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Abstract— Dealing with RTTs (Round Trip Time) in IQ
switches has been recently recognized as a challenging problem,
especially if considering distributed (multi-chip) scheduler imple-
mentation which are suited to reduce the hardware complexity
in very large, high-speed, switches. Traditional iterative three- or
two-phase scheduling algorithms are based on a monolithic im-
plementation, thus allowing instantaneous information exchange
among input and output selectors to determine a matching. Multi-
chip implementation imply that information exchange among
inputs and outputs is delayed by an inter-chip latency. This
delay requires non-trivial modifications to scheduling algorithms
to allow a fully distributed implementation while keeping good
performance. We propose a new scheduling algorithm, named
SRR (Synchronous Round Robin), which is suited to a fully
distributed implementation and provides good performance if
compared with more complex, non fully distributed, previously
proposed scheduling algorithms.

I. INTRODUCTION

Despite the fact that synchronous slotted IQ (Input-Queued)
switches have been proposed as an innovative architecture
for high-speed switches many years ago, the interest of the
research community in this type of architectures is still sig-
nificant. Indeed, IQ switches are suited for several application
domains, such as traditional routers/switches, SANs (Storage
Area Networks), and HPC (High-Performance Computing)
interconnects; in most of these application domains, a large
number of ports and high line rates are dominant.

To obtain performance close to output queued switches, IQ
switches rely on a VOQ (Virtual Output Queued) architecture
at inputs for unicast traffic, as shown in Fig.1: in an N × N
switch, data are stored at each input port in N separate queues,
depending on data destination ports. The most challenging
problem to be solved in IQ architectures is the definition of
a proper scheduling algorithm: to transfer data from VOQs to
output ports, at every time slot, a matching between inputs
and outputs must be determined to avoid output and input
contention, since no buffers are available at output ports
and no internal speedup is available in the switching fabric
and in memory access speed. The task of the centralized
scheduler is to collect information from VOQs, to determine
a matching and to configure the switching fabric in each time
slot to connect input VOQs to outputs. Increasing high rates
imply shorter time slots, thus requiring simple scheduling
algorithms, especially in switches with a large number of
ports. Indeed, theoretically throughput-optimal solutions such
as MWM (Maximum Weight Matching) or MSM (Maximum

Size Matching) are not practically feasible; thus, several
heuristic algorithms have been proposed [1]–[5].
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Fig. 1. IQ architecture with a centralized scheduler.

A very popular solution to determine a heuristic matching
is to devise parallel, iterative matching algorithms based on
either a three-phase (request-grant-accept) [3], [4] or two-
phase (request-grant) [5] scheme. In three-phase schemes, in
the request phase, inputs issue requests to outputs for data
stored in the VOQs. In the grant phase, outputs solve re-
quest contentions independently, by choosing a single request
to grant. If needed, inputs, independently, solve contentions
among multiple received grants. In two-phase schemes, each
input issues a single request only to a given output. As such,
no accept phase is needed, since no grant contention may arise
at inputs. However, a proper request must be chosen at each
input and request contention must be solved as in three-phase
schemes. Note that an added advantage of two-phase schemes
is the reduction in the information exchange among input and
outputs, since each input sends a single request to a chosen
output in a given time slot, whereas three phase schemes in
general rely on a complete view of input VOQ occupancy at
outputs, thus requiring higher signalling bandwidth. Iterations
are fundamental to improve the matching and obtain good
performance.

Request and grant contentions in three-phase schemes, as
well as the choice of the request to send and request con-
tentions in two-phase schemes, are typically solved using N
input and N output selectors (labelled IS and OS respectively

1-4244-0353-7/07/$25.00 ©2007 IEEE 

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings. 

6330



in the remainder of the paper), exploiting a round-robin
mechanism based on pointers kept at inputs and outputs: the
input (output) selector chooses the first eligible output (input)
in a round robin fashion, starting from the position indicated
by the pointer. Pointer de-synchronization, which depends on
the rule followed to update the pointer index, is crucial to
obtain good performance.

Recently, several researchers have addressed the problem
of scheduling algorithms in input queued switches when
considering round trip time latencies in the scheduling process.
In [6] round trip latencies are introduced by the need of
addressing multi-rack implementation in very large switches.
Multi-rack implementation implies that the physical distance
between line-cards and the switching fabric is non negligible
with respect to the time slot. As such, performance of a
centralized scheduler based on the classical iterative three-
phase (request-grant-accept) scheme are shown to degrade for
large physical distances; a solution to cope with this problem
is proposed, being based on a differential signalling scheme
and on a slight increase of the scheduler complexity, which is
assumed to keep track of VOQs state.

The centralized single-chip implementation of scheduling
algorithms is largely dominant; however, scalability problems
may arise for very large high-speed switches [7]. When look-
ing at multi-chip implementations, device separation implies
that decision taken by input/output selectors belonging to
different devices are known only after an inter-chip latency,
named RTT (Round Trip Time) in the remainder of the
paper. As such, as shown in Fig. 2, information critical i)
to determine the matching, ii) to update the pointers and iii)
to issue new requests, is delayed by the inter-chip latency,
causing performance degradation. RTTs may be significant
with respect to the time slot. Indeed, at high speed the time
slot is rather short (13ns at 40Gbit/s for a 64bytes packet)
if compared with inter-chip communication latencies which
include propagation delays, data serialization and pin sharing
which may be required to overcome the I/O pin count limit.
We assume that RTTs are measured in slots in the remainder
of the paper.

input status update
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output selection
and status update

input
selector

output
selector

RTT
request

grant

t

Fig. 2. Round trip time between input and output selectors.

We mainly focus on the problem of inter-chip latency, and
we study scheduling algorithms able to cope with performance
degradation induced by RTTs, without increasing too much
the scheduler complexity. More precisely, we introduce a

novel scheduler, named SRR (Synchronous Round Robin),
which was previously studied in the context of WDM ring
based networks with electronic buffering [8]. We show that
SRR provides good performance while avoiding many of the
problems of previously proposed two-phase algorithms [7].

The remainder of the paper is organized as follows: Sec-
tion II states the problems, challenges and solutions for
distributed scheduler implementation. Section III describes
previously proposed scheduling algorithms and the newly
proposed SRR scheme. Section IV present performance results
obtained by simulation. Finally, Section V ends the paper and
suggests possible future research directions.

II. DISTRIBUTED SCHEDULERS

Let us focus on iterative schedulers, based on three-phase
or two-phase scheme information exchange among inputs and
outputs. These schedulers adopt selectors for each output to
choose among multiple requests received by inputs and for
each input to either choose among multiple grants received
by outputs or to select a proper request to be issued in
a given time slot. Scheduler distribution entails partitioning
the selectors used to determine a heuristic matching over
physically separated devices. In a monolithic implementation,
all selectors are tightly coupled and decisions taken at inputs
(outputs) are immediately available to outputs (inputs). When
dealing with multi-chip implementations, the communication
latency between devices implies that algorithms devised to
run under the hypothesis of having all the scheduling state
information available may not be optimal. Indeed, information
needed to update the pointer status or to issue new requests
may be known with a delay of some tens of cell time.
Performance degradation and loss of fairness were already
shown to be a possible problem.
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Fig. 3. Scheduler distribution level: DL0 is a monolithic implementation,
DL3 is a fully distributed implementation.

Different levels of distribution could be envisioned, which
yield to a different number of physically separated devices,
as shown in Fig. 3. The first obvious solution to reduce the
scheduler complexity is to implement the scheduler in two
separate devices, each containing respectively N input and
N output selectors. This allows to roughly divide by two
the scheduler hardware complexity. Another extreme is to
distribute the scheduler over 2N separate devices, each device
implementing one selector. This is referred to as fully dis-
tributed solution, and we are mainly referring to this solution
in this work, which allow to obtain a hardware complexity
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reduction by a factor of N . As an intermediate step, in [7]
a further possible solution is proposed: the N input selectors
are physically separated in N devices, whereas all N output
selectors are implemented in a single device. This solution has
a major drawback: it reduces the hardware complexity by a
factor of two only. However, having the output selectors in
a single device permits coordination among output selectors
with no delay. In particular, as explained later, this permits the
implementation of two-phase schedulers with more iterations
in a single cell time, thus preserving good performance for
increasing RTTs. Although we focus on a centralized multi-
chip scheduler implementation, the fully distributed multi-chip
architecture could be adopted also when ISs and OSs reside
on different line-cards, allowing a completely non-centralized
scheduler implementation.

In this paper, we propose a new scheduler, named SRR
(Synchronous Round Robin), which is suited to a fully dis-
tributed environment, thus allowing a hardware scheduler
complexity reduction by a factor of N . At the same time,
we show that SRR, without any need of iteration, is able
to provide performance comparable with previously proposed
two-phase schedulers running with logN iterations, while
preserving the signalling reduction property typical of two-
phase algorithms. Finally, as it will become clearer later, in
contrast with previously proposed schedulers, SRR does not
require to keep any state information, whose size typically
increaseas linearly with the RTT.

III. SCHEDULING ALGORITHMS WITH RTT LATENCIES

Dealing with RTTs among devices has a profound impact
on scheduler design. In [7], the proposed two-phase scheduler
is a direct extension of the DRRM (Dual Round Robin
Matching) scheduler [5], originally conceived for a monolithic
implementation, to a distributed environment.

Let us briefly summarize DRRM behavior, focusing on an
enhanced version of DRRM which achieves lower delays,
thanks to a modified pointer update rule similar to that used in
FIRM (Fcfs in Round robin Matching) [4]. In every iteration,
first a request is sent by any unmatched input to the first
unmatched backlogged output in the round-robin order starting
from the current request pointer position. If an output receives
more than one request, it grants the one that appears first in
the round-robin order starting from the current position of the
grant pointer. Request pointers are updated, in the first iteration
to point to the output selected in the request phase, and further
to one position (modulo N ) beyond the output selected if
and only if the request is granted in the first iteration. Grant
pointers are updated to one position (modulo N ) beyond the
input granted in the first iteration.

In a monolithic implementation, all decisions are taken,
and known, in a single time slot, and pointers are updated
accordingly. In a distributed implementation, first, request
information is delayed by RTT/2 (assuming symmetric RTTs)
and the request pointer update cannot be performed imme-
diately, since grants will be available RTT/2 slots later. A
straightforward extension of DRRM to a distributed scenario

would imply that requests to be issued in the next time slot
are based on pointer positions not updated, thus breaking
the round-robin de-synchronization mechanism and leading to
throughput degradation. Moreover, request selectors would not
be able to accurately know the number of underway grants,
thus negatively affecting request decisions.

The distributed extension of DRRM proposed in [7] is based
on the following ideas. Let us focus on a single iteration
case. The key idea to keep the pointer de-synchronization is
to ensure that every pointer is updated at most once every
RTT slots. As such, each input and output selector keeps
a distinct (request and grant) pointer for every RTT slots.
Traditional pointer update rules are used: Request pointers are
only updated when the corresponding grant arrives, one RTT
after issuing the corresponding request, whereas grant pointers
are updated immediately after issuing a grant, since issued
grants are accepted by definition. In other words, with respect
to a monolithic implementation, RTT staggered schedulers are
running in pipeline dealing with requests and grants.

This implies that the scheduler complexity (in terms of
required pointers) increases linearly with RTT, since RTT
pointer registers are required per selector. An additional
counter (modulo RTT) is needed to indicate the current pointer
to be used, whereas the combinatorial selection logic does not
need to be duplicated, since a multiplexer to select the proper
register among the RTT registers is enough to permit a correct
behavior.

Another issue is related to pending requests. Indeed, only
after RTT slots it is possible to know whether an issued request
was granted. In the meantime, input selectors should issue
further requests. If the number of submitted requests exceeds
the number of enqueued cells, it may happen that a slot is
reserved for a VOQ that will become empty by the time the
grant is received at the input selector, thus wasting system
resources. To solve this problem, a PRC (Pending Request
Counter) per VOQ plus a request history per input selector
are introduced [7]. Basically, new requests are issued only if
the number of pending requests is smaller than the number of
cells currently stored in the corresponding VOQ. This choice,
which further complicates the selector design, is fundamental
to obtain good performance at low loads or under heavily
unbalanced traffic.

Further problems are related to the issue of dealing with
more iterations in a single time slot (see [7] for details).
However, since a fully distributed implementation is the goal
of this paper, we disregard issues related to iterations, which
can be reasonably used only if all output selectors share the
same physical device. Indeed, iterations are based on the
knowledge of the results of previous iterations in the same time
slot; in a fully distributed scheduler with RTTs, knowledge
of results of previous iterations requires RTT time slots, thus
basically preventing the possibility of iterating in this scenario.

A. Synchronous Round Robin

Let us now describe the SRR scheduler, initially disregard-
ing issues related to RTT for simplicity. The SRR scheme
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is based on a cyclic, TDMA-like, preferential scheduling of
VOQs. This preferential scheduling is obtained by logically
numbering the slots with an incremental counter s, ranging
from 0 to N − 1, i.e., a modulo N counter. Slots are
logically organized in frames, named SRR frames; each frame
comprises N slots.

Let us describe the input and output selectors behavior at
time slot s:

1) the input scheduler associated to input i preferentially
selects for a transmission the VOQ with destination
output |i + s|N . In other words, a preferential request
is issued for output |i + s|N .

2) if the preferential VOQ is empty, a request for the
longest VOQ is attempted; ties among VOQs are broken
according to a round-robin scheme.

Output schedulers grant the preferential request, if issued;
otherwise, a randomly chosen request is granted among non-
preferential conflicting requests.

Other possible solutions, not pursued in this paper, exist to
break ties among VOQs at input selectors, such as random or
round-robin choice among non-preferential VOQs; however,
the longest VOQ choice provides the best compromise be-
tween complexity and performance, as discussed later. Note
that the random choice among conflicting non-preferential
requests at output selectors may be not the most natural choice.
Indeed, given that input selectors choose non preferential
requests exploiting a longest queue first algorithm, output
selectors could select the request corresponding to the longest
VOQ among conflicting requests. However, this would require
an increase in signalling complexity, since VOQ lengths should
be sent to output selectors, and also a complexity increase at
output selectors, since conflicting request should be compared
according to their length. Selecting longest queues at inputs is
easier, since queues could be kept simply ordered by length;
indeed, in a given time slot, at each input at most one departure
and one arrival can occur. Moreover, performance results show
that the benefit of the longest queue selection at outputs is
marginal for both balanced and unbalanced traffic.

Regardless of the fact that the request is granted or not,
a new selection is made in the next time slot, according to
the above described algorithm. In summary, for low switch
loads SRR behaves similarly to a single-queue FIFO strategy.
At high loads, when all queues are always non-empty, the
SRR preferential scheduling deterministically orthogonalizes
input request attempts, so that a single preferential request is
received by any output in a given time slot. More precisely,
for network loads larger than or equal to the channel capacity,
input selectors behave exactly like in a Time Division Multiple
Access (TDMA) scheme: during a SRR frame, whose length is
equal to N slots, all inputs have exactly one access opportunity
for transmissions toward each output, and they exploit this ac-
cess opportunity deterministically, thereby avoiding potential
conflicts at outputs. In this sense, SRR is throughput optimal
under overloaded uniform traffic conditions.

A nice property of SRR is that it can be used without any
modification i.e., with no complexity increase, to deal with

RTTs. The only difference is that grants will be received
one RTT later with respect to request issue, thus negatively
affecting delays. However, we will show that even without
exploiting any pending request counter, performance at low
loads are comparable with those of iterative algorithms ex-
ploiting pending request counters.

IV. PERFORMANCE RESULTS

We show performance results based on simulation runs
exploiting a proprietary simulation environment developed in
C language. Statistical significance of the results are assessed
by running experiments with an accuracy of 1% under a
confidence interval of 95%. We compare SRR with the dis-
tributed extension of DRRM presented in [7]. The switch
has N = 16 inputs and outputs running at the same speed,
and is loaded with either Bernoulli or Bursty traffic with
geometrically distributed burst sizes with an average burst size
of 10 cells; cells in the burst are all directed to the same
output. Performance indices are either average delays vs nor-
malized switch throughput or maximum achievable normalized
throughput in overload. SRR performance are reported as solid
lines with black dots, the modified version of DRRM, which
accounts for multiple pointers to deal with RTTs, is labeled
MP (Multi Pointer) and plotted using dashed lines; different
symbols refer to a variable number of iterations.
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uniform Bernoulli traffic in a monolithic scheduler implementation (RTT=0).

Let us first examine, in Fig.4, a scenario in which RTT=0,
which corresponds to the traditional single-chip implementa-
tion of schedulers, under uniform Bernoulli traffic. Besides
DRRM and SRR, we plot also a TDMA scheme, iLQF
(Longest Queue First) [9] with one iteration, and LQF-1, a
simplified version of iLQF with one iteration where inputs
send a single request only (for the longest queue) per time-
slot to outputs. Note that the TDMA scheme corresponds to
SRR using the preferential scheduling only whereas LQF-
1 corresponds to SRR using the non-preferential scheduling
only. Clearly, the preferential scheduling scheme of SRR is
fundamental to obtain good performance results at high loads:
indeed, iLQF with i = 1 iteration saturates at 0.65, whereas
LQF-1 saturates at 0.61. At low loads the non-preferential
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Fig. 5. Performance comparison between SRR and MP under uniform Bernoulli traffic for variable RTTs.

scheme of SRR becomes dominant, so that performance are
close to those of modified DRRM and much better than those
of a pure TDMA.

In Fig.5 we report delays as a function of the switch
throughput for variable RTTs under uniform Bernoulli traffic.
No throughput limitations are observed for both SRR and
modified DRRM; SRR shows remarkably low delays, im-
proving performance as RTT increases. Only a slight delay
impairment can be noticed for low-medium loads and small
RTTs; this is due to the missing pending request counters,
which are instead used in the modified DRMM. Recall that
pending request counters are fundamental to avoid issuing
too many request for the same VOQ; indeed, if the number
of requests issued exceeds the number of enqueued cells,
which may happen at low-medium loads and for large RTTs,
it may happen that the VOQ becomes empty by the time
the grant is received, thus wasting system resources. Indeed,
modified DRRM without pending request counters performs
much worse, as shown in Fig.6, where SRR clearly outper-
forms the modified DRRM. Moreover, recall that SRR, besides
not exploiting any additional counter, does not require any
iteration, thus allowing a fully distributed implementation;
nevertheless, delay performance are comparable with those of
modified DRRM with logN = 4 iterations, and improve with
increasing RTTs. Minor differences exist in this scenario if the
non-preferential VOQ choice at inputs in SRR is done on a
round-robin basis instead of using a longest queue choice.

Similar performance are shown by SRR for Bursty traffic, as
reported in Fig.7. Delay properties are remarkable, since SRR
shows much better performance than modified DRRM with
i = 1 iteration also under correlated traffic. Note that SRR
with the random choice of non-preferential VOQs at input
selectors, labelled SRR-RND in the plot, show much worse
performance than SRR for medium loads, thus justifying the
choice of the longest VOQ when the preferential queue is
empty.
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V. CONCLUSIONS

We deal with the problem of fully distributed multi-chip
scheduling implementation in input queued switches. Multi-
chip implementation implies that i) decisions taken by input
and output selectors should be independent, being the selectors
realized in different devices and ii) any information exchange
among selectors implies a RTT delay, which may be larger
than few tens of slot time.

The newly proposed scheduler, named SRR, i) is suited to
a fully distributed implementations, ii) does not require any
complexity increase as a function of increasing RTTs, iii) does
not require any iteration to improve matching selection.

SRR shows performance comparable with those of a pre-
viously proposed distributed scheduler, a modified version
of DRRM able to deal with RTT among devices. This is a
remarkable achievement, since the modified DRRM scheme
is not suited to a fully distributed implementation, requiring
i) all output selectors in the same device to permit iterations,
ii) a number of pointers and counters linearly increasing with
RTTs. The only SRR penalty is the need of keeping ordered
by queue length the VOQs at input selectors, a relatively easy
task given that at most one cell can arrive and at most one
cell can depart in each time slot.
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