the default filters for lossy and lossless
compression respectively [5].

Several recent publications describe efficient implementa-
tions of JPEG2000 encoders and decoders [6]. Moreover, many
research works have faced the problem of reducing the DWT
complexity. This issue has been investigated mainly from
two perspectives: i) reducing the memory access overhead
[7], [8], [9]; ii) reducing the DWT computational complexity
[9], [10]. Recently, reduced complexity solutions, involving
multiplierless implementations either through filter banks [11],
[12], [13], [14] or lifting scheme [15], [16], [17] have been
proposed.

The aim of this paper is to embed the 5/3 wavelet com-
putation into the 9/7, in order to exploit as much as possible
the 5/3 results to achieve the 9/7 ones. To the best of our
knowledge, this is the first work where not only hardware
resources, but also the output values obtained via the 5/3
wavelet filters are used to compute the 9/7 results. In [11], [12]
and [14] the 9/7 filters symmetry is exploited by adding input
samples (xi) together to obtain w0 = xi, w1 = xi+1 + xi−1,
w2 = xi+2 + xi−2 and so on. Some multiplierless solutions
(e.g. [11], [12]) are based on butterfly structures where the wi

values are first added together, then partial results are shifted

The authors are with CERCOM (Center for Multimedia Radio Communi-
cations) - Dipartimento di Elettronica - Politecnico di Torino. Copyright (c)
2006 IEEE. Personal use of this material is permitted. However, permission
to use this material for any other purposes must be obtained from the IEEE
by sending an email to pubs-permissions@ieee.org.

G(z)

H(z)
~

G(z)
~

2

2 2

2

x x̂

H(z)

Figure 1. Filter bank block scheme

and combined to obtain the output values. On the other hand
in [14] wi are first partially shifted and then added. To obtain
the 5/3 wavelet results different shift amounts have to be
applied to each wi, as detailed in section II. As a consequence,
the solution proposed in [14] is more suited to embed the
5/3 calculation and reuse partial results instead of adding
resource to support both the 9/7 and the 5/3 wavelet filters. The
proposed architecture, that is derived from the multiplierless
9/7 filter bank (FB) proposed in [14], embodies the 5/3 FB and
further reduces the number of adders required from 21 to 19,
granting the same performance. It is worth pointing out that,
even if it is not a goal of this work, the proposed architecture
allows on–the–fly switching between the 5/3 and 9/7 wavelet
filters.

II. THEORETICAL DERIVATION

Let’s consider the filter bank shown in Fig. 1, where
H(z) =

∑k
i h[i]z−i and G(z) =

∑l
i g[i]z−i are the low pass

and high pass analysis filters with length k and l respectively,
and H̃(z) =

∑k̃
i h̃[i]z−i and G̃(z) =

∑l̃
i g̃[i]z−i the low pass

and high pass synthesis ones with length k̃ and l̃.
In [14] it has been proved that the 9/7 wavelet filters can be

decomposed into two stages. The first stage involves only ra-
tional factors, whereas the second one requires multiplications
with 5 constants: K1 = (a+b/2+3/8)/2a, K2 = (b+1)/8a,
K3 = 1/32a, J1 = (r + 1/2)/2r and J2 = 1/8r, where r is
the real solution of the third order equation

1/20 + 4/20x + 10/20x2 + x3 = 0 (1)

and a and b are the product and the sum of the two complex
conjugate solutions respectively.

As suggested in [14], accepting a small loss in terms of
Peak Signal to Noise Ratio (PSNR) the 5 constants can be
approximated with few power of 2 values: K1 ' 2 + 1/16,
K2 ' 1, K3 ' 1/8 + 1/16 + 1/32, J1 ' 1 + 1/4 and J2 '
1/4 + 1/8. Considering the two analysis filters h9,7[n] and
g9,7[n] as vectors (h9,7 and g9,7), we can represent them as the
product of a matrix and a vector, where the matrix contains the
rational factors and the vector contains the constants - see (2)
and (3). Besides, h9,7[n] and g9,7[n] symmetry suggests, for
the sake of simplicity, to concentrate only on taps with index

2

Table I
COEFFICIENTS FOR THE 9/7 AND 5/3 FILTERS

n h9,7[n] g9,7[n] h5,3[n] g5,3[n]

0 6
8
K1− 8

8
K2 + 2

8
K3 = 0.60294901823636 6

8
J1− 8

8
J2 = 0.55754352622850 6

8
8
8

±1 4
8
K1− 7

8
K2 + 4

8
K3 = 0.26686411844287 − 4

8
J1 + 7

8
J2 = −0.29563588155713 2

8
− 4

8
±2 1

8
K1− 4

8
K2 + 6

8
K3 = −0.07822326652899 1

8
J1− 4

8
J2 = −0.02877176311425 − 1

8
0

±3 − 1
8
K2 + 4

8
K3 = −0.01686411844287 1

8
J2 = 0.04563588155713 0 0

±4 1
8
K3 = 0.02674875741081 0 0 0

n ≥ 0 (see Table I). Thus h9,7 = M ·K and g9,7 = NR5,C3 ·J
where

M =

6
8 − 8

8
2
8

4
8 − 7

8
4
8

1
8 − 4

8
6
8

0 − 1
8

4
8

0 0 1
8

, K =

K1
K2
K3

 , J =

[
J1
J2

]
(2)

and

N =

6
8 − 8

8
2
8

− 4
8

7
8 − 4

8
1
8 − 4

8
6
8

0 1
8 − 4

8
0 0 1

8

, NR5,C3 =

6
8 − 8

8
− 4

8
7
8

1
8 − 4

8
0 1

8

 (3)

Since G(z) = H̃(−z), odd terms have different sign and N
can be directly derived from M changing the sign of odd
terms (see Table I n ∈ {1, 3}). As it can be observed NR5,C3

is obtained removing the 5th row and the 3rd column of N .
Let’s focus on the first stage defined by M and NR5,C3 :

grouping together some of the first stage elements we obtain
the 5/3 filter. For the sake of simplicity, we exploit the 9/7
and the 5/3 filters symmetry to group together samples that
ought to be multiplied by the same tap hi. So that we have
w0 = xi, w1 = xi+1 + xi−1, w2 = xi+2 + xi−2 and so on.
For the low-pass coefficients we have (see Table I):

y9,7
l = h9,7[0]xi + h9,7[1](xi+1 + xi−1) + · · ·

=
(

6
8
K1− 8

8
K2 +

2
8
K3

)
w0 + · · ·

=
(

6
8
w0 +

4
8
w1 +

1
8
w2

)
K1 + · · ·

= p1K1− p2K2 + p3K3 (4)

where

p1 =
6
8
w0 +

4
8
w1 +

1
8
w2 (5)

p2 =
8
8
w0 +

7
8
w1 +

4
8
w2 +

1
8
w3 (6)

p3 =
2
8
w0 +

4
8
w1 +

6
8
w2 +

4
8
w3 +

1
8
w4 (7)

Since for the 5/3 low-pass coefficient holds true:

y5,3
l =

6
8
w0 +

2
8
w1 − 1

8
w2 (8)

we can rewrite p1 as

p1 =
6
8
w0 +

2
8
w1 +

2
8
w1 +

2
8
w2 − 1

8
w2

=
6
8
w0 +

2
8
w1 − 1

8
w2 +

2
8
w1 +

2
8
w2

= y5,3
l +

2
8
w1 +

2
8
w2 (9)

With similar considerations we derive for the high-pass
coefficient:

y9,7
h = q1J1− q2J2 (10)

where

q1 =
6
8
w0 − 4

8
w1 +

1
8
w2 (11)

q2 =
8
8
w0 − 7

8
w1 +

4
8
w2 − 1

8
w3 (12)

Then
y5,3

h =
8
8
w0 − 4

8
w1 (13)

so

q2 =
8
8
w0 − 4

8
w1 − 3

8
w1 +

4
8
w2 − 1

8
w3

= y5,3
h − 3

8
w1 +

4
8
w2 − 1

8
w3 (14)

So that we can build a folded architecture that exploits the 5/3
coefficients to obtain the 9/7 ones rewriting p2 and q1 as

p2 = z5,3
l +

3
8
w1 +

4
8
w2 +

1
8
w3 (15)

q1 = z5,3
h − 2

8
w1 +

2
8
w2 (16)

with
z5,3
l =

8
8
w0 +

4
8
w1 (17)

z5,3
h =

6
8
w0 − 2

8
w1 − 1

8
w2 (18)

III. PERFORMANCE AND EXPERIMENTAL RESULTS

The multiplierless FB described in section II allows to
obtain lossless compression when the 5/3 wavelet is selected.
On the other hand when the 9/7 is employed the performance
detailed in [14] are achieved. In order to compare the proposed
FB architecture with the multiplierless LS 9/7 solution pro-
posed in [17], simulations inside the JPEG2000 image coding
standard [5] framework have been performed.

A free implementation of a JPEG2000 codec written in C
language, openjpeg [18], that is Class-1 Profile-1 compliant
with the standard, has been employed for our tests. Five
standard images have been used for the test: ‘Lenna’ 256×256
(I=1), ‘Barbara’ 512 × 512 (I=2), ‘Boat’ 512 × 512 (I=3),
‘Goldhill’ 512× 512 (I=4) and ‘Fingerprint’ 512× 512 (I=5)
[19]. The number of wavelet decomposition levels (L) has
been varied from 1 to 3 for 256×256 images and from 1 to 4
for 512× 512 images. Different compression rates have been
imposed, namely 1, 0.5, 0.25 and 0.125 bit per pixel (bpp),
precinct and code-block size are the encoder default values
[5].

3

Table II
PERFORMANCE COMPARISON AMONG DIFFERENT 9/7 WAVELET IMPLEMENTATIONS FOR MULTIPLE IMAGES (I), DECOMPOSITION LEVELS (L) AND

COMPRESSION RATES (1, 0.5, 0.25, 0.125 BPP) INTO JPEG2000: A - ORIGINAL openjpeg, B - MULTIPLIERLESS FB [14], C - LS [17]

I L A [dB] B [dB] C [dB]
1 0.5 0.25 0.125 1 0.5 0.25 0.125 1 0.5 0.25 0.125

1
1 37.08 30.59 25.22 19.36 37.11 30.62 25.22 19.33 37.16 30.62 25.22 19.35
2 38.50 33.29 28.72 24.61 38.50 33.30 28.74 24.60 38.46 33.28 28.72 25.01
3 38.75 33.44 29.11 25.82 38.72 33.48 29.13 25.79 38.60 33.43 29.08 25.77

2

1 35.77 29.48 24.05 20.63 35.75 29.52 24.06 20.61 35.83 29.56 24.22 20.61
2 37.56 32.16 27.69 24.17 37.56 32.08 27.70 24.18 37.57 32.16 27.88 24.26
3 37.87 32.78 28.75 25.31 37.78 32.74 28.75 25.32 37.78 32.80 28.74 25.60
4 37.89 32.78 28.83 25.79 37.77 32.82 28.86 25.79 37.76 32.83 28.85 25.81

3

1 37.66 32.64 28.22 23.39 37.61 32.63 28.28 23.39 37.62 32.64 28.28 23.40
2 38.87 33.96 30.14 26.96 38.84 34.01 30.10 26.96 38.84 33.97 30.11 27.13
3 39.04 34.46 30.88 27.86 39.03 34.47 30.91 27.96 38.99 34.44 30.91 27.86
4 39.08 34.55 30.99 28.06 38.99 34.55 31.01 28.00 38.95 34.51 30.99 28.05

4

1 35.77 31.68 27.55 23.14 35.79 31.70 27.57 23.13 35.80 31.77 27.57 23.13
2 36.32 32.87 30.10 27.37 36.33 32.94 30.16 27.37 36.35 32.94 30.17 27.38
3 36.45 33.15 30.53 28.43 36.40 33.16 30.52 28.43 36.45 33.18 30.52 28.45
4 36.45 33.19 30.52 28.48 36.44 33.19 30.52 28.45 36.43 33.19 30.52 28.46

5

1 35.80 31.73 27.76 17.72 35.78 31.73 27.95 17.72 35.82 31.73 27.95 17.72
2 36.18 32.36 29.14 25.99 36.17 32.36 29.13 25.98 36.17 32.35 29.12 25.98
3 36.26 32.45 29.48 26.79 36.24 32.46 29.47 26.78 36.19 32.50 29.44 26.74
4 36.25 32.48 29.52 26.88 36.24 32.49 29.52 26.88 36.24 32.52 29.49 26.85

The results of our experiments are summarized in Table II
where in column A the PSNR values obtained with the original
openjpeg implementation are shown. In column B we give the
results of the multiplierless 9/7 filter bank described in [14].
These results are obtained implementing the multiplierless 9/7
FB described in [14] at the encoder side and decoding the
bitstream with the standard 9/7 LS decoder. In column C the
results obtained with the multiplierless 9/7 LS described in
[17] are shown. These results are obtained implementing the
multiplierless 9/7 LS described in [17] at the encoder side and
decoding the bitstream with the standard 9/7 LS decoder. We
can observe that B and C grant performance very closed to
the ones available with the original openjpeg implementation
(A). As detailed in [14], [15] and [17] this relevant figure is
achieved thanks to the filters zeros position that is extremely
closed to the original 9/7 filters one. Furthermore, in some
cases non linearities caused by the quantization and the
optimal truncation performed by EBCOT produces slightly
better results in terms of PSNR with B or C than with A.
Since in some other cases A is better than B or C, we
can conclude that the difference among the three models is
very limited (from few cents to some fractions of dB). This
confirms that the hardware simplification achieved through
[14] and [17] multiplierless solutions does not worsen the
DWT performance.

IV. PROPOSED ARCHITECTURE

The proposed architecture is based on the multiplierless
data-path (Fig. 2) that implements (4) and (10), embedding
the 5/3 calculation. The main idea is to consider that the
downsampling required by filter bank implementation (see Fig.
1) allows to alternatively generate a low pass output sample
and a high pass output sample. Considering (8) and (18), we
can observe that y5,3

l and z5,3
h differ only in the sign of the w1

term. The same consideration can be extended to y5,3
h and z5,3

l

observing (13) and (17). As a consequence, exploiting these
properties, during the low pass cycle both y5,3

l and z5,3
l are

produced, whereas during the high pass cycle y5,3
h and z5,3

h

are generated.
In order to reduce the complexity of the proposed architec-

ture to generate the 9/7 results, we can rewrite (4) and (10) as a
function of y5,3

l , z5,3
l , y5,3

h , z5,3
h and wi with i ∈ {0, 1, 2, 3, 4}:

y9,7
l =

(
2 +

1
16

)
y5,3

l − z5,3
l +

+
1
4

{
1
4

[(
1− 1

8

)
(w0 + w2) +

(
1
2
− 1

16

)
w4

]
+

+
(

w1 − 1
16

w3

)
+

1
2
w2

}
(19)

y9,7
h =

(
1 +

1
4

)
z5,3
h −

(
1
4

+
1
8

)
y5,3

h +

+
1
4

{
1
4

[
1
2
w3 +

(
1 +

1
4

)
w1

]
+

−
(

w1 − 1
16

w3

)
+

1
2
w2

}
(20)

In (19) and (20), the terms required to generate y9,7
l and y9,7

h

are split in three main contributions written on three different
lines. As an example the last contributions of y9,7

l and y9,7
h

(third line) differ only in the sign of the first term. Thus
the proposed architecture can be obtained by combining the
three contributions and adding few multiplexers to account
for y9,7

l and y9,7
h . In Fig. 2, the proposed architecture is

shown where solid lines represent 16 bits wide data and
dashed lines represent control signals. The gray box on the
top of Fig. 2 contains the adders required to generate the
wi terms. The light–gray box labeled with 5/3 contains the
programmable adders/subtracters required to compute y5,3

l ,
z5,3
l , y5,3

h and z5,3
h as described in (8), (17), (13) and (18).

The three gray boxes in the center of the figure implement the
three contributions of (19) and (20) employing three, four and
two adders respectively and few multiplexers to select the low
pass or high pass contributions. In particular, the lo hin signal

4

2

1/41/2

1/4

1/8

lo_hin

1/2

1

5/3

w0

y l
9,7/yh

9,7

1

0 y

x xx x xi i−1 i+1 i−2 i+2 i−3 i+3 i−4 i+4

lo_hin

l /y5,35,3

h

1

0

y

S97_53n

1 100

1 0

1 1/4 1/16 1 1/4 1/8

lo_hin 1/2

1 1/16
lo_hin

y l
5,3/zh

5,3 z l
5,3/yh

5,3

1/4

1/161

0

lo_hin

1
lo_hin

0

0 1

1/2

1/4

1 1/8

1/2

1

1/4

w w ww1 2 3 4

x x x x

Figure 2. Proposed folded 9/7 and 5/3 FB architecture – 16 bits wide data-
path

drives the multiplexers to select low pass or high pass output
values whereas the S97 53n signal allows to select between
the 9/7 and the 5/3 results.

V. IMPLEMENTATION RESULTS AND COMPARISON

Table III
COMPARISONS OF MULTIPLIERLESS ARCHITECTURES FOR THE 9/7 FILTER

IN TERMS OF PSNR, MULTIPLIERS (M), ADDERS (A), REGISTERS (R),
KGATES, POST PLACE & ROUTE AVERAGE POWER CONSUMPTION (P) AND

THROUGHPUT (T) PER CYCLE

Arch. Type PSNR Complexity P T
[dB] M A R kgates [mW]

[10]-I FB A 9 14 9 14.65 35.66 1
[13] FB B 0 32 9 - - 1
[11] FB A 0 43 9 5.39 33.90 1
[12] FB A 0 27 9 4.17 15.15 1
[14] FB B 0 21 9 2.81 12.88 1

[10]-II LS A 4 8 6 12.45 29.43 2
[16] LS A 4 8 4 10.10 - 2
[9] LS A 2 4 20 - - 1
[15] LS C 0 19 14 7.43 11.36 2
[17] LS C 0 15 14 3.79 - 1
Our FB B 0 19 9 2.69 9.74 1

The architecture described in section IV has been described
in VHDL resorting to only 19 adders. The logical synthesis
results on a 0.13 µm standard cell technology with a target
clock frequency of 200 MHz confirmed the reduced amount
of logic required (2.69 kgates) and its low power consumption
(9.74 mW). In Table III, several FB and LS architectures
are considered and their performance (PSNR and throughput),
complexity (kgates) and power consumption summarized. If
we consider multiplierless implementations [11] requires 43
adders, [13] requires 32 adders, [12] requires 27 adders, [14]
requires 21 adders, whereas the proposed architecture requires
only 19 adders. As far as multiplierless FB architectures
are concerned, logical synthesis results summarized in Table
III take into account the combinational logic (including the
adders) and the register placed on the data-path output (y).
On the other hand, even if the multiplierless LS architectures

require only 19 [15] or 15 [17] adders, the LS serial nature
imposes to use a greater number of registers compared to FB
architectures, leading to an increase in terms of complexity.
As a consequence, we can observe that the proposed multipli-
erless FB architecture with embedded 5/3 computation shows
a computational complexity reduction with respect to other
multiplierless solutions, together with excellent performance
in terms of PSNR and a reduced power consumption. More-
over, the inherent flexibility of the proposed architecture, that
supports both the 9/7 and 5/3 wavelet filters, has been obtained
with no penalties in terms of complexity or performance.

It is known that several systematic methods to design
complexity-aware multiplierless filters have been proposed in
the literature (e.g. [20], [21], [22], [23]). Even if this work does
not make use of these techniques, it is interesting to compare
the number of adders required by the proposed architecture (19
adders) to the number of adders achieved with a systematic
method. In [22] a heuristic search algorithm based on a
genetic algorithm, called CSDC, is developed. However, said
Nt the number of taps, CSDC shows to achieve best results
on long filters, Nt ≥ 60. Moreover [23], where the KMSD
algorithm is proposed, proves that the n-Dimensional Reduced
Adder Graph (RAG-n) algorithm [21] is best for short filters
Nt < 12. Since this is the case of the proposed architecture,
we investigate the number of adders required to implement
(19) and (20) resorting to the Canonic Signed Digit (CSD)
representation [20] and to the RAG-n algorithm [21]. In order
to make the comparison as fair as possible we consider the 5/3
block outputs and the wi values as inputs (x̂) and we apply the
CSD and the RAG-n methodologies to the equivalent low pass
(ĥ) and high pass (ĝ) filters y9,7

l = ĥ · x̂ and y9,7
h = ĝ · x̂ with

ĥ = [33/16 − 1 7/128 1/4 23/128 − 1/64 7/256] (ĥ length
is 7) and ĝ = [5/4 −3/8 0 −11/64 1/8 3/64 0] (ĝ length is
5). This allows to obtain a multiplierless architecture able to
support both the 9/7 and the 5/3 wavelet filters. To simplify
the comparison we split the number of required adders in
four contributions: 1) 4 adders to generate the wi values, 2)
4 adders required by the 5/3 block, 3) 6 adders to combine
the 7 elements produced by ĥ, 4) m adders required by the
filters coefficients when CSD or RAG-n is employed (mCSD

or mRAG−n). Since the low pass and the high pass outputs are
alternatively generated, the adders required by ĥ and ĝ can be
shared introducing few multiplexers. It can be easily obtained
that mĥ

CSD = 6 and mĝ
CSD = 7, if adders sharing is employed

mCSD = 7, leading to 21 adders. On the other hand exploiting
RAG-n precomputed table [24], we obtain mĥ

RAG−n = 5 and
mĝ

RAG−n = 5, thus mRAG−n = 5, leading to 19 adders. It
is worth observing that ĥ and ĝ can be represented as cost
0, cost 1 and cost 2 RAG-n elements, so the heuristic part of
the RAG-n algorithm is not employed. As a consequence the
result obtained with the RAG-n algorithm is optimal. Since
the proposed architecture requires the same number of adders
required by the RAG-n solution, the proposed architecture is
Pareto-optimal.

In order to have an accurate estimation of the power
consumption figure of the proposed architecture, switching
activity values are required. To this purpose, the proposed

5

architecture has been interfaced to an external memory and
a micro controller through a FIFO and a simple control unit
as depicted in Fig. 3. LINE LEN is the number of processed
samples (i.e the current row or column length) and start allows
to start the elaboration, whereas a done is generated when
LINE LEN pixels have been elaborated. Besides, the S97 53n
signal allows to switch between the 9/7 and the 5/3 filters.
Finally, the architecture validates every correct output value
(y) through a valid signal.

empty

x

read

FIFO

done

valid

y

LINE_LEN

reg

Micro Controller Interface
S97_53n start

Multiplierless
Architecture

Control Unit

E
xt

er
n

al
 M

em
o

ry
 In

te
rf

ac
e E

xtern
al M

em
o

ry In
terface

Figure 3. Proposed architecture interface and block scheme

The complete design flow (including place and route) has
been performed for the proposed architecture with its control
unit. Annotating the design activity on 256 samples of the stan-
dard image ‘Lenna’ 256× 256 into Cadence-Encounter
power estimation environment with fclk=200MHz, we ob-
tained an average power consumption of 10.27 mW.

Through VHDL simulation we observe that the proposed
architecture requires 264 clock cycles to elaborate 256 samples
and to generate 128 low-pass and 128 high-pass results at
full speed (FIFO always ready). This means 1 sample per
clock cycle while 8 additional clock cycles are required for
managing the boundary extensions (nlat = 8). Thus the
proposed architecture can compute the 2D-DWT of an R×C
image in 2RC + nlat(R + C) clock cycles. We can evaluate
the number of R×C frames per second (YUV 4:2:0 format)
that can be elaborated by the proposed architecture as:

nframes =
fclk

3
2 (4

32RC + 2nlat(R + C))
(21)

where fclk is the clock frequency, the factor 4
32RC and

2nlat(R + C) account for an unlimited number of wavelet
decomposition levels, the term 3/2 for the YUV 4:2:0 format
and nlat for the architecture latency (nlat = 8). Thus the
proposed architecture can sustain 30 frames per seconds for
HD video applications (1440× 1080).

VI. CONCLUSIONS

In this paper, a novel multiplierless 9/7 wavelet VLSI
architecture has been presented. The novelty of the paper stems
from the use of the 5/3 wavelet results to decrease the 9/7
architecture complexity. The proposed architecture has been
compared in terms of performance and complexity with other
multiplierless 9/7 filter banks and lifting scheme solutions
showing lower complexity with comparable performance. Fi-
nally, it is noticeable that the proposed architecture can run

at 200 MHz, being able to sustain 30 frames per second of
HD video sequences (1440 × 1080) with an average power
consumption of 10.27 mW.

REFERENCES

[1] G. Strang and T. Q. Nguyen, Wavelets and Filter Banks. Wellesley-
Cambridge, MA: Wellesley, 1996.

[2] D. Taubman, “High performance scalable image compression with
EBCOT,” IEEE Tran. on Image Processing, vol. 9, no. 7, pp. 1158–
1170, Jul. 2000.

[3] M. Antonini et al “Image coding using the wavelet transform,” IEEE
Tran. on Image Processing, vol. 1, no. 2, pp. 205–220, Apr. 1992.

[4] D. L. Gall and A. Tabatai, “Sub-band coding of digital images using
symmetric short kernel filters and arithmetic coding techniques,” in IEEE
Int. Conference on Acoustics, Speech and Signal Processing, 1988, pp.
761–764.

[5] M. Boliek, “JPEG 2000 Final Committee Draft,” 2000.
[6] H. Yamauchi et al. “1440x1080 pixel, 30 frames per second motion-

JPEG 2000 codec for HD-movie transmission,” IEEE Jour. of Solid-State
Circuits, vol. 40, no. 1, pp. 331–341, Jan. 2005.

[7] O. Fatemi and S. Bolouki, “Pipeline, memory-efficient and pro-
grammable architecture for 2D discrete wavelet transform using lifting
scheme,” IEE Proc. on Circuits Devices and Systems, vol. 152, no. 6,
pp. 703–708, Dec. 2005.

[8] C. T. Huang, P. C. Tseng, and L. G. Chen, “Generic RAM-based archi-
tectures for two-dimensional discrete wavelet transform with line-based
method,” IEEE Tran. on Circuits and Systems for Video Technology,
vol. 15, no. 7, pp. 910–920, Jul. 2005.

[9] B. F. Wu and C. F. Lin, “A high-performance and memory-efficient
pipeline architecture for the 5/3 and 9/7 discrete wavelet transform
of JPEG2000 codec,” IEEE Tran. on Circuits and Systems for Video
Technology, vol. 15, no. 12, pp. 1615–1628, Dec. 2005.

[10] J. M. Jou, Y. H. Shiau, and C. C. Liu, “Efficient VLSI architectures for
the biorthogonal wavelet transform by filter bank and lifting scheme,”
in IEEE Int. Symposium on Circuits and Systems, 2001, pp. 529–533.

[11] M. Alam et al. “Efficient distributed arithmetic based DWT architecture
for multimedia applications,” in IEEE Int. Workshop on SoC for Real-
Time Applications, 2003.

[12] X. Cao et al. “An efficient VLSI implementation of distributed archi-
tecture for DWT,” in IEEE Workshop on Multimedia Signal Processing,
2006, pp. 364–367.

[13] K. A. Kotteri, A. E. Bell, and J. E. Carletta, “Design of multiplierless,
high-performace, wavelet filter banks with image compression applica-
tions,” IEEE Tran. on Circuits and Systems-I, vol. 51, no. 3, pp. 483–494,
Mar. 2004.

[14] M. Martina and G. Masera, “Low-complexity, efficient 9/7 wavelet filters
VLSI implementation,” IEEE Tran. on Circuits and Systems-II, vol. 53,
no. 11, pp. 1289–1293, Nov. 2006.

[15] D. B. H. Tay, “A class of lifting based integer wavelet transform,” in
IEEE Int. Conference on Image Processing, 2001, pp. 602–605.

[16] C. T. Huang, P. C. Tseng, and L. G. Chen, “Flipping Structure: an
efficient VLSI architecture for lifting-based discrete wavelet transform,”
IEEE Tran. on Signal Processing, vol. 52, no. 4, pp. 1080–1089, Apr.
2004.

[17] K. A. Kotteri et al. “A comparison of hardware implementations of
the biorthogonal 9/7 DWT: Convolution versus lifting,” IEEE Tran. on
Circuits and Systems-II, vol. 52, no. 5, pp. 256–260, May 2005.

[18] “http://www.openjpeg.org.”
[19] M. Martina, “Low Complexity 9/7 Wavelet: Modified OpenJPEG

model,” downloadable at www.vlsilab.polito.it/∼martina.
[20] R. Hartley, “Optimization of canonic signed digit multipliers for filter

design,” in IEEE Int. Symposium on Circuits and Systems, 1991, pp.
1992–1995.

[21] A. G. Dempster and M. D. Macleod, “Use of minimum-adder multiplier
blocks in FIR digital filters,” IEEE Tran. on Circuits and Systems-II,
vol. 42, no. 9, pp. 569–577, Sep. 1995.

[22] W. Yongtao and K. Roy, “CSDC: a new complexity reduction technique
for multiplierless implementation of digital FIR filters,” IEEE Tran. on
Circuits and Systems-I, vol. 52, no. 9, pp. 1845–1853, Sep. 2005.

[23] M. D. Macleod and A. G. Dempster, “Multiplierless FIR filter design
algorithms,” IEEE Signal Processing Letters, vol. 12, no. 3, pp. 186–189,
Mar. 2005.

[24] A. G. Dempster and M. D. Macleod, “Constant integer multiplication
using minimum adders,” IEE Proc. on Circuits Devices and Systems,
vol. 141, no. 5, pp. 407–413, Oct. 1994.

