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 

Abstract— This study analytically addresses the problem of 

neuromuscular electrical stimulation for a planar, multi-layer, 

anisotropic model of a physiological tissue (referred to as volume 

conductor). Both conductivity and permittivity of the volume 

conductor are considered, including dispersive properties. The 

analytical solution is obtained in the two dimensional Fourier 

transform domain, transforming in the planes parallel to the 

volume conductor surface. The model is efficient in terms of 

computational cost, as the solution is analytical (only numerical 

Fourier inversion is needed). It provides the current distribution 

in a physiological tissue induced by an electrical current delivered 

at the skin surface. Three representative examples of application 

of the model are considered. 1) The simulation of stimulation 

artefact during transcutaneous electrical stimulation and EMG 

detection. Only the effect of the volume conductor is considered, 

neglecting the other sources of artefact (such as the capacitive 

coupling between the stimulating and recording electrodes). 2) 

The simulation of the electrical current distribution within the 

muscle, and the low pass filter effect of the volume conductor on 

sinusoidal stimulation currents with different stimulation 

frequencies. 3) The estimation of the amplitude modulated 

current distribution within the muscle for interferential 

stimulation.  

The model is devoted to the simulation of neuromuscular 

stimulation, but the same method could be applied in other fields 

in which the estimation of the electrical current distribution in a 

medium induced by the injection of a current from the boundary 

of the medium is of interest. 

 
Index Terms— Electrical stimulation, stimulus artefact, 

interferential therapy  
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I. INTRODUCTION 

euromuscular electrical stimulation generates the 

contraction of muscle fibres without the central control. 

An electrical current is injected from electrodes placed on 

the skin. It can stimulate the motoneurons, their terminal 

branches, or the muscle fibres directly. The fibres are activated 

synchronously, very differently than in the case of voluntary 

contractions. However, electrical stimulation finds a number of 

applications in rehabilitation medicine, for the prevention of 

disuse and denervation atrophy, to improve voluntary control 

in stroke patients [26], for external control of paralysed 

muscles (functional electrical stimulation - FES), for reduction 

of spasticity [27], for muscle training, in fatigue research [2], 

and to counteract the effects of the permanence in 

microgravity environments [13].  

When a pulse-like current stimulus is provided, the motor units 

(MU) which are activated generate synchronous action 

potentials which can be detected at the skin surface 

(electrically elicited electromyogram - EMG). The potentials 

add up to form a compound signal, referred to as M-wave. The 

M-wave provides information on the peripheral properties of 

the neuromuscular system and on their changes due to fatigue, 

pathology, exercise, or treatment. 

During electrically elicited contractions, the detected surface 

EMG signal is often perturbed by the stimulation artefact. 

Stimulation artefact affects the frequency content of the 

detected signal (giving a high frequency contribution). 

Furthermore, it biases conduction velocity estimation (as it is a 

non travelling component). As the artefact perturbs the M-

wave of interest, it should be removed. Techniques to reduce 

the acquired artefact (for example, blanking technique 

proposed in [10]) and processing methods to remove it (for 

example, adaptive filter method [15]) were proposed. 

Furthermore, optimal stimulation current waveforms or surface 

EMG detection systems were studied ([20][25], but in [14] it 

was suggested that the selection of a particular stimulation 

waveform or spatial filter adopted for the M-wave detection 

have a low effect in reducing artefact, and in [16] it was shown 

that it is not possible to reduce the artefact without reducing 

also the M-wave). The choice of an optimal stimulation 

waveform can also be useful to provide the maximal muscle 

tension with the minimal stimulation current energy (problem 

addressed, for example, in [1][17][24]) and, probably, minimal 

discomfort. 
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A particular stimulation technique is used in interferential 

therapy. Two high frequency currents in the range of a few 

kHz, with a small difference in frequency are used to induce an 

amplitude modulated current in the excitable tissues [19]. The 

intent is that of reducing discomfort during stimulation by 

using a high frequency carrier current penetrating the tissues 

(exploiting their dielectric property, since current goes through 

the membrane capacitances without significant ionic shifts) 

and a low frequency beat current (demodulated by cell 

membrane non linearity) to elicit action potentials in muscle or 

nerve fibres.  

Electrical stimulation studies can take advantage of 

mathematical models of stimulation. Stimulation models can 

support the interpretation of experimental data and give 

indication for the design of optimal stimulation techniques. By 

modelling, it is also possible to estimate non accessible 

quantities (for example the current density distribution inside 

the muscle). The determination of the potential distribution 

generated by a system injecting an electrical current from 

surface electrodes was already addressed in [21], indicating 

applications in cardiac defibrillation and in 

electroneurography. Many examples of studies based on finite 

elements method can be found in the literature for the 

estimation of the current density distribution in biological 

tissues. For example, the problem of external defibrillation 

was addressed in [11]. Analytical solutions can be provided for 

simple geometries, and for resistive models. As an example, 

the problem of cardiac stimulation is studied by analytical 

methods in [29], in the case of spherical symmetry.     

Biological tissues have been considered in quasi-stationary 

conditions in a number of papers on surface EMG simulation 

during voluntary contractions [4][5]. In such situations, the 

electric potential in the volume conductor modelling the 

tissues satisfies Poisson equation [3][9][23]. Nevertheless, 

permittivity effects can have some importance for surface 

EMG signals during voluntary contractions [12]. For a plane 

layer model of the volume conductor such effects can be 

studied analytically [4].  

Dielectric properties of the tissues assume great importance 

[28] when high frequency components are present in the power 

spectrum of the stimulation current.  

This paper is devoted to the development of an analytical 

model of electrical stimulation, with the intent of providing a 

new tool with low computational cost for the investigation of 

electrical stimulation. In order to obtain an analytical solution, 

a simple geometry is considered (planar volume conductor), 

which can give indications only within some approximation. 

Both conductivity and permittivity effects are considered, 

including dispersion. Some representative applications to the 

simulation of stimulation artefact, to the estimation of the 

current distribution within the muscle for sinusoidal 

stimulation currents with different frequencies and to 

interferential stimulation are shown. 

 

 

II. METHODS 

 The electric potential in a volume conductor, considering 

only the electrical conductivity and neglecting permittivity, is 

given by the following relationship (Poisson equation) 

[3][9][23] 

IJ  )(                      (1) 

where   is the electric potential (V), J  the current density in 

the medium ( 2/ mA ), I  the source current density ( 3/ mA ), 

and   the conductivity tensor (S/m).  

The mathematical model considering also the permittivity of 

the tissues is the following [28] 

I
t

J r 



















  0

           (2) 

where 12

0 10854.8  F/m is the permittivity of the vacuum 

and r  denotes the relative permittivity of the biological 

tissue considered (which could also be a tensor, as for the 

anisotropic muscle layer considered in the following). In 

homogeneous tissues, the condition for neglecting capacitive 

effects is the following [22][28] 

10 


 r                                      (3) 

where   indicates the conductivity of the tissue considered, 

  is the angular frequency. As the stimulation current can 

have high frequency content in the power spectrum (it could be 

a step or an impulsive function), capacitive effects are usually 

non negligible for a model of electrical stimulation.  

Both conductivity and permittivity are frequency dependent in 

biological tissues [28] causing dispersion. It is simpler to 

model dispersion in the frequency domain, with respect to the 

time domain. Transforming Eq. (2) into the frequency domain, 

and writing explicitly the dependence of conductivity and 

permittivity on frequency, we have 

    Ij r
ˆˆ)()( 0              (2’) 

The equation in the time domain can be obtained by inverse 

transform. It has an expression more complicated, as it 

involves a convolution integral [28]. 

In the following, Eq. (2’) is solved for two models of electrical 

stimulation of a planar volume conductor, relative to two types 

of electrical conditions: 1) mixed problem, with a portion of 

the boundary of the volume conductor which is isolated and 

another which is grounded; 2) isolation of the volume 

conductor at the skin surface. Two types of material properties 

were considered, 1) non dispersive and 2) dispersive. To 

simplify the notation, the dependency of conductivity and 

permittivity on frequency is not indicated in the following. 

Nevertheless, all the calculations hold both for non dispersive 

and for dispersive materials. 

 

2.1 Grounded volume conductor 

The model of grounded volume conductor is useful to simulate 

a transcutaneous stimulation set-up, with a small stimulation 

electrode and a big grounded electrode to close the current 

path (for example, an adhesive electrode of 1 cm
2
 surface 

placed over a motor point of the biceps muscle and a 40 cm
2
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electrode placed on the triceps muscle [14]). The mathematical 

model of the stimulation electrode is a point electrode, 

whereas the grounded electrode is modelled as an infinite 

plane surface with vanishing potential. For the space invariant 

volume conductor considered in this paper, the simulation of a 

stimulation electrode with finite dimensions can be obtained 

by a convolution integral of the impulse response with the 

spatial distribution of current injected into the medium (which 

could be approximated as being uniform on the skin surface 

under the electrode, neglecting edge effects).  

The mathematical problem in the case of a planar volume 

conductor constituted by one layer (only muscle) insulated at  

y=h (for example, the biceps muscle surface) and grounded at 

y=0 (for example, the triceps muscle surface) is given by 

adding to Eq. (2) an impulsive Neumann condition at y=h (i.e., 

isolation conditions at the surface except for the stimulation 

point (x=0, y=h, z=0)) and a homogeneous Dirichlet condition 

at y=0 (grounding). Transforming by Fourier the x, z space 

variables into the spatial frequency variables kx, kz (as in [4]) 

we obtain the following problem 
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where 
MT , 

ML  are the transversal and longitudinal muscle 

conductivities, respectively, and MT

r , ML

r  are the transversal 

and longitudinal muscle permittivities, respectively. The 

impulsive stimulation current was located in (x=0, y=h, z=0), 

directed downward (i.e., entering the volume conductor).  

The solution of Eq. (4.I) can be expressed as a sum of 

exponential functions 
yk

zx

yk

zxzx
yaya ekkBekkAkky


 ),,(),,(),,;(ˆ       (5) 
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Imposing the boundary conditions (4.II) and (4.III), the 

following analytical solution in the transformed domain is 

obtained  

)cosh(

)(1
ˆ

0 hkk

yksinh

j yaya

ya

MT

rMT 



  .              (7) 

The one layer solution is interesting because of its simple 

transfer function. However, even for this simple model, 

Fourier transform cannot be inverted analytically.  

A more realistic model consists in a three layer model: two fat 

tissue layers ( HyL   and LyH  ) and a muscle 

tissue layer ( LyL  ). This model is referred to as Model 1 

(Figure 1a). The mathematical problem in the transformed 

domain, for an impulse current at (x=0, y=H, z=0), and the 

surface y=-H grounded, is given by 
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   (8) 

where F  and 
F

r  indicate the fat conductivity and 

permittivity, respectively, and 
22

zxy kkk  . The solution 

of Eqs. (8.I) and (8.II) in the three disjoint domains can be 

expressed as sums of exponential functions 
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Imposing the 6 conditions (boundary and interface conditions) 

in Eqs. (8.III)-(8.VIII), the solution is obtained in the 

transformed domain. The following coefficients define the 

solution in the muscle layer LyL  , useful to study the 

current density distribution in the muscle (refer to the Results 

section and to Figure 2), and the solution in the fat layer in 

HyL  , useful to simulate stimulation artefact (Figure 

3) 
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where MT

rMTM j  0  and F

rFF j  0 . Similar 

expressions are obtained for 3A  and 3B  (giving the solution 

in the grounded fat layer), but are not relevant for our 

purposes.                     

 

 

 

2.2 Insulated  volume conductor 

The mathematical problem in the case of a planar volume 

conductor constituted by one layer (only muscle) insulated at  

y=0 and infinite for y  is given by adding to Eq. (2) an 

impulsive Neumann condition at y=0 (i.e., isolation conditions 

at the surface except for the stimulation point (x=0, y=0, z=0)). 

Transforming by Fourier the x, z space variables into the 

spatial frequency variables kx, kz (as in [4]) we obtain the 

following problem 
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The solution of Eq. (11.I) is an exponential function 
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yaekkAkky ),,(),,;(ˆ                         (12) 

where boundedness for y  was imposed. Imposing the 

boundary condition (11.II), the following analytical solution in 

the transformed domain is obtained  
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The one layer solution is interesting because of its simple 

transfer function, even if Fourier transform cannot be inverted 

analytically in the case of the considered anisotropic muscle.  

 

 
Fig. 1. Representation of the two volume conductors under consideration. a) 

Model 1 is constituted by three layers, i.e. fat – muscle – fat. The stimulation 

current is delivered over the first fat surface, the second fat surface is 

grounded. b) Model 2 is a planar, three layer model, with skin, fat and muscle 

tissues. The muscle is infinite in the negative y direction. The stimulation 

current is delivered over the skin surface. Single differential detection 

channels for surface potential are simulated. 

 

 

A more realistic model is the three layer volume conductor. 

Skin and fat layers are considered isotropic, muscle layer is 

anisotropic. The skin and fat tissues are modelled as infinite 

planar layers in the x, z directions, bounded in the y direction 

(skin defined in dhyh  , fat in hy 0 ). The 

muscle is infinite in the x, z directions, semi-infinite in the y 

direction (defined only in the semi-space 0 y ). This 

model is referred to as Model 2 (Figure 1b). Transforming by 

Fourier the x, z space variables into the spatial frequency 

variables kx, kz (as in [4]) we obtain the following 

mathematical problem 
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The solution of Eqs. (14.I), (14.II) and (14.III) in the three 

disjoint domains can be expressed as sums of exponential 

functions 
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Imposing the 5 conditions (boundary and interface conditions) 

in Eqs. (14.IV)-(14.VIII) the solution is obtained in the Fourier 

transform domain. The following coefficients define the 

solution in the skin layer, useful to simulate stimulation 

artefact (see the Results section and Figure 3), and the solution 

in the muscle layer, useful to study the current density 

distribution in the muscle (Figure 2 and 4) or to simulate 

interferential therapy (see the Results section and Figure 5) 
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  (16) 

Similar expressions are obtained for 
2A  and 

2B  (giving the 

solution in the fat layer), but are not relevant for our purposes. 

 

2.3 Implementation issues 

The model was implemented using the software package 

Matlab (version 6.5).  

For a fixed value of y, a three dimensional problem (in the 

variables x, z, t) was solved for the simulation of the 

stimulation artefact (Figure 3). A two dimensional problem 

was solved for a DC stimulation current (Figure 2) or a 

sinusoidal stimulation current with constant frequency (Figure 

4 and 5). The simulation of stimulation artefact requires only 

the solution at the surface Hy   (for Model 1) or dhy   

(for Model 2), whereas the simulation of the current density 

distribution in the muscle requires the solution in the three 

dimensional muscle layer. Thus, in both cases a three 

dimensional problem was solved (x, z, t variables for the 

simulation of stimulation artefact; x, y, z variables for the 

simulation of the current density distribution). 

Time sampling frequency was Hz16384214  , and 256 

samples were considered (which corresponds to a temporal 

interval of 15.6 ms). The space variables x, z were sampled 

with step mmx 4 , 64 samples (which corresponds to a 

square domain with 256 mm side). As a consequence, the 
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spatial frequencies kx, kz were discretised in the range 












 k

xx


,

 with sample step 
x

k



64

2 . This discretisation 

allowed low aliasing and tail truncation of the spatial transfer 

function for each considered value of the time frequency.  

The analytical solution diverges in 0,0  zx kk . The 

numerical solution in 0xk , 0zk  was defined by 

extrapolation (using a best fit cubic extrapolation along the xk  

variable of the four samples before 0xk  [exploiting the 

symmetry property of the solution with respect to 0xk , 

0zk ]).  

After inverting the three dimensional Fourier transform, the 

resulting solution in the tzx ,,  variables at the stimulation 

surface ( Hy   for Model 1, dhy   for Model 2) 

presented small oscillations along the x and z axis. The tail 

truncation of the transfer functions is responsible for such 

oscillations. To avoid them, the solution for 0x  and 

0z  was estimated by interpolation (best fit parabolic 

interpolation considering two samples at each side of the x and 

z axis). 

In the case of the simulation of stimulation artefact, the spatial 

resolution was improved from mmx 4  to mmx 1  

by interpolation (a triangle-based linear interpolation was 

used; equivalent results were obtained by zero-padding). This 

interpolation was needed to simulate the detection from a 

rectangular electrode mmmm 31   (which is the dimension 

of the detection surface in the linear adhesive array used in 

[14]). The sum of the potential at the three sample points under 

the simulated electrode was considered to simulate the 

potential detected by an electrode, neglecting (as in [4]) the 

perturbation effect of the electrode on the surrounding 

potential (the simulation of which would require the solution 

of a mixed boundary value problem). 

 

III. RESULTS 

The two volume conductors under consideration are shown in 

Figure 1. Model 1 is constituted by fat and muscle tissues. A 

fat layer is placed both above the muscle and below. The 

stimulation current is delivered over the first fat surface, the 

second fat surface is grounded. Model 2 is a planar, three layer 

model, with skin, fat and muscle tissues. The muscle is infinite 

in the negative y direction. Four single differential detection 

channels are also shown: they are the channels used for the 

simulation of stimulus artefact (Figure 3).  

Figure 2 shows a comparison between the two considered 

models. The current density distributions in the muscle in the 

direction longitudinal (Figure 2a) and transversal (Figure 2b) 

to the muscle fibres are shown. A DC stimulation current was 

considered (permittivity effects are absent). The skin 

conductivity in Model 2 was chosen the same as the fat 

conductivity, which is the same for the two models: 

mSF /104 2 , [7]. The muscle transversal and 

longitudinal conductivities were respectively 

mSmS MLMT /1040,/109 22    , [8] for both models. 

In this way, the two models are equivalent with the exception 

that Model 1 has a second fat layer which is grounded. The 

current density was evaluated by calculating the gradient of the 

potential in the muscle layer in the Fourier domain and 

inverting the two dimensional Fourier transform (i.e., from the 

zx kk ,  variables to the zx,  variables). For Model 1 we 

obtain 
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(17) 

where 222 ,,ˆ BA  are given by Eqs. (9.II), (10.III), (10.IV), 

and 
2  indicates the inversion of the two dimensional 

Fourier transform. For Model 2, we have 


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              (18) 

where 33 ,ˆ A  are given by Eqs. (15.III), (16.III). 

The current density amplitude is represented by the length of 

the vectors shown in Figure 2. Since current density amplitude 

decays very rapidly, only sample positions close to the 

stimulation site are shown. The current densities associated to 

the two different models are very similar close to the 

stimulation site, and it is not possible to distinguish them. A 

zoom of the current density is shown inside a square at the 

bottom left of each picture (the zoom has magnification equal 

to 60), i.e. close to the surface which is grounded in the first 

model. It is possible to see that the current density relative to 

Model 1 is close to be vertical, indicating that the paths of the 

current density close towards the grounded electrode (as 

expected). Close to the grounded surface the current densities 

of the two models differ, but their magnitude is very small (of 

the order of 1% of the maximum magnitude in the muscle 

layer).  

Level curves are equipotential lines. The levels correspond to 

the following fractions of the maximum of the potential M  in 

the muscle: 6,...,1,
2

)max(
k

K

M . The maximum value of M  

is the same (up to numerical approximation) for both models. 

Differences in the level curves of the potential become visible 

at about 10 mm depth in the muscle, where the amplitude of 

the potential is about one tenth of the maximum value M .  

Differences between the potential (and current density) 

distributions in the longitudinal and transversal sections can be 

noticed by comparing Figures 2a and 2b, respectively. The 

distributions in the longitudinal section (Figure 2a) are more 

extended in the muscle fibre direction (z direction) with 

respect to the depth direction (y direction) because of the 

anisotropy of muscle conductivity. The distributions in the 

transversal section (Figure 2b) are constant on circumferences 
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centred at the stimulation site, due to the isotropy in the 

sections transversal to the muscle fibre direction. 

 

 
Fig. 2 Current density in the muscle in the direction longitudinal a) and 

transversal b) to the muscle fibres. DC stimulation current is considered. Skin 

and fat simulated conductivity mSF /104 2 ; muscle transversal and 

longitudinal conductivities mSmS MLMT /1040,/109 22     (the 

two models are equivalent except for the second fat layer and the grounding 

of Model 1). Level curves refer to the potential distribution in the muscle 

M  and correspond to 
6,...,1,

2

)max(
k

K

M . A zoom of the current density 

is shown at the bottom left of each picture (magnification 60), i.e. close to the 

surface which is grounded in Model 1. 

 

Figure 3 shows an example of application of the model to the 

simulation of stimulation artefact, for the four single 

differential channels shown in Figure 1. Stimulation artefact 

has four sources [18]: 1) the common mode voltage of the limb 

caused by current flowing through the ground electrode, 2) the 

voltage gradient due to the current flow through the limb, 3) 

the capacitive coupling between the stimulating and recording 

leads, and 4) the band pass filtering characteristics of the 

recording amplifier. A model of artefact accounting for all of 

these 4 sources was proposed in [18]. A purely resistive model 

was considered for the tissues. The model proposed here 

accounts only for the second source, describing the 

permittivity effects of the volume conductor, which were 

neglected in [18]. The patient ground electrode for EMG 

detection is not simulated, but the contribution of the escape 

current is negligible if stimulation and detection circuits are 

isolated. The band pass filter of the recording amplifier can be 

simulated by filtering the stimulation artefact obtained from 

the model. The main source which is not taken into account is 

that related to the capacitive coupling between the stimulating 

and recording electrodes. To account for this source (which is 

beyond the aims of this paper), two methods can be applied: 1) 

the results of the proposed model can be used to build a black 

box to be inserted in a block diagram of the sources of artefact 

(as in Figure 7 in [18]), obtaining an approximate simulation 

of the artefact; 2) the model can be improved by taking into 

account the capacitive coupling between stimulation and 

recording electrodes (i.e., solving a mixed boundary value 

Poisson problem by a numerical method); a more advanced 

model would be obtained, but only a numerical solution (to be 

obtained for example by finite element method) would be 

available.  

 

 
Fig. 3 Example of application of the model to the simulation of stimulation 

artefacts detected by the four single differential channels shown in Figure 1 

(neglecting the capacitive effects of the electrodes). Model 2 is considered. 

Two stimulation currents are simulated: a) Gaussian (correspondent 

stimulation artefact in b, c, d), e) sinusoidal stimulation current 

(correspondent stimulation artefact in f, g, h). Both dispersive and non 

dispersive materials are considered. Default values for skin, fat, muscle 

conductivities and permittivities neglecting dispersion are 

52 104,/102.2   S

rS mS  ; 52 105.1,/104   F

rF mS  ; 

7622 102,104.4,/1040,/109   ML

r

MT

rMLMT mSmS  . The default 

values are changed by (5 times) increasing or decreasing the permittivity b), f) 

and the conductivity c), g) of the skin layer, or increasing the fat layer 

thickness d), h) (from a default value of 1 mm fat thickness to 2 and 3 mm). 

For dispersive materials, a linear increase of conductivity (300%, 50%, 50% 

between 0 and 10 kHz for skin, fat and muscle, respectively) and a decrease 

of permittivity (66% linear decrease between 0 and 10 kHz for the skin, 99% 

exponential decrease between 0 and 20 kHz for fat and muscle) were 

assumed. 

 

The stimulation artefact simulated by either Model 1 or Model 

2 (using the same parameters) is very similar (results not 

shown), as the differences between the two models are 

important only close to the surface which is grounded in 

Model 1 (see also Figure 2). Thus, Model 2 was used for 

simulating stimulation artefact, as it allows to consider also the 

skin layer. In Figure 3 two stimulation waveforms produced by 

a current stimulator are considered.  

1) A Gaussian stimulation current  

2

2

2

2

1
)( w

t

e
w

ti





                                  (19) 

is shown in Figure 3a, and the simulated artefact related to 

such a stimulation current is shown in Figure 3b, 3c, 3d for 

different values of the parameters. The width w of the 

stimulation Gaussian current was sw 50 , i.e. high enough 

to neglect the truncated tails of its Fourier transform (to avoid 

Gibb’s phenomenon, clearly visible for an impulsive 

stimulation current).  

2) A cycle of a sinusoidal function is shown in Figure 3e, and 

the simulated artefact related to such a stimulation current is 

shown in Figure 3f, 3g, 3h. Also in this case the support of the 
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stimulation current was chosen long enough to neglect the 

truncated tails of its Fourier transform. The stimulator has 

infinite output impedance at all times. 

Both dispersive and non dispersive materials were considered. 

In the case of non dispersive materials, the following default 

values for skin, fat, muscle conductivities and permittivities 

were used: 52 104,/102.2   S

rS mS   [30], 

52 105.1,/104   F

rF mS   [7], ,/1040,/109 22 mSmS MLMT

    
76 102,104.4  ML

r

MT

r   [8]. To assess the effect of 

changing some of the model parameters, the default values 

were changed by increasing or decreasing the permittivity 

(Figure 3b, 3f) and the conductivity (Figure 3c, 3g) of the skin 

layer by a factor 5, or increasing the fat layer thickness by a 

factor 3 (Figure 3d, 3h).  

 

 
Fig. 4 Representative simulations for stimulation frequencies 100 Hz a), c) 

and 1000 Hz b), d), with Model 2 with default parameters of non dispersive 

materials as in Figure 3. Amplitude of the potential (level curves as in Figure 

2) and current density in the muscle in the longitudinal and transversal 

sections with respect to the muscle fibres are shown in a) and b). Three 

dimensional representation of the amplitudes of the potential (as a function of 

depth within the muscle and in the directions longitudinal and transversal to 

the muscle fibres) are shown in c) and d). The maximum amplitudes of the 

potential at the interface between fat and muscle, at 1 mm depth within the 

muscle, and at 2 mm depth within the muscle (normalised with respect to the 

maximum amplitude for DC stimulation at the fat/muscle interface) are 

shown in e) as a function of the frequency of the stimulation current, for a 

range of frequency between 10 Hz and 10 kHz. 

 

In the case of dispersive materials, due to the lack of 

consensus on dielectric data [6], the dependency of 

conductivity and permittivity of the tissues on frequency was 

described by simple models, which determine a small variation 

with respect to the simulated non dispersive materials. The 

variation of conductivity and permittivity were assumed to be 

the followings: 

1) skin conductivity increases linearly 4 times between 0 

and 10 kHz, skin permittivity decreases linearly by 

66% between 0 and 10 kHz; 

2) fat conductivity increases linearly by 50% between 0 

and 10 kHz, fat permittivity decreases exponentially 

by 99% between 0 and 20 kHz; 

3) muscle conductivity increases linearly by 50% 

between 0 and 10 kHz, muscle permittivity decreases 

exponentially by 99% between 0 and 20 kHz (both in 

longitudinal and transversal direction). 

The simulated stimulation artefact has higher amplitude and 

more rapid variations in the case of dispersive materials, but 

the decay in time is very similar to the case of non dispersive 

materials. This is due to the decrease of the permittivity and 

the increase of the conductivity, which decrease the tissue 

filtering effect (i.e., the amplitude attenuation) on the high 

frequency components (refer to Eq. (3)). 

Figure 4 shows the current distribution induced in the muscle 

by sinusoidal stimulation currents of different frequencies. 

Two representative simulations for two different stimulation 

frequencies of sinusoidal currents are shown in 4a, 4c (for 100 

Hz of stimulation frequency) and in 4b, 4d (1000 Hz). Model 

2 with the same default parameters as in Figure 3 was used 

(both for non dispersive and for dispersive materials). The 

amplitude of the potential (level curves as in Figure 2) and the 

current density in the muscle in sections longitudinal and 

transversal with respect to the muscle fibres are shown in 

Figure 4a and 4b, for non dispersive material. Three 

dimensional representations of the amplitudes of the potential 

in the case of the two frequencies of stimulation considered are 

shown in Figure 4c and 4d, for non dispersive material. Small 

differences can be noted in the level curves (as they 

correspond to relative values with respect to the maximum, as 

in Figure 2). This indicates that small shape differences affect 

the amplitude of the potential distribution within the muscle. 

The main difference between the potential distributions (and 

thus also the current distributions) associated to the two 

simulated stimulation frequencies is the amplitude scale. In the 

case of stimulation frequency 100 Hz the maximum amplitude 

is about an order of magnitude bigger than in the case of 

stimulation frequency 1000 Hz. These differences in the 

amplitude of the potential within the muscle reflect the effect 

of permittivity, which is not so important at stimulation 

frequency 100 Hz, but it is at 1000 Hz (refer to Eq. (3)). The 

maximum amplitudes of the potential 1) at the interface 

between fat and muscle, 2) at 1 mm depth within the muscle, 

and 3) at 2 mm depth within the muscle (normalised with 

respect to the maximum amplitude for DC stimulation at the 

fat/muscle interface) are shown in 4e as a function of the 

frequency of the stimulation current, for a range of frequency 

between 10 Hz and 10 kHz. Both non dispersive and 

dispersive materials are considered. The filtering effects of the 

tissues are equivalent for both materials for low frequencies 

(up to 2 – 3 kHz). At higher frequencies, the two models of 

material are quite different: as in dispersive materials 

permittivity decreases and conductivity increases with 

frequency, the filtering of high frequency components is lower 

than for non dispersive materials (in the sense that the 

attenuation of the amplitude is lower). This result can be 

interpreted on the basis of the analytical solutions provided in 

the Method Section. The potential (and hence also the current 

density) distribution is determined by the 4 functions of 

frequency 

ML

ML

r

MT

MT

r

F

F

r

S

S

r















 0000 ,,,
. Such functions always 

increase linearly with frequency for non dispersive materials, 

whereas for dispersive materials they have a maximum at 
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about 2-3-kHz and than decrease. By increasing the frequency, 

when their values approach unity or become lower than unity, 

the material behaves as in static condition (see Eq. (3)). These 

results are strongly affected by the parameters and the model 

of dispersion chosen. 

 

 
Fig. 5 Example of application of the proposed model (Model 2, with the 

default parameters as in Figure 3) to interferential stimulation. A sketchy 

representation of the simulated stimulation set-up and the definition of the 

beat current are shown on the left. Two stimulation currents with the same 

amplitude and frequencies 3000 Hz and 3100 Hz (respectively) are simulated. 

The magnitude of the beat current density is shown for different depths within 

the muscle in a), b), c) d). Level curves refer to the magnitude of the beat 

current distribution in the muscle 
MJ  and correspond to 

8,...,1,
5.01

)max(



k

k

J M . 

 

An example of application of the proposed model (Model 2, 

with the default parameters for non dispersive materials as in 

Figure 3) to interferential stimulation is shown in Figure 5. In 

interferential stimulation two high frequency sinusoidal 

currents with a small difference in frequency are used to 

stimulate excitable tissues. The current field in the volume 

conductor is the result of two phenomena: 1) an amplitude 

modulated (beat) current vector having constant direction and 

2) a rotating amplitude modulating current vector resulting 

from the Lissajou combination of the two fields in space. Only 

the first phenomenon will be considered in this example. In 

each point of the muscle volume, amplitude modulated current 

is induced, with beat frequency f
~

 equal to the difference 

between the stimulation frequencies. The beat current 

oscillating at low frequency f
~

 is demodulated by the non 

linear membrane of excitable cells and can induce their 

activation. The amplitude of the i
th

 component of the beat 

current is equal to the minimum between the i
th

 components of 

the amplitudes induced by the two stimulation currents 

separately [19]. A sketchy representation of the simulated 

stimulation set-up and the definition of the beat current are 

shown in Figure 5 on the left. Two stimulation currents are 

simulated with the same amplitude and frequencies f1 = 3000 

Hz and f2 = 3100 Hz, respectively. The magnitude of the beat 

current density (with beat frequency Hzfff 100
~

12  ) is 

shown for different depths within the muscle in a), b), c) d). 

Level curves refer to the magnitude of the beat current 

distribution in the muscle 
MJ  and correspond to  

8...,,1,
5.01

)max(



k

k

J M

.  

From Figure 5, the beat current vanishes along the x and z 

axes, i.e. along the lines connecting pairs of stimulation 

electrodes. Indeed, the two stimulation current vectors (each 

associated to one of the two stimulators) are orthogonal along 

those lines (and then beat current vanishes by definition). It is 

important to observe that, adding current vectors orthogonal in 

space and with amplitude oscillating at different frequencies 

generates a rotating current vector, whose amplitude changes 

periodically (with fundamental frequency f
~

2 ). Such a 

current is not a beat current, as its direction changes describing 

a Lissajous curve. Nevertheless, such a current could give a 

further contribution to the stimulation of excitable membranes. 

This problem (beyond the aims of this paper) has not been 

addressed in the literature, yet. 

 

IV. DISCUSSION 

An analytical method for the simulation of stimulation current 

distribution within a planar volume conductor is proposed in 

this paper. The model takes into account the conductivity and 

permittivity of the tissues, and their possible variation as a 

function of frequency (dispersive materials). The current 

distribution is evaluated analytically. The solution method is 

based on Fourier transforming in the planes parallel to the 

surface, as in [4].  

Two models of the volume conductor are considered, the 

relative Poisson problems are defined and solved, providing 

the exact solution in the two dimensional Fourier transform 

domain. 1) Model 1 is constituted by fat and muscle tissues, 

with a fat layer placed both above the muscle and below; the 

stimulation current is delivered over the first fat surface, the 

second fat surface is grounded. 2) Model 2 is constituted by 

skin, fat and muscle tissues, with stimulation current delivered 

over the skin surface and no grounded surface (it is only 

assumed that the potential vanishes at infinity). The two 

models are compared and only small differences in the current 

path within the region of interested muscle can be observed.  

Three representative applications of the model are shown. The 

first is the simulation of stimulation artefact due to the 

conductivity and dielectric properties of the volume conductor. 

The capacitive coupling between the stimulation and recording 

electrodes is not considered. Four single differential detection 

channels along the muscle fibres are simulated. The 

exponential tail and the decay of the stimulation artefact for 

increasing distance from the stimulation site are shown for 

some representative examples with different simulated 

anatomies (i.e., for different conductivities, permittivities, 

tissue thickness, either considering or neglecting dispersion). 

The simulated artefacts in the case of monopolar Gaussian (or 

impulsive) stimulation current have a time decay constant of 

about 1 ms. For both Gaussian and sinusoidal stimulation 

currents, the amplitude decays about 50% between the first 
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two single differential channels, 40% between the second 

couple of channels, 30% between the third couple of channels 

(10 mm distance between channels, first electrode pair about 

20 mm from the stimulation site). The tail is longer and the 

decay in space is slower in the case in which the signals are 

low pass filtered by the conditioning system (results not 

shown). The stimulation artefact is not significantly affected 

by a fivefold increase or decrease of the conductivity and 

permittivity of the skin layer or of a threefold increase of the 

fat thickness is negligible for practical purposes (see Figure 3). 

Therefore, an accurate estimate of conductivity and 

permittivity of the skin or fat thickness is not required to 

simulate the stimulation artefact. The amplitude of the 

stimulation artefact is affected by dispersion. This is due to the 

reduced filtering of high frequency components of dispersive 

materials with respect to non dispersive ones. The tail and 

decay are the same when either considering or neglecting 

dispersive properties, as they are related to low frequency 

components.  

A second application of the model is the simulation of the 

current distribution within the muscle volume, as a function of 

the simulated anatomy and stimulation current. The decay of 

the magnitude of the current density in the muscle in sections 

orthogonal to the skin surface has an exponential shape, with 

larger decay constant along the direction of muscle fibres. The 

decay constant in depth is about 10 mm. The simulation of the 

current distribution within the muscle volume could be useful 

to estimate the portion of muscle which can be activated by a 

stimulating current. Considering sinusoidal stimulation 

currents with different frequencies, the filtering effect of the 

tissues can be studied. Dispersive materials are similar to non 

dispersive ones at low frequencies, up to 2-3 kHz. For higher 

frequencies, dispersive materials determine a lower attenuation 

of the amplitude of the potential within the muscle with respect 

to non dispersive materials. 

A third example of application is the simulation of 

interferential stimulation. In interferential stimulation, the 

physiotherapist can manipulate the amplitudes and the 

frequencies of two sinusoidal stimulation currents and the 

location of the electrodes. As the model provides the current 

distribution in the muscle, it could be a useful tool for the 

design of optimal stimulation paradigms in interferential 

therapy. From the shown simulation, some preliminary 

conclusions can be given. 1) The amplitude of the beat current 

decreases slowly for increasing depth within the muscle (which 

confirms that the beat current can penetrate deeply into the 

muscle tissue). Considering planes of constant depth within the 

muscle (10, 20, 30 and 40 mm depth), a decrease of about 

30% of the amplitude of the beat current was observed for 

every increase of depth of 10 mm. 2) For the anisotropic 

model considered, the regions in which the interferential 

currents have maximum amplitude are in the four quadrants 

individuated by the two orthogonal lines passing through the 

positions of the electrodes, with a higher elongation of the 

distribution of the beat current along the fibre direction.  

The analytical approach here proposed has many advantages. 

1) The solution is analytical, providing the theoretical 

dependence of the current distribution on parameters. 2) The 

mathematical problem is solved exactly (up to the numerical 

Fourier inversion), providing a golden standard for numerical 

methods. 3) The computational cost is low. Nevertheless, the 

model is quite simple, and this imposes limitations in the 

applications. However 1) the geometry is planar, and the 

application of the method to more complex geometries 

provides only a first order approximation of the actual current 

distributions; 2) the model does not include structures with 

complex conductivity, like local inhomogeneities (e.g., 

glands), blood vessels, bones, muscles with curvilinear fibres. 

For these cases, a numerical method (as finite elements 

method) is required.   

Although applications in the field of neuromuscular electrical 

stimulation are discussed, the same simulation method could 

be applied in other fields in which the estimation of the 

electrical current distribution in a medium induced by the 

injection of a current from the boundary is of interest (for 

example, see [31] for an application in the field of Earth 

Sciences). 
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