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Abstract

This paper is focused on the design of a robust controller for a catalytic fixed
bed reactor with periodical inversion of the flow direction (Reverse-Flow
Reactor, RFR). The analogy between the RFR operated at infinite switching
frequency and the countercurrent reactor is the basis of the simplified
mathematical model of the reactor.

The control system uses dilution and internal electric heating to ensure
complete conversion of the reactants and to prevent overheating of the catalyst.
As the state of the system is not fully available, apart from some temperature
measurements, an observer is designed and used in the control algorithm. This
is a typical case of non-linear system with uncertainties. Following the
procedure described in detail by Fissore (2007), the extended model for the
process is set-up, thus taking into account all the simplifications of the model
and linking performance and robustness to the control law, which is a simple
state feedback. Simulations with randomly varying feeding concentration have
been carried out in order to demonstrate the effectiveness of the proposed

control system.
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Introduction

In the last decades a great interest grew up in the Chemical Engineers community
towards the unsteady-state reactors; various configurations and a lot of processes
that can take some advantages from this mode of reactor operation were
investigated. Among the others, the attention of the researchers was focused on the
catalytic Reverse-Flow Reactor (RFR), i.e. a fixed-bed catalytic reactor where the
feeding direction is periodically reversed by acting on a set of valves. The RFR
allows, for example, the autothermal combustion of cold and lean mixtures of air and
VOC (Volatile Organic Compounds): no auxiliary fuel is needed except in the start-
up phase when the catalytic bed is pre-heated (see, for example, the reviews of
Matros and Bunimovich, 1996, and of Kolios et al., 2000). With a proper choice of the
switching time (i.e. the time occurring between two successive inversions of the feed
direction) a dynamic regime is obtained, with a “hot” zone located in the central part
of the bed, where the reaction occurs, and a “cold” zone at the boundaries of the bed,
where no reaction take place (and thus the catalyst can be replaced by an inert solid).

Beside the intrinsically dynamic behaviour of the RFR, one must deal with
external perturbations (in the feed concentration, composition, temperature and flow
rate) which may lead either to reactor extinction (and thus to the emission of
unconverted reactants) or to catalyst overheating (and thus deactivation). Despite the
large number of papers dealing with the various issues concerning the design of a
RFR (mathematical modelling, parametric sensitivity analysis, process optimisation,
experimental investigation and scale-up, ...), little attention was paid to the design of
efficient monitoring and control systems (Barresi and Vanni, 2002a, 2002b; Edouard
et al., 2005a, 2005b; Hevia et al., 2005; Fissore et al. 2006). The design of an efficient
control system is of outmost importance for the reverse-flow catalytic afterburners
where the feeding concentration changes with time. Feed flow-rate can also be
variable, but in the industrial application the reactor is generally designed to operate

at a constant flow rate (given by a blower) and thus only the response to changes in



the feeding concentration will be investigated in this paper.

Figure 1 shows a sketch of the catalytic RFR which is investigated in this work.
The packing is made of two sets of monoliths: a long inert monolith and a short
catalytic one. The geometrical characteristics (as well as the physical properties of the
support and of the feeding) are the same of the system investigated by Ramdani et al
(2001) and can be considered representative of an industrial apparatus. The wide
square cross section of the monoliths prevents heat losses over their whole length;
conversely, heat loss through the reactor wall takes place in the central chamber
where the electrical heater is located and where fresh air can be injected for control
purposes.

Our study is motivated by the results of Edouard et al. (2005a, 2005b) who
investigated the possibility of using state-space based controllers, and in particular
the Linear Quadratic Regulator, for the reactor of Figure 1: they pointed out that a lot
of simplifications are required to apply this technique, thus questioning about the
need for an accurate and complex model-based control algorithm in presence of a
very simplified model. Even if they say that the errors due to the linearization can be
considered negligible, all the algorithm is based on the assumption that the reactor is
operated at high switching frequency, thus exploiting the analogy between the RFR
and the countercurrent reactor (Nieken et al., 1995), and this may be questionable.

Robust control can be an interesting technique for designing a state-space based
controller, taking into account model uncertainties. Christofides and Daoutidis (1996,
1997, 1998), among the others, investigated the design of a robust controller for
reactors described by hyperbolic and parabolic systems of PDE, in presence of a
manipulated input and of a controlled output distributed in space: the controller is
designed constructively using Lyapunov's direct method and requires that there exist
known bounding functions that capture the magnitude of the uncertain terms and a
matching condition is satisfied.

The H, control design technique provides an alternative technique to achieve

similar results; moreover, this technique involves the design of a state estimator



(observer), coupled with the controller (which is a simple state feedback), that
guarantees robust performance. In a previous work (Fissore, 2007) a detailed
description of this technique has been given, summarising the main results appeared
in the Literature and introducing the concept of “extended system” for the control
design, where performance requirements and model uncertainty are described. Non-
linear variables are linearised around a "nominal" state and the range of values that
can be assumed by the non-linear variable is considered as a range of uncertainty
around the nominal state.

This is not the only approach that has been proposed in the Literature to
account for nonlinearities; recent papers gave extensive results on the control of
nonlinear systems that handle uncertainty and constraints: El-Farra & Christofides
(2001, 2003) and Mhaskar et al. (2005) focused their attention on the control of multi-
input multi-output nonlinear processes with uncertain dynamics and actuator
constraints and proposed a Lyapunov-based nonlinear controller design approach
that accounts explicitly and simultaneously for process nonlinearities, plant-model
mismatch, and input constraints.

This paper is organised in the following way: firstly the process model is given,
with all the simplifications required; then the control problem is stated and the
“extended model” required for the design of the robust controller (and of the
observer) is built up; finally various results proving the effectiveness of the proposed
control algorithm are shown.

We would like to highlight that this work is one of the first attempts to apply
the H, control technique to a distributed parameters system like a fixed bed reactor;
some papers appeared in the past applying this technique to the Chemical
Engineering field, but all of them investigated lumped systems like perfectly mixed
continuous reactors (see, for example, Galan et al., 2000, and Kolavennu et al., 2000).
Even when much more complex systems, like a distillation column, were
investigated, simple input-output models were used (Razzaghi and Shahraki, 2007).

In this paper we would like to evidence all the potentiality of this method, even at a



vary basic level, but in presence of a detailed model, instead of using a complex

theoretically-based H., controller with an elementary model of the process.

Model formulation

The analogy between the countercurrent reactor and the RFR was used in this work
to build up a simple model of the process. This analogy was firstly stated by Nieken
et al. (1995) and it was demonstrated that it holds when the switching frequency is
infinite. Figure 2 shows a sketch of the countercurrent reactor under study. The basic
balance equations are given in Appendix 1, with the corresponding boundary
conditions.

Normalising some variables and assuming, following Edouard et al. (2004) and
for sake of simplicity, that the Nusselt and Sherwood numbers on one hand, and the
Schmidt and Prandtl numbers on the other hand, are equal, we obtain the following

balance equations for the inert section of the reactor:
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with boundary conditions:
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For the catalytic section of the reactor the contribution of the second reactor to the

reaction rate, namely r;,, is assumed to be negligible during normal operation (i.e.

far away from reaction extinction) as it was discussed by Fissore et al. (2006).

Moreover, mass transfer control is assumed, thus o, ¢ ,, =0; this gives:
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If the assumption that the Nusselt and Sherwood numbers on one hand, and the
Schmidt and Prandtl numbers on the other hand, are equal does not hold, the non-
dimensional equations describing the dynamics of the system are slightly modified,
as it is shown in Appendix 2.

The models given by eq. (1)-(3) for the inert monolith and by eq. (4)-(6) for the
catalytic monolith are further simplified using the approach of Balakotaiah and
Dommeti (1999), thus expressing the gas temperature as a function of the solid

temperature:

?)

The convergence of the series is guaranteed when Pe>1; as Pe is much greater than
unity in this case, it is possible to truncate the development at the second-order term,

thus obtaining the following approximations:
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(in eq. (7) and (8) the subscripts "cat" and "in" are omitted). Using eq. (8), the

following pseudo-homogeneous heat balance is obtained for the inert monolith:
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The boundary conditions for the thermal balance equation are modified as now there
are no more two gas-phase first-order thermal balance equations and one solid-phase
second-order thermal balance equation, but just eq. (9) and (11). As a consequence,
the boundary conditions at xi» = 0 and at xi» = 1 are obtained writing the energy
balance for the pseudo-homogeneous system (solid+gas) and expressing the gas

temperature as a function of the solid temperature according to eq. (8):
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As we have distinguished between the balances of the inert and of the catalytic solid,



we are sure that whatever is the space discretisation used, the temperature at the
interface between the two solids is calculated; this is of paramount importance as this
temperature is the controlled variable of the process as it will be demonstrated in the
next paragraphs.

The finite frequency in the RFR is responsible for a deviation with respect to the
prediction based on the countercurrent model; the simple correction introduced by
Edouard et al. (2004) is used to take into account the finite flow reversal frequency.

The numerical solution of the problem has been carried out by discretising the
spatial domains of the system, thus transforming the PDE (9)-(11) (with boundary
conditions given by eq. (13)-(14)) into an ODE system. The orthogonal collocations
method has been adopted in order to find the solution in the nodes of the discretised
domain: the unknown solution of a differential equation is expanded as a global
interpolant, such as a trigonometric or polynomial function (a comprehensive
description can be found in various books and papers, see for example Canuto et al.,

1988, Funaro, 1992, and Fornberg, 1996):

n+l

f(x)zgof(xj)lj(x) (15)

where xo and x«+1 are the points where the boundary conditions are defined, {xj} is a

set of n distinct interpolation nodes and I are the Lagrangian interpolating

polynomials of degree n satisfying the condition:

L (x)=6, (16)
and thus defined by:

n x_x
l, X)= L 17
(%) i:llljxj—xi (17)

The best choice for the interpolation nodes are the roots of orthogonal polynomials

such as the Jacobi, Laguerre, and Hermite polynomials. In this case, as the points xo

and x»+1 are involved in the calculation, the best choice for the points {xj} is given by

the zeroes of the polynomial of Jacobi P/’ (x) with a=p=1, defined over the



interval [0, 1].

If we consider the solution of eq. (9) the approximated solution is:

1, +1

Ty (£ x) = z Ts i (t’xj,in )lj,in (x) (18)
j=0

where nin is the number of collocation points in the inert monolith, thus:
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Eq. (18) and (19) are then introduced in eq. (9), thus resulting in the collocation

points:
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If we consider the solution of eq. (11) in a certain time instant the approximated

solution is:
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where 1. is the number of collocation points in the catalytic monolith, thus:
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Eq. (22) and (23) are then introduced in eq. (11), thus resulting in:
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polynomial in the differentiation matrix D' and D? defined as:
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and re-define some variables, eq. (20) and (21) can be written as:
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After some algebraic manipulations, the equations describing the time evolution of

the temperature of the solid temperature are given by:

dTs _

?—A(Q)Ts+Bl(O‘)TG,o+Bz (@)Qu+E(a)AT, (31)
where:
T TS,in (xl,in ) TS,cat (xl,cat )
S,in . .
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Appendix 3 gives the values of the matrices A(«),B,(«),B,(«),E(a).

Design of the controller

It has been stated in the Introduction that the control system is required to avoid the
extinction of the combustion reaction and the overheating of the catalyst when the
feeding concentration changes. If the feed concentration results in a temperature
profiles that allows for complete pollutant conversion without damaging the
catalysts, no control action is required: neither the electric heating (Q«) nor the fresh

air dilution (@) are active. If the pollutant concentration of the feed is too low to

12



ensure full conversion, electric heating is required; however, the heating power
should be kept as small as possible to reduce the cost. On the contrary, if the
concentration of the feed is so high that the maximum allowable temperature of the
catalyst is overcome, fresh air is introduced in the reactor. Therefore, the reactor
works at the upper limit temperature in dilution phase, when the feed of pollutant
concentration is rich, and at the lower limit temperature in heating phase, when the
feed is lean. Heating and cooling together must be avoided. Consequently, two
controllers are required: one in presence of rich feed, which uses air dilution as
manipulated variable, and the other in presence of lean feed, using electric heating as
manipulated variable. According to the temperature measurements, both controllers
may be deactivated, or one specific can be active.

The key question is the choice of the "upper" and of the "lower" limit
temperature profiles; most of the reaction takes place at the inlet of the catalytic
monolith and is instantaneous (Nieken et al., 1995; Ramdani et al., 2001). Therefore,
instead of the full temperature profile, only the temperature at the entrance of the
catalytic section Ts(xwt0) has to be controlled. For the case study under investigation
the minimal temperature Ts(xa0) required to ensure full conversion and the
maximum temperature to avoid overheating of the catalytic monolith are
respectively 450 and 600 K. Thus, if Ts(xa0) is between the two limit values no
control action is required, while if it overcomes 600 K, dilution is required to avoid
catalyst overheating and if it becomes lower than 450 K, electrical heating is required.

Robust control technique described in detail by Fissore (2007) is used to design
the two controllers; this technique applies to linear systems, thus we need first to
linearise the model (31) around the nominal steady-states for the two controllers:

1. For the calculation of the steady-state profile corresponding to the "lower" limit

(indicated with the superscript "0") we assume that AT, =0 K; with dilution kept
as low as it is possible (a° = 0.95, due to leakage), the limit temperature T (Xcat'0)=

450 K is maintained with Q) = 1100 W (with a feed flow rate of 100 Nm?3 h-); the

13



corresponding temperature steady-state profile is Z°.
2. For the calculation of the steady-state profile corresponding to the "upper” limit
(indicated with the superscript "1") we assume that the maximum feeding

concentration corresponds to AT, =100 K; in this case no external heating is
required, thus Q!, =0 W, and the limit temperature T (Xcat’0)= 600 K is maintained

with a dilution resulting in &' =0.75; the corresponding temperature steady-state
profile is Z.
It is important to highlight that the control actions corresponding to the two limiting

steady-state, i.e. QY and ¢, are calculated assuming that the feeding concentration

can have a ATw variable in the range 0 and 100 K; if this range is different, the values
of external heating and of dilution corresponding to the two limiting steady-state
will be different.

The balance equation system (31) can be linearised around the generic steady
state ZJ, resulting in:
AT, (t)= A(a’ ) AT, (t)+

ox
+B,(a’)AQ, +E(a’)A(AT, (t))

Zf + aBl (a)
o oa

. OB
AT
o oa

i OE(@)

el

| AT;’d}Am (33)

o’ o’

where AT, =T,-Z', Aa=a-a’, AQ,=Q,-Q); A(AT,) plays the role of
disturbance. Thus, if we are approaching extinction, the linearised model describing
the dynamics of the system is:

AT, (t)= A(a’) AT, (t)+ B, () AQ, + E(a” ) A(AT,,(t)) (34)
while if we are approaching catalyst overheating, the linearised model describing the

dynamics of the system is:

AT, (t)= A(a')AT; (t)+

oA o B(@) OBy (@) o FE(@) Ly (35)
oa |, o oa |, oa |,
+E(a')A(AT, (1))
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Eq. (34) and (35) are two linear models that can be used to design the two linear

robust controllers.

Control system design to avoid reaction extinction
Figure 3 (upper graph) shows a block diagram corresponding to eq. (34); the block

C(a?) corresponds to a matrix that allows extracting from the array AT, the controlled

(and measured) states: we assume to measure the temperatures at the entrance of the
inert monolith (AT1) and at the boundaries of the catalytic monolith (AT2> and ATs),
while the controlled variable is the temperature at the interface between the inert and
the catalytic monolith (AT2). Obviously we measure T1, T2 and T3 and not AT1, ATz and
ATs, but, as Z° is known, from the measure of the temperatures it is possible to
calculate the difference of these temperatures from the desired steady-state.

Roughly speaking, the control system will act when the reaction is approaching
extinction in order to maintain the system at the state Z° ie. to guarantee
insensitivity of AT> with respect to disturbances A(ATw) (i.e. to maintain the
temperature at the interface inert-catalytic monolith at the steady-state value) acting
on the AQu (i.e. varying Q. from the steady-state value of 1100 W) with a full-state
feedback, i.e.:

AQ, =—K AT, (36)
The whole temperature profile is required to calculate the control action, as the
controller is a full state feedback.

For the calculation of the controller gain K° we need to specify the performance
requirements:

1. process performance: ATs2 should be kept as small as possible; in our analysis
we assumed a performance filter Ww:r = 10, thus requiring a sensitivity
between the disturbance and the controlled variable lower than 0.1 for all the
frequencies;

2. control activity: as the control action is based on the measurements and they

15



can be affected by noise (11, n2 and ns for the three temperatures measured),
we require a low sensitivity of the control action with respect to these noises

and we assume performance filters W, =W, =W, =10.

mpu = Wiy
Beside the performance requirements, we need to specify the robust performance
required, i.e. the range of the values of the parameters of the model. For this
application uncertainties are due to:

i. modelling hypothesis: the countercurrent reactor is a good approximation of
the RFR only when the switching frequency is infinite; moreover, mass
transfer control is assumed and the gas temperature is assumed to be a
function of the solid temperature according to eq. (8);

ii. model linearisation around the desired steady-state;

iii. ~ parameter calculation (transport coefficients, physical properties of the gas
and of the monoliths).

The result is that the coefficients of the matrices A(ao), B, (ao), E(ao) and C (ao)

can vary in a certain range. We assume that:
A(a’)=A(I+A'W,)
B,(a’)=B,(I+A'W, )
C(a’)=C(I+A"W,)

E(a’)=E(I+A'W;)

(37)

where A, B2, C and E are the nominal values of the matrices of the system, I is a
matrix (of adequate dimension) whose coefficients are equal to 1, A" is a matrix
whose norm H, is lower than 1 and Wa, Ws,, Wc and WE are the filters specifying the
variability of the matrices.

Assuming that the physical properties of the system, the geometrical
dimensions and the state around which the linearisation is made (i.e. the target value
of the temperature profile) are well known, we have to make hypothesis about the
sources of uncertainty in order to determine the range of variability of these matrices.

We have stated in the paragraph describing the model, that a correction for the finite
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flow reversal frequency was included in the model (see Edouard et al., 2004); it
consists of a modification of the parameters Pe and Pex (both for the catalytic and for
the inert section of the reactor), which thus represent the main source of uncertainty
of all the matrices. It must be considered that in the definition of these two
parameters both the heat transfer coefficient and the solid thermal conductivity,
which can be poorly known (see Appendix 3), appear. If we assume a variation of the
two parameters of £10% around their nominal values, the coefficients of the matrices
A, By, C and E can be calculated in the two limit cases and they show a maximum
variation around their nominal values of about +10%: for sake of simplicity the
coefficients of the filters are set equal to 0.1. The other source of uncertainty is the
state around which the system is linearised; anyway, this state can be regarded as a
target value that should be maintained when the system is approaching extinction
and so it is fixed by the user. The control system does not operate when the system is
far from extinction: it has been stated that it acts only when the maximum
(monitored) temperature falls below a lower limit; in this condition the linearised
model is adequate to describe the dynamics of the reactor.
The results of this specifications is the "extended model" shown in Figure 3
(lower graph); various couples of input-output signals emerge:
1. A(ATw)-zr represents the channel disturbance-objectives (Wuw:r is the
corresponding performance filter);
2. mi-zm represents the channel measurement noise on the first temperature (T1)-
control activity (the performance filter is W)
3. m2-zm represents the channel measurement noise on the second temperature
(T2)-control activity (the performance filter is Wiz,)
4. ns-zus represents the channel measurement noise on the third temperature (T3)-
control activity (the performance filter is Wis,)
5. wa-za represents the uncertainty channel due to A;
6. wa-ze2 represents the uncertainty channel due to Bz;

7. wc-zc represents the uncertainty channel due to C;

17



8. we-ze represents the uncertainty channel due to E;
The extended system defines a multivariable operator GW with inputs
w={A(ATM,),nl,n2,n3,wA,sz,wC,wE} (38)
and outputs:
z:{ZT,znl,znz,znz,zA,sz,zC,zE} (39)
If all the states of the system (i.e. the values of AT;) are measured, robust

performance (i.e. the desired performance in all the uncertainty range) is obtained if
it is possible to find a controller gain K° such that the H, norm of all the channels
input-output of the multivariable operator GW is lower than zero. More details about
the theoretical foundation of this result and about the details of the calculus can be
found in Fissore (2007).

As only three temperatures are measured (or better, three differences between
the temperature and the desired steady-state values) an observer is required to get
the estimation of the other states and to guarantee robust performance, i.e the
optimum observer in the worst disturbance condition has to be calculated. The
procedure described by Fissore (2007) was followed, and thus no further details are
given here. An example of the results obtained with the system observer+controller is
given in Figure 4: the reactor is considered to be at the steady-state Z° at =0, when
the inlet concentration (i.e. the ATw) is changed; the time evolution of ATz (i.e. the
difference between the actual value of T2 and its set point) is shown, together with
the calculated control action (given as variation of Q. from the steady-state value of
1100 W). Fast and accurate regulation (according to the requested performance) is
obtained with the calculated controller; moreover, some tests have been made
changing the values of the coefficients of the matrices A, Bz, C and E within the range
of uncertainty assumed around the nominal value and again the calculated controller
showed good results (which are analogous to those of Figure 4 and thus are not

shown here for brevity).
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Control system design to avoid catalyst overheating

The design of the control system to avoid catalyst overheating, acting on the dilution,
follows the same steps described in the previous paragraph about the control of the
extinction of the reaction. The block diagram corresponding to eq. (35) is similar to
that shown in Figure 3 for eq. (34): the only difference is that now the manipulated
variable is the dilution (Aa) and no more the electric heating (now in fact Qu = 0).

Obviously the matrices A(a’), E(a’) and C(a”) are now replaced by A(a'),

E(a') and C(a'), while the matrix B, (") is replaced by

(o)< 220

Z1 + aBl (a)

0!1

OE (o
Qu+ (@)
1 50{

AT;} (40)

The same measured variables are used in the control loop, aiming to guarantee
insensitivity of AT> with respect to disturbances A(ATw) (i.e. to maintain the
temperature at the interface inert-catalytic monolith at the steady-state value) acting
on the Ao (i.e. varying o from the steady-state value of 0.75) with a full-state
feedback, i.e.:

Aa =—K'AT, (41)
Again all the temperature profile is required to calculate the control action. For the
calculation of the controller gain K! the same requirements on the regulation and on
the control activity previously posed are used, as well as the same range for the
coefficients of the matrices, thus taking into account model uncertainties.

Again, following the detailed procedure outlined by Fissore (2007) both the
observer and the controller satisfying the condition on the norm of the multivariable
operator arising from the extended model have been calculated. An example of the
results obtained with the system observer+controller is given in Figure 5: the reactor
is considered to be at the steady-state Z! at t=0, when the inlet concentration is
changed; the time evolution of AT: (i.e. the difference between the actual value of T:
and its set point) is shown, together with the calculated control action (given as

variation of « from the steady-state value of 0.95). Fast and accurate regulation
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(according to the requested performance) is obtained with the calculated controller;
moreover, some tests have been made changing the values of the coefficients of the
matrices of the system within the range £10% around the nominal value and again
the calculated controller showed good results (which are analogous to those of

Figure 5 and thus are not shown here for brevity).

Controller validation

A final test was made to verify the effectiveness of the proposed control system. The
reactor is assumed to be initially at the steady-state Z° and the feed concentration,
given as ATaq, is assumed to vary randomly between 20°C and 40°C. The control
action is calculated according to eq. (36) or eq. (41) as a function of the temperature
T2. When the temperature at the inert-catalyst interface is in the allowed range, no
control action is undertaken and the value of dilution a or of electrical heating Qe is
not changed. Figure 6 shows the values of the input (both disturbances and
manipulated variables) of the system as well as the controlled temperature, which is
maintained in the desired range. Figure 7 shows the time evolution of the spatial
temperature profile, showing the effectiveness of the proposed control system in

maintaining the reactor ignited, beside avoiding catalyst overheating.

Conclusions

In conclusion, we would like to summarise the advantages of the proposed method:

- first of all, it is very easy to implement control laws like those of eq. (36) or (41) as
they are just state feedback;

- secondly, as the full state of the system is not measured but is required to calculate
the control action, an observer is required to know all the states; moreover the
observer must be designed for the worst case disturbance in order to guarantee the

performance of the control system and its robustness;
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- moreover, the control system is designed to ensure a well defined performance in
a well defined uncertainty interval: if the norm H., of the “extended model”
comprising performance and uncertainties is lower than 1 the robust performance
are guaranteed, otherwise the detailed exam of the norm of the various input-
output channels of the operator indicates if the uncertainty interval is too large or
if the performance requirements are too tight, thus guiding the design of the

control system.
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Notation

@in, bin Non dimensional parameters defined in eq. (28)

Acat, beat, cct Non dimensional parameters defined in eq. (30)

o Specific surface area of the solid, m> m-

Cp Specific heat, ] kg'K

Dt, D? Differentiation matrix

h Heat transfer coefficient between the gas and the solid, J s'm?2K"!
ko Mass transfer coefficient between the gas and the solid, m s
K Controller gain

lj Lagrangian interpolating polynomial in the point x;

L Length of a monolith, m

M Molecular mass of the feed, kg mol!

n Measurement noise

N’ Number of transfer units for heat loss

Pe Peclet number for gas-solid heat transfer

Peax Axial Peclet number for heat conduction

per Polynomial of Jacoby of degree n

Qe External power supply, J s

s Reaction rate, mol m!s?

S Cross section of the monolith, m?

t Time, s

T Temperature, K

v Surface gas velocity, m s’

4% Performance filter

X Non-dimensional axial coordinate

y Solid temperature evaluated in the collocation point, K
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z Axial coordinate, m

zZ Steady-state temperature profile used for linearisation
Greeks

a Fraction of the feed flow rate

Oij Function of Kronecker

A Variation from the steady-state value

A Bounded operator with norm H., lower than 1
-AH Heat of reaction, ] mol!

ATu Adiabatic temperature rise of the feed, K

& Solid void fraction

A5 Axial thermal conductivity of the solid, ] s'mK"
P Density, kg m3

T Time constant for heat storage, s

® Mass fraction

Subscripts

0 Feeding value

1,2 Indicate the first and the second half of the reactor
cat Catalytic monolith

G Gas phase

in Inert monolith

S Solid phase

Superscripts

0 Refers to the lower temperature operating limit

1 Refers to the higher temperature operating limit
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Abbreviations

PDE Partial Differential Equations
RFR Reverse Flow Reactor
VOC Volatile Organic Compound
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Appendix 1

The basic balance equations for the countercurrent reactor are:

O°T, ha, ha, Toq 1, oT,
/Iasx 8225 +7(Tc,1 - T ) + > (Tc,z - T ) +a, (_AH)%(”(Z) =(1 _‘9)/05‘3;7,5 8_1‘5
(42)
oT
AP y0,C, %Hmn (T, -T)=0 (43)
oT,
~P:,0%Cc % +ha, (Tc,z - T ) =0 (44)
ow
APc 0V % +kpa, pg (a)G,l - a)s,1) =0 (45)
ow,
~P:,0% % +kpa,pc (wc,z - 0)5/2) =0 (46)
Ts1
kp (a’c,l - a)S,l) =M-= 47)
£s
Ts 2
kp (a)G,Z - a’s,z) =M-—= (48)
J%e

where ¢(z)=0 in the inert section (0<z<L,) and ¢(z)=1 in the catalytic
section (L, <z<L=L,+L, ) of the reactor. The boundary conditions for the

mass balances are:

=,
z=0 G0

W 1
(49)
a)G’Z‘z:L - aa)cfl z=L

while the boundary conditions for the thermal balances are:

TG,l 0 Tc,o

a (1+N'-a) 1
T = — + To o+ 50
@f=t(14N7) M (14NY) O (1+N')pc,ovocp,GsQ“’ 0
on| _on|
aZ z=0 aZ z=L

where N’ is the number of transfer units that accounts for heat loss in the
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central chamber.
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Appendix 2

If the assumption about the identity of the numbers of Nusselt and Sherwood
and the numbers of Schmidt and Prandtl does not hold, the balance equations
describing the dynamics of the inert section of the countercurrent reactor (eq.
(1)) does not change, as well as their boundary conditions (eq. (3)), while the
balance equations for the catalytic section (eq. (4)) are slightly modified: in
particular the mass balance equations for the gas phase and for the catalyst

surface change:

at (51)

The boundary conditions for the mass balances and for the thermal balances

remain the same (eq. (6)).
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Appendix 3

A12
A21 A22

All(i’j):[( By, +b;, AzOm)p2 0,j,in ( A, 1]m+b A1]1n):|
+[( 10m+b AlOm)pZ 0,1, +1,in (a an +1m+bin i +1m)i|'

in in

LA )

n;,+1,0,in i +1L,j, i

pZAO,j,in + *
(AO,O,cat - L An,,,+1 n,+1, m) (AO,O,Cat -L Anm+1 1, +1,in )

Ala)=

"PePs

in

AlZ(l/]):[( m 101n+b Az()m)p2 0,n; +1m+(ainB1',n,vn+l,in+bin in; +1m)j|'

in in

*

pSL AO,nm+1,cat pSL AO,j,cut
A L*A pSCcatAnm[Jrl,j,cat + A L*A
( 0,0,cat n, +1,1, +1 m) ( 0,0,cat

in in

1, +1,m;,+1,in )

A21 (ll ]) = [(acutBi,O,cut + bcatAl 0,cat ) (acuf Bi,nm,+1,cut + bcat Ai,nm,Jrl,cat )pSCcutAnC,,[+1,0,cut :| ’

* *
L Anm +1,0,in L An,-n +1,j,in

P A
* ,] in *
(AO,O,cat - L An,,,+1 n, +1 m) (AO,O,cat - L An +1,n;,+1 m)

in in in

"PsPs

A22 (Z’]) = |:(acutBi,j,cut + b Az i cat) (a Bl Megy +1,cat + bcutAi,nm,+1,cat ) pBCcutAn +1,j,cat j| +

cat

- [(acatBi,O,cut + bcatAz 0,cat ) (acuth Mg +1,cat + bcatAz Mg +1,cat ) Ps CﬂtAnC”,+1,0,Cﬂt :| )

pSAO,nm,+1,cat pSAO,j,cut

Ps€ +
* 3> cat nLa,+l,] cat *
(AO,O,cut - L An +1,n;,+1 m) (AO,O,cut - L An +1,m;,+1 m)

in in in

"Ps

Bll

Bl (a) = B
12

Bll (l) = |:( m i,0,in + b Az 0 m)p AO,nm+1,in + (amBz n, +1,in + bmAz My, +1,in )j| p7 +
( 10m+b Az()m)pl

BlZ (Z) = p7 |:(acat i,0,cat + bcatAz 0,cat ) (ucutBi,nmﬁl,cat + bcatAi,nm,H,cat ) pSCcatAnm+l,0,mt j| +
( cuth Mg +1,cat + bcatAz Mg +1,cat )p3
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B21

BZ(a): B
22

B, (i) = _[(amBi,o,m +0,,A; 0, ) pon,n,.nn,in + (ainBi,nr i T bmAi,n,.nu,m )] Ps

in

BZZ (l) = _pS [(acatBi,O,cat + bcatAi,O,cat ) + (acatBi,nm,H,cat + bcatAi,nm,H,caf ) p?’ccatAnmﬁl,O,caf j| +

+ (acut Bi,nm,Jrl,cut + bcutAi,nerl,cut ) p4

E
E(a)= El ; E1is an array of zero elements of length nix;

2
Pe 7Pemlm
1) — cat
E,(i)= e  “AT,.
2Tcat
B 1
P1= o
]‘ - P 0,0,in
ein
p e p
2 1
Pein
1
Ps =
(1 - CcutAnmerl,nerl,cut )
D, = Ps
4 '
(1+N'=a) pg,gveC, 65
1
Ps =t Z
1 L An,,,+1,0,in A
- A I'A P20 1, +1,in
( 0,0,cat — 1y, +1,n[,,+1,z'n)
_ 1
Ps = 1
pS 0,1, +1,cat
1+ A L*A p3ccatAnmt+l,O,cat
( 0,0,cat iy +1,15, +1,in)
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*

pSL An +1,0,in

in

pSAO,nm+l,cat

P7 =Ps

*

(App—LA

1y, +1,m;,+1,in

PS AO,nmﬁ—l,cat

P8=P6( . )P4

AO,O,cat -LA

1, +1,1m,+1,in

*

¢ oL
L.

m

) Pr— (AO,O,C,” I'A
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Figure 6

Sketch of the catalytic RFR investigated in this work.

Sketch of the countercurrent reactor under study.

(A) Block diagram describing the dynamic of the linearised
system around the "lower" temperature limit.
(B) Extended system used to design the controller for reaction

extinction.

Time evolution of the controlled temperature and of the
manipulated variable (Q.) - given as variation from the steady-
state values, when the controller for reaction extinction is

active.

Time evolution of the controlled temperature and of the
manipulated variable () - given as variation from the steady-
state values, when the controller for catalyst overheating is

active.

Time evolution of the controlled temperature, of the
manipulated variables (o, Q) - given as variation from the
steady-state values, and of the feeding concentration when the
controller for catalyst overheating and reaction extinction are

active.
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Figure 7 Time evolution of the axial solid temperature profile when the
controller is active and the feeding concentration varies

according to Figure 6.
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