
30 November 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Scaling properties of long-range correlated noisy signals: application to financial markets / Carbone, ANNA FILOMENA;
Castelli, G.. - 5114:(2003), pp. 406-414. [10.1117/12.497039]

Original

Scaling properties of long-range correlated noisy signals: application to financial markets

Publisher:

Published
DOI:10.1117/12.497039

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1663765 since:

SPIE



Scaling properties of long-range correlated noisy signals:

application to �nancial markets

Anna Carbone and Giuliano Castelli

Physics Department and National Institute of Matter Physics (INFM),
Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino, Italy

ABSTRACT

Long-range correlation properties of �nancial stochastic time series y(i) have been investigated with the main
aim to demonstrate the ability of a recently proposed method to extract the scaling parameters of a stochastic
series. According to this technique, the Hurst coe�cient H is calculated by means of the following function:

DMA =
q

1
Nmax�nmax

PNmax
i=nmax

[y(i)� eyn(i)]2

where eyn(i) is the moving average of y(i), de�ned as 1=n
Pn�1

k=0 y(i � k), n the moving average window and
Nmax is the dimension of the stochastic series. The method is called Detrending Moving Average Analysis
(DMA) on account of the several analogies with the well-known Detrended Fluctuation Analysis (DFA). The
DMA technique has been widely tested on stochastic series with assigned H generated by suitable algorithms.
It has been demonstrated that the ability of the proposed technique relies on very general grounds: the function
Cn(i) = y(i) � eyn(i) generates indeed a sequence of clusters with power-law distribution of amplitudes and
lifetimes. In particular the exponent of the distribution of cluster lifetime varies as the fractal dimension 2�H
of the series, as expected on the basis of the box-counting method. In the present paper we will report on the
scaling coe�cients of real data series (the BOBL and DAX German future) calculated by the DMA technique.

Keywords: Time series analysis, Systems obeying scaling laws, Complex systems

1. INTRODUCTION

Long-memory stochastic processes are ubiquitous in �elds as di�erent as condensed matter, biophysics, social
science, climate change, �nance1{23 . Their statistical properties and, in particular, scaling exponents other
than continuing to draw the attention of the physicist community, have recently demonstrated to be a powerful
tool for practical purposes. The scaling analysis of medical series (heart-rate dynamics, lung ination) supplies
in-depth information on the disease. In �nance, the series of the volatility are characterized by a degree of
persistence higher than the price returns. For these reasons, it is crucial to develop even more accurate and fast
algorithms able to extract the fractal dimension D, the Hurst exponent H or the scaling exponent � of a random
sequence. The methods of extraction of the scaling exponents from a random series y(i) usually exploit suitable
statistical functions of y(i). Detrended Fluctuation Analysis (DFA) and Rescaled Range Analysis (R/S) are the
most popular scaling techniques to estimate the power-law correlation exponents from the random signals in the
time domain.

In a recent work22 , a method for the analysis of the persistence, with particular features of accuracy and
speed, has been proposed. Up to now such technique has been applied only to arti�cially generated series with
the main aim to investigate the general properties23 and the computational performances of the algorithm.22

In the present work, the DMA analysis will be applied to �nancial random series. As above mentioned, in
addition to the remarkable interest of the physics community toward the fundamental implications of the topics,
the demonstration of a scaling technique, gaining in execution speed, is particularly interesting in view of online
trading application and in any other �eld, where the performance velocity is a discriminating issue.
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2. DFA AND DMA SCALING TECHNIQUES

For the sake of clarity, we will briey review the Detrended Fluctuation Analysis (DFA) and Detrending Moving
Average Analysis (DMA) algorithms.

According to the DFA technique, after dividing the series in equal size boxes, an interpolating linear or cubic
function ypol(i), representing the local trend of the random series, is calculated in each box. The function:

DFA =

vuut 1

Nmax

NmaxX
i=1

[y(i)� ypol(i)]2 ; (1)

is then calculated over all the boxes of equal size n. Repeating the calculation over di�erent size boxes, a
relationship as:

DFA / nH (2)

is obtained. For long-memory correlated processes, it is 0 < H < 0:5 for negative persistence, and 0:5 < H < 1
for positive persistence. H = 0:5 characterizes fully uncorrelated signals.

We have reported on a novel technique based on the following function22:

DMA =

vuut 1

Nmax � nmax

NmaxX
i=nmax

[y(i)� eyn(i)]2 (3)

The Eq. (3) de�nes a generalized variance of the random series y(i) with respect to the moving average eyn(i).
The moving average eyn(i) is calculated for di�erent values of the boxes n. nmax is the maximum value of n.
Then the DMA function is calculated over all the boxes of equal size n.

It can be observed that the function DMA presents the same structure of the DFA. In the Eq. (1) and (3), the
functions ypol(i) and eyn(i) act as low-pass �lters of the random signal y(i), and thus, ypol(i) and eyn(i) represent
the trend of y(i).

As already said, by means of the Eq.(3), the following computational procedure can be implemented. The
moving averages eyn(i) with di�erent values of n are calculated for the series y(i). The function DMA, de�ned by
the Eq.(3), is then calculated over the time interval [nmax; Nmax]. For each moving average eyn(i), the values of
DMA corresponding to each eyn(i) are plotted as a function of n on log-log axes. The most remarkable property
of the plot so obtained is that the function DMA exhibits a power-law dependence with exponent H on n, i.e.:

DMA / nH : (4)

On account of this relationship, the function DMA allows to estimate the scaling exponent H as done by the
DFA technique. Due to the several analogies with the DFA, this technique has been named Detrending Moving
Average Analysis (DMA).

The described algorithm has been tested over several arti�cially generated random series with di�erent H.22

Very accurate results in a wide range of values of the series size Nmax and of the scaling window size n have
been obtained.

In a recent work,23 it has been demonstrated that the function Cn(i) = y(i) � eyn(i) generates a sequence
of clusters with power-law distribution of the amplitudes and lifetimes. In particular, the exponent of the
distribution of the cluster lifetimes is equal to the fractal dimension 2�H of the series, as expected on the basis
of the box-counting technique.2

The results obtained using the DMA algorithm are strictly related to the property of the density of crossing
points between y(i) and eyn(i) reported by Vandewalle and Ausloos.10 However, the relationship DMA / nH ,
satis�ed by the function DMA, better evidences the scaling properties of y(i) and the relationship with the other
techniques.
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Finally, another characteristics of the DMA function is the high speed of execution, worthy of note in view
of the application. The DMA algorithm is indeed at least 50 times faster than the DFA algorithm. This fact
follows in a straightforward manner if the speed of execution of the moving average eyn(i) with respect to the
linear or polynomial ypol(i) algorithm is taken in mind.

Results concerning the application of the DMA technique to real data sequence have been not yet published,
therefore, in the present work, we will report on a study of the Hurst coe�cients of �nancial series based
on the DMA algorithm. As said in the Introduction, complex signals are found in several topics, as well as
climate, geology, biology, however �nancial analysis is a �eld where the algorithm performances are a stringent
requirement.

3. APPLICATIONS TO FINANCIAL SERIES

The DMA algorithm has been applied to the German Bobl and Dax future data (sampled every minute). The
Bobl future is a derivative of a ten years maturity, 5% coupon German Government security. The Dax Future is
the derivative of the main German stock index and thereby represents a measure of expectations of both stock
market growth and in general of economic growth in German and generally in the European Union area.

Let p(t) be the price at time t, the log-return G�t(t) is de�ned as5, 6, 14{16:

G�t(t) = log p(t+�t)� log p(t) (5)

where �t is the time sampling interval. The volatility is taken as the average of jG(t)j over a time window
T = n�t:

vT (t) =
1

n

t+n�1X
t0=t

jG�t(t
0)j2 (6)

where n is an integer.

The volatility vT (t) of the �nancial return is not unambiguously de�ned, it is however out of the scope of the
present work an in-depth discussion on this topics.16

In Figs. (1) and (2), the plot of the prices and of the volatility, according to the de�nition given by the Eq.(6),
of the Bobl futures of the German market are shown. The size of the series is Nmax = 559939. The volatility
window T is equal to 10000 and the sampling interval �t is equal to 1. In �gure (3) and (4) , the log-log plot of
the curves de�ned by the Eqs.(1-4) are shown. H is obtained by the slope of the straight lines. The H values,
calculated by the DMA and DFA algorithms, for the series of prices are respectively equal to HDMA = 0:48 and
HDFA = 0:49. The H values, calculated by the DMA and DFA algorithms, for the series of volatilities are equal
to HDMA = 0:71 and HDFA = 0:71. The scaling box amplitudes ranged from n = 100 to n = 10000 with step
100 for both techniques.

In Figs. (5) and (6), the plot of the prices and of the volatility, according to the de�nition given by the Eq.(6),
of the DAX futures of the German market are shown. The size of the series is Nmax = 741657. The volatility
window T is equal to 10000 and the sampling interval �t is equal to 1. In Figs. (7) and (8) , the log-log plot
of the curves de�ned by the Eqs.(1,4) is shown. H is obtained by the slope of the straight lines. The H values,
calculated by the DMA and DFA algorithms, for the series of prices are respectively equal to HDMA = 0:47 and
HDFA = 0:49. The H values, calculated by the DMA and DFA algorithms, for the series of volatilities are equal
to HDMA = 0:81 and HDFA = 0:86. The scaling box amplitudes ranged from n = 100 to n = 10000 with step
100 for both techniques. The values of the Hurst exponent H for the German futures analyzed in this work by
the DMA technique are in very good agreement with those obtained by the DFA and with the �ndings of other
authors.15 It can be noted by observing the Figs. Figs. (7) and (8) that the DFA curves are noisier than the
DMA curves.
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Figure 1. Stochastic series of the prices p(t) of the Bobl German future.
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Figure 2. Stochastic series of the Bobl German future volatility v(t) according to the de�nition (6). The volatility
window T is 10000 and the sampling interval �t is 1.
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Figure 3. DMA functions for the stochastic series of �gure (1) and (2) according to the equation (3).
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Figure 4. DFA functions for the stochastic series of �gure (1) and (2) according to the equation (1).
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Figure 5. Stochastic series of the prices p(t) of the DAX German future.
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Figure 6. Stochastic series of the Dax German future volatility v(t) according to the de�nition (6). The volatility window
T is 10000 and the sampling interval �t is 1.
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Figure 7. DMA functions for the stochastic series of �gure (5) and (6) according to the equation (3).
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Figure 8. DFA functions for the stochastic series of �gure (5) and (6) according to the equation (1).
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4. CONCLUSION

We have reported on the scaling properties of long-range correlated stochastic series y(i) as obtained by the
computational procedure recently proposed by us.22, 23

This procedure makes use of the function DMA de�ned by the Eq.(3) that exhibits the remarkable properties
to vary as a power-law, with exponent H , of the amplitude n of the moving average window.

The DMA algorithm has been applied to the German Bobl and Dax future data, sampled every minute. The
Bobl future is a derivative of a ten years maturity, 5% coupon German Government security. The Dax Future is
the derivative of the main German stock index and thereby represents a measure of expectations of both stock
market growth and in general of economic growth in German and generally in the European Union area.

The DMA technique has revealed high accuracy and speed of execution.
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