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Objective: We systematically tested the capability of the Convolution Kernel Compensation (CKC)
method to identify motor unit (MU) discharge patterns from the simulated and experimental surface
electromyogram (sEMG) during low-force contractions.
Methods: sEMG was detected with a grid of 13 � 5 electrodes. In simulated signals with 20 dB signal-to-
noise ratio, 11 ± 3 out of 63 concurrently active MUs were identified with sensitivity >95% in the estimation
of their discharge times. In experimental signals recorded at 0–10% of the maximal force, the discharge pat-
terns of (range) 11–19 MUs (abductor pollicis; n = 8 subjects), 9–17 MUs (biceps brachii; n = 2), 7–11 MUs
(upper trapezius; n = 2), and 6–10 MUs (vastus lateralis; n = 2) were identified. In the abductor digiti minimi
muscle of one subject, the decomposition results from concurrently recorded sEMG and intramuscular EMG
(iEMG) were compared; the two approaches agreed on 98 ± 1% of MU discharges.
Conclusion: It is possible to identify the discharge patterns of several MUs during low-force contractions
from high-density sEMG.
Significance: sEMG can be used for the analysis of individual MUs when the application of needles is not
desirable or in combination with iEMG to increase the number of sampled MUs.
� 2009 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.
1. Introduction

Recording of the electrical activities of motor units (MUs) pro-
vides an insight into the activation properties of the motoneurons
that are located in the spinal cord (De Luca et al., 1982). However,
electric signals detected from muscles comprise the contributions
of all the MUs which are active within the detection volume of
the recording system. Analysis of MU discharges thus requires
automated signal decomposition (De Luca and Adam, 1999; McGill
and Dorfman, 1985; Stashuk, 2001) which attempts to resolve a
composite EMG signal into its constituent MU action potential
(MUAP) trains.

Identification of individual MU electrical activities in vivo is
classically performed by intramuscular EMG (iEMG), which has
high spatial selectivity and thus comprises the contributions of a
relatively small number of active MUs whose fibers are close to
f Clinical Neurophysiology. Publish

: +39 011 4330404.
etti).
the recording point (De Luca and Adam, 1999; McGill and Dorfman,
1985; Stashuk, 2001; Nawab et al., 2008). Because this method is
invasive, it has limitations in cases when needle insertion is not
possible or not desirable, such as in clinical examinations of chil-
dren, professional athletes, patients with transplanted limbs (Fari-
na et al., 2008a) or haemophilia, and, in general, in dynamic
conditions, during work, sport or space activities. Moreover, the
identified intramuscular action potentials are not representative
of all the fibers in the MU (Stålberg, 1980) and it is not possible
to detect the same MUs in repeated measurements. With indwell-
ing EMG recordings, it is also difficult to extract parameters related
to the membrane properties of the muscle fibers, such as action po-
tential propagation velocity (Farina et al., 2001; Merletti, 1994),
and anatomical characteristics of the MUs, such as fiber length, fi-
ber orientation, and location of the innervation zone (Merletti,
1994). The information on membrane and anatomical fiber proper-
ties is relevant in several applications, e.g., for studying muscle fa-
tigue or the effect of location for the injection of substances such as
botulin toxin.
ed by Elsevier Ireland Ltd. All rights reserved.
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Global myoelectric activity can also be detected non-invasively
by electrodes placed over the skin (Merletti and Parker, 2004). The
lower selectivity of surface EMG (sEMG) recordings combined with
a larger muscle area covered by non-invasive electrodes with re-
spect to iEMG, may overcome some of the limitations of iEMG,
however it makes the decomposition of the signal substantially
more challenging. Identification of the complete MU discharge pat-
tern from sEMG can be currently performed mainly in special con-
ditions, such as MU reinnervation (Lanzetta et al., 2005; Farina
et al., 2008a) or selective activation through visual feedback (Fari-
na et al., 2004). De Luca et al. (2006) proposed a method for decom-
position of four-channel sEMG that showed high accuracy on a few
representative recordings. However, the method requires substan-
tial interaction with an expert operator and is theoretically limited
by the small information content of a four-channel detection sys-
tem (Farina et al., 2008b; Merletti et al., 2008b).

There have been substantial efforts in the development of meth-
ods for the decomposition of sEMG recorded with high-density elec-
trode grids (Blok et al., 2002; Gazzoni et al., 2004; Kleine et al., 2007;
Wood et al., 2001). Farina et al. (2008b) proved by simulations and
experimental recordings the necessity of detecting many signals
over the skin surface for successful sEMG decomposition. Using mul-
ti-channel recordings, Gazzoni et al. (2004) applied the template
matching MUAP segmentation and classification technique, and
Wood et al. (2001) employed a finite element analysis to investigate
the relationship between surface potential distribution and MU
depth. Blind source separation techniques (Garcia et al., 2005;
Nakamura et al., 2004) and higher-order statistics (Zazula and Holo-
bar, 2005) have also been proposed for MU identification from sEMG.
These methods, however, cannot automatically identify the com-
plete MU discharge pattern from sEMG or can identify only a small
number of concurrently active MUs.

Recently, Holobar and Zazula (2004, 2007) proposed the Convo-
lution Kernel Compensation (CKC) approach that was proven to
provide a good approximation of complete MU discharge patterns
in simple test cases, during constant force contractions and with a
small number of active MUs. This method is potentially suitable for
MU investigations, but is of limited use in practice because a com-
prehensive analysis of its performance is still lacking. The lack of
performance analysis in a variety of conditions is a general issue
related to any decomposition algorithm currently available for
sEMG. Consequently, the use of sEMG for the analysis of the MU
discharge pattern is not yet considered appropriate in physiologi-
cal and clinical studies.

The purpose of this study was to systematically examine the
CKC capability to decompose sEMG recorded during isometric
low-level force-varying contractions. In particular, we tested the
potential of the CKC method to (1) identify a relatively large sam-
ple of MUs from a population of many concurrently active MUs, (2)
track early-recruited MUs when higher-threshold MUs are addi-
tionally recruited, (3) identify MUs from muscles with different
anatomies, (4) identify MUAP trains in agreement with iEMG
decomposition. The results provide the first comprehensive perfor-
mance analysis of a method for sEMG decomposition and validate
the use of high-density sEMG for the analysis of individual MUs.
2. Materials and methods

The CKC decomposition method was described by Holobar and
Zazula (2007). Because tests on only simulated signals or only
experimental signals are not sufficient to assess the accuracy of a
decomposition algorithm, in this study results from both signal
types are reported. Moreover, the experimental signals have been
recorded from muscles with different anatomies to test the sensi-
tivity of the CKC method to differences in the volume conductor
properties. The local ethics committee approved all experimental
recordings and all the subjects involved signed an informed con-
sent form before participation.

2.1. Simulated signals

The simulations were based on a model of recruitment of a pop-
ulation of MUs (Fuglevand et al., 1993) and a volume conductor
model (Farina and Merletti, 2001). The volume conductor was pla-
nar with muscle, subcutaneous, and skin tissues. The simulations
comprised three main steps: (1) determining the recruitment and
discharge times of a population of motor neurons in response to
a given level of excitation; (2) generating MUAPs from estimates
of the number, location, and conduction velocities of the muscle fi-
ber action potentials for each MU; and (3) simulating the sEMG by
summing the trains of MUAPs. The simulation modalities were
similar to those previously described by Keenan et al. (2005) but
the detection was performed with an electrode grid.

2.1.1. Motor unit action potentials
The volume conductor model was implemented in Matlab (The

Mathworks, Natick, MA). The basic parameters for the model were
the same as described in Keenan et al. (2005). The distributions of
properties across the MU pool were based on the size principle
(Henneman, 1957) and included innervation number, recruitment
threshold, MU territory, and conduction velocity of MU potentials
progressively increasing with the simulated muscle excitation level.

The planar volume conductor consisted of an anisotropic, semi-
infinite muscle layer, and isotropic subcutaneous (1.5-mm thick)
and skin layer (1-mm thick). A muscle with elliptical cross-section
(transversal � depth, 16 � 10 mm) was simulated. The number of
muscle fibers was 41,000, based on an average fiber diameter of
56 lm (Dennett and Fry, 1988), a muscle cross-section of
100.53 mm2, and an assumption that the non-contractile tissue ac-
counted for 20% of the cross-sectional area. These values were sim-
ilar to those used by Keenan et al. (2005).

Each tissue layer was homogeneous and the conductivity prop-
erties of each layer were the same as those reported by Farina and
Merletti (2001): the subcutaneous and skin tissues were isotropic,
whereas the muscle was anisotropic, with conductivity ratio = 5
between the longitudinal and transverse direction. The conductiv-
ity ratio was 20 between the skin and subcutaneous layers and 0.5
between the subcutaneous and the muscle (along the transverse
direction). Average fiber length was 30 mm and the centers of
the innervation zones were located at �3.5 or 7.5 mm (random
for each MU) from the center of the detection system. The end-
plate and insertion of each fiber into the tendons varied randomly
(uniform distribution) over a range of 2.5 mm.

The muscle comprised a total of 120 MUs randomly distributed
within its cross-section. The fibers of a MU were randomly scat-
tered in a circular MU territory, with a density of 20 fibers/mm2

(Stålberg and Antoni, 1980; Armstrong et al., 1988), and interdigi-
tated with fibers belonging to many other units to yield a muscle
fiber density of 200 fibers/mm2. When a portion of the MU terri-
tory was constrained by the muscle boundary, the territory of
the unit was modified to fit the muscle cross-section (Keenan
et al., 2005). Innervation numbers were uniformly distributed
across the simulated motor units and ranged from 25 to 2500
based on a �100-fold range of twitch forces (Elek et al., 1992).
The MUs had normally distributed conduction velocities with the
mean and standard deviation of 4.0 ± 0.3 m/s (Farina et al., 2000)
and with the smallest MUs assigned the slowest conduction veloc-
ities (Andreassen and Arendt-Nielsen, 1987). The fibers belonging
to the same MU had the same conduction velocity. The simulation
of the intracellular action potential was based on the analytical
description of Rosenfalk (1969).
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2.1.2. Discharge pattern
In the simulated 12 s long contractions, the excitation level to

the muscle increased from 0% to 10% in the first 6 s and decreased
from 10% to 0% in the last 6 s. The distribution of recruitment
thresholds for the motor neurons was modelled as described by
Fuglevand et al. (1993), with an exponential function with many
low-threshold neurons and progressively fewer high-threshold
neurons. The number of MUs active at 10% excitation level was
63 out of 120. Each MU discharged at 8 pulses per second (pps)
once excitation exceeded the assigned recruitment threshold, and
discharge rates increased linearly (0.3 pps/%) with excitation. The
peak discharge rate was 35 pps for all the simulated MUs. The last
unit was recruited at 50% maximal excitation. Discharge rate vari-
ability was modelled as a Gaussian random process with coeffi-
cient of variation of the interspike interval equal to 20%.

2.1.3. Detection system
The recording system was a grid of 13 � 5 electrodes of circular

shape (radius 1 mm) with 3.5-mm interelectrode distance in both
directions. A bipolar recording was simulated for each longitudinal
pair of adjacent electrodes, thus leading to 60 simulated detection
points. The center of the grid was over the center of the muscle in
the longitudinal and transverse direction. The surface-recorded
MU potential was the sum of the action potentials of the muscle fi-
bers belonging to the MU. EMG signals were computed at 2048
samples/s. Zero-mean Gaussian noise, with signal-to-noise ratio
(SNR) 0–20 dB (5 dB increments) and bandwidth 20–450 Hz was
added to the simulated recordings.

2.2. Experimental signals: abductor pollicis brevis

A set of experimental sEMG was recorded from the abductor
pollicis brevis muscle of eight healthy men (age, mean ± SD:
27.3 ± 2.2 yr; stature 1.79 ± 0.07 m; body mass 75.2 ± 7.4 kg) in
similar conditions as in the simulations.

The sEMG was detected with a two-dimensional grid of 61 sil-
ver electrodes (1-mm diameter, 3.5-mm interelectrode distance,
13 rows and 5 columns, without the four corner electrodes) from
the abductor pollicis brevis muscle of the dominant hand. The ac-
quired signals were amplified (LISiN-OT Bioelettronica, Torino,
Italy), band-pass filtered (3 dB bandwidth, 10–500 Hz), sampled
at 1650 samples/s, and converted to digital form by 12-bit A/D
converters.

The electrode grid was located with the columns in the direc-
tion of the muscle fibers and the last row approximately on the
proximal tendon ending. Before electrode placement the skin was
abraded with abrasive paste (Meditec–Every, Parma, Italy). The
Fig. 1. (A) Cumulative number of MUs reconstructed from simulated sEMG as a functi
average sensitivity in detection of MU discharges larger than 95%. (B) Cumulative percen
alarm rate (Eq. (2)). Almost all identified discharge patterns had false alarm rate <2%, w
Results are averaged over 40 simulations.
grid was fixed on the skin by adhesive tape and a reference elec-
trode was placed at the wrist.

A custom designed brace was used to measure abduction force.
The subject’s wrist was fixed in a padded wood support with the
head of the thumb phalanx in touch with a load cell (model
8523-50N, Burster, Gernsbach, Germany). The force signal was
amplified (Force Amplifier, MISO-II, LISiN, Torino, Italy), provided
as feedback to the subject on an oscilloscope, and recorded in par-
allel with the EMG.

The subjects performed three maximal voluntary contractions
(MVCs) separated by 2 min of rest; the highest measured force va-
lue corresponded to 100% MVC. The electrode grid was then placed
over the abductor pollicis brevis muscle and the subject was asked
to linearly increase the force from 0% to 10% MVC in 6 s and then
decrease it from 10% to 0% MVC in 6 s, using a visual feedback on
force provided on an oscilloscope. Five consecutive repetitions of
force ramps were recorded from each subject.

2.3. Experimental signals: biceps brachii, upper trapezius, and vastus
lateralis

In order to experimentally test the decomposition method in
muscles with different fiber architecture and size, experimental
signals were also recorded from the dominant biceps brachii, upper
trapezius and vastus lateralis muscles of two healthy men (age 35
and 31 yrs), during isometric variable-force contractions. For these
recordings, an adhesive two-dimensional grid of 64 electrodes
(SpesMedica, Italy; electrodes with 1-mm diameter, 8-mm inter-
electrode distance, 13 rows and 5 columns with the first corner
electrode missing) was used. In order to cover most of the muscle
surface area, a larger interelectrode distance was used for biceps,
upper trapezius and vastus lateralis muscles with respect to the
abductor pollicis brevis. The signals were acquired with the same
EMG amplifier and settings as for the abductor pollicis brevis
muscle.

The exerted muscle force was measured by custom made iso-
metric braces (LISiN, Politecnico di Torino, Italy) equipped with
load cells (CCT Transducers, Torino, Italy). In the case of the biceps
brachii, the subject’s arm was fixed in a brace with the upper arm
abducted at 90� in the lateral plane and elbow joint angle of 120�
(180� = full elbow extension). For the vastus lateralis, the subject
was seated with his trunk supported and with arms crossed on
the chest. The pelvis was firmly strapped with a velcro belt and
the dominant leg was placed in a brace at the knee joint angle of
120� (180� = full knee extension). For the measurements from the
upper trapezius muscle, the subject was seated on a chair, with
the arms straight alongside the body to reduce the involvement
on of sensitivity (Eq. (1)). For 20 dB SNR, more than 11 MUs were identified with
tage of identified discharge patterns with sensitivity >90% as a function of the false
hereas for 90% of identified MU discharge patterns the false alarm rates were <1%.
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of the biceps brachii and deltoid muscles, the back leaned against
the back of the chair to avoid the activity of the erector spinae
muscles, and the feet raised to avoid contributions from the lower
limb muscles. A bilateral pull was performed to avoid trunk bend-
ing. Force was measured by two load cells (UU-K200, DACELL, Kor-
ea) connected to handles which were pulled up bilaterally by the
subject. Force profiles requested to the subjects for the biceps bra-
chii, upper trapezius, and vastus lateralis muscles were identical as
those recorded from the abductor pollicis brevis (ramp upwards
and downwards at 10% MVC in 12 s in total).

2.4. Experimental signals: concurrent recordings of iEMG and sEMG

In order to provide a direct measure of sensitivity of the decom-
position method, an additional experiment was conducted on one
healthy man (age 25 yrs) with concurrent recording of sEMG and
iEMG signals from the dominant abductor digiti minimi muscle.
A grid of surface electrodes (13 � 5 electrodes, 3.5 mm interelec-
Fig. 2. (A, left panel) Number of MUs identified from simulated sEMG versus their recrui
identified MUs normalized (%) by the number of simulated MUs. (B) Number of identifi
energy was computed for each MU as the average energy of the MUAPs over all channel
simulated MUs. (C) Same data as in (B), with the number of identified MUs normalized
trode distance) was located between the most distal innervation
zone and the distal tendon region of the muscle in the direction
of the fibers. Two wire electrodes made of Teflon coated stainless
steel (A-M Systems, Carlsborg, WA, USA) were inserted into the
muscle with a 25 G needle proximal to the surface grid. The insu-
lated wires were cut to expose only the cross-section at the tip. The
needle was inserted to a depth of a few millimeters below the mus-
cle fascia and removed to leave the wire electrodes inside the mus-
cle. A reference electrode for both the surface and intramuscular
recordings was placed around the wrist. The sEMG was acquired
with the same amplifier and settings as for the abductor pollicis
brevis muscle. The iEMG signals were amplified and provided bipo-
lar recordings (Counterpoint EMG, DANTEC Medical, Skovlunde,
Denmark) that were band-pass filtered (500 Hz–5 kHz). The fifth
finger was fixed in a custom-made brace to record the force ex-
erted during an isometric contraction of the muscle (LISiN, Politec-
nico di Torino, Torino, Italy). The subjects performed three
maximal voluntary contractions with the abductor digiti minimi,
tment threshold. (A, right panel): Same data as in the left panel, with the number of
ed MUs versus the normalized energy of their multi-channel surface MUAPs. The

s. The normalization was done with respect to the highest average energy over the
by the number of simulated MUs. The results are averaged over 40 simulations.
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Fig. 3. (A) Simulated MU territories in the muscle tissue and their relative surface MUAP energy for SNR of 20 dB. Identified MUs are encircled with thick black circles, not
identified MUs with thin black circles. The intensity of filling represents the average surface MUAP energy. (B) The sum of the identified MUAP trains (grey line) compared to
the original (simulated) signal (black line) for SNR of 20 dB. (C) As in (A) but with 10 dB SNR. (D) A shorter signal segment from the same comparison as in (B).
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with each trial separated by 2 min of rest. The greatest force was
used as the reference MVC for the submaximal contractions. The
subject then performed a 20-s contraction at 10% MVC during
which sEMG and iEMG signals were recorded concurrently.

2.5. Signal analysis

Both simulated and experimental signals were decomposed
with the CKC method (see Holobar and Zazula (2007) for technical
details). For simulated signals, four performance measures were
Table 1
Number of identified MUs, their discharge rates at recruitment, derecruitment, and at
conduction velocity identified from sEMG of the abductor pollicis brevis muscle of eight
average discharge rates of the first and last 5 discharges and the peak discharge rate wa
discharges. Inter-pulse interval variability was calculated as a coefficient of variation of
patterns. Conduction velocity was estimated with the multi-channel algorithm described by
template, three channels showing a clear propagation and small shape changes of the poten
as mean ± SD.

Subject No. of identified MUs MU discharge rates [pps]

Recruitment Force peak Derecruitm

A 19 8.4 ± 1.7 14.5 ± 1.9 8.7 ± 1.5
B 19 8.6 ± 1.8 18.7 ± 1.8 9.1 ± 1.7
C 18 9.1 ± 1.9 16.6 ± 2.5 10.0 ± 1.0
D 11 9.8 ± 1.5 17.1 ± 2.0 8.4 ± 2.1
E 18 8.8 ± 1.3 15.7 ± 1.9 8.3 ± 1.3
F 16 9.8 ± 1.8 17.1 ± 3.8 7.8 ± 1.6
G 19 7.7 ± 1.3 13.2 ± 1.5 8.8 ± 1.2
H 14 9.7 ± 1.3 14.1 ± 1.1 9.3 ± 1.2

Average 17 ± 3 9.0 ± 1.6 15.6 ± 2.1 8.8 ± 1.5
computed: the number of identified MUs, the distribution of their
recruitment thresholds, the percentage of correctly identified dis-
charges per MU, i.e. decomposition sensitivity as defined in Eq.
(1), and false alarm rate, as defined in Eq. (2):

Sej ¼
TPj

TPj þ FNj
; ð1Þ

Faj ¼
FPj

FPj þ FNj
; ð2Þ
the peak force, inter-pulse interval variability, MUAP peak-to-peak amplitude, and
subjects. The discharge rates at recruitment and derecruitment were defined as the
s defined as the maximum value obtained from the average rate over 5 consecutive
discharge rate over 1 s long non-overlapping epochs of reconstructed MU discharge
Farina et al. (2001) from double differential derivations. For each reconstructed MUAP
tial waveform were selected for conduction velocity estimation. All data are reported

Inter-pulse variability
[%]

MUAP amplitude
[lV]

Conduction velocity
[m/s]

ent

10.6 ± 6.6 166 ± 128 3.8 ± 0.7
7.6 ± 5.0 242 ± 192 3.4 ± 0.6
6.6 ± 3.9 192 ± 118 4.2 ± 0.5
9.0 ± 6.7 170 ± 96 3.4 ± 0.6
9.0 ± 6.0 144 ± 84 3.8 ± 0.6
8.4 ± 5.3 118 ± 86 3.6 ± 0.5

10.2 ± 7.1 98 ± 78 4.3 ± 0.5
10.0 ± 6.0 162 ± 106 3.3 ± 0.6

8.9 ± 5.8 161 ± 111 3.7 ± 0.6
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Fig. 4. Instantaneous discharge rate of the MUs identified from abductor pollicis brevis (Subject G). Each dot indicates a MU discharge at a given time instant. The grey line
represents the exerted muscle force. The upper panel depicts the details for MUs 5 and 6.

556 A. Holobar et al. / Clinical Neurophysiology 120 (2009) 551–562
where TPj (true positives) denotes the number of correctly identi-
fied discharges for the jth identified MU, FPj (false positive) is the
number of misplaced discharges and FNj (false negatives) stands
for the number of unidentified discharges. Discharge time tolerance
was set equal to ±1 sample. Thus, each identified MU discharge was
classified as TP if it was detected within ±0.5 ms (sampling rate
2048 samples/s) from its true position along the simulated signal.
The values defined in Eqs. (1) and (2) were averaged over the
MUs identified in 40 simulations for each SNR value. In each simu-
Fig. 5. Multi-channel MUAPs estimated by spike-triggered averaging of sEMG (abductor p
grid of 61 electrodes arranged in 5 columns and 13 rows (interelectrode distance = 3.5 m
and propagation of MUAPs (grey rectangles) are indicated.
lation, the locations of the MUs within the muscle tissue were ran-
domly selected.

For experimental sEMG, the following variables were extracted:
the number of identified MUs, their recruitment thresholds and
their discharge rates at the time of recruitment, derecruitment
and at the force peak. The discharge rate at recruitment (derecruit-
ment) was defined as the average discharge rate of the first (last) 5
MU discharges. The peak discharge rate was defined as the average
over 5 MU discharges selected around the force peak.
ollicis brevis, Subject G, MU 6). sEMG were recorded with bipolar derivations with a
m). The location of the innervation zone (black circles), tendon regions (grey circles)

Rettangolo



Fig. 6. Sum of identified MUAP trains (grey) compared to the raw sEMG from
abductor pollicis brevis (black). The signal acquired by the electrode pair in rows 4–
5 of the central grid column is shown, along with the measured thumb abduction
force (top panel). A shorter portion of the signal is shown in the bottom panel.
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The CKC method estimates the MU discharge times, but not the
shapes of the action potentials. Thus, the MUAP shapes were esti-
mated by spike-triggered averaging (Keenan et al., 2006) of the
sEMG, using the identified MU discharge instants as triggers. The
estimated MUAP shapes were convolved with the corresponding
MU discharge patterns, summed together, and subtracted from
the original sEMG. The following signal-to-interference ratio (SIR)
between the original sEMG and the residue after subtraction was
then calculated:

SIRðiÞ ¼ 10 � log10
E x2

i ðnÞ
� �

E ðxiðnÞ �
P

jzijðnÞÞ2
h i ð3Þ

where xi(n) denotes the ith sEMG measurement and zij(n) stands for
the MUAP train of the jth MU reconstructed from the ith sEMG
channel.

For the concurrent iEMG and sEMG recordings from the abduc-
tor digiti minimi muscle, the iEMG signals were decomposed by
the EMGLAB decomposition tool (McGill et al., 2005). Decomposi-
tion results were manually inspected, edited by an experienced
operator and compared to the automatic results of the CKC-based
sEMG decomposition. The percentage of discharges commonly
identified at the same time instants by the two decomposition
techniques was computed and used as a measure of accuracy, as
previously proposed (De Luca et al., 2006). When comparing the
decomposition results of the two techniques, discharge time toler-
ance was set equal to ±0.5 ms, as for the simulated signals.

3. Results

3.1. Simulated signals

Fig. 1 shows the sensitivity and false alarm rates of the recon-
structed MU discharge patterns. For 20 dB SNR, 11 ± 3 MUs were
identified with average sensitivity in detection of MU discharges
larger than 95%. This number decreased with increasing noise
power and reached 7 ± 2 MUs for 10 dB SNR. On average, less than
1% of MU discharges were misplaced, even with 0 dB SNR, which
proves that the CKC method is highly robust to both noise and ac-
tion potential superimpositions.

The recruitment thresholds of the identified MUs were approx-
imately uniformly distributed over the entire investigated force
range (0–10% MVC) (Fig. 2). For 20 dB SNR, �16% of the active
MUs with recruitment threshold between 1% and 4% MVC were
identified. In the same conditions, �40% of the MUs with recruit-
ment threshold between 4% and 10% MVC were identified
(Fig. 2C). The capability to identify MUs depended mainly on the
energy of their surface action potentials: almost all MUs with high
surface MUAP energy were identified, whereas the MUAPs of deep
and small MUs, with low surface energy, were considered a phys-
iological noise by the CKC method (Fig. 2C). All the unidentified
MUs with high surface MUAP energy were recruited at levels close
to the peak excitation level, thus, they discharged only a few action
potentials; because of the small number of discharged action
potentials, their activity was considered a signal artefact by the
CKC method (Holobar and Zazula, 2004, 2007).

A typical summation of identified MUAP trains is illustrated in
Fig. 3 (right panels). Black lines correspond to the simulated sEMG
and grey lines to the summation of all identified MUAPs. The SIR,
as defined in Eq. (3), was 6.9 ± 1.0 dB (for SNR of 20 dB), 5.7 ± 0.9
dB (15 dB SNR), 4.8 ± 0.8 dB (10 dB SNR), 2.8 ± 0.7 dB (5 dB SNR),
and 1.3 ± 0.3 dB (0 dB SNR). Thus, for SNR of 20 dB, the sum of recon-
structed MUAP trains accounted for more than 60% of the total
sEMG energy. The residue was mainly due to relatively small MUAPs
generated by a large number of small and/or deep MUs which were
considered noise by the decomposition algorithm (Figs. 2 and 3).
3.2. Experimental signals: abductor pollicis brevis muscle

The discharge patterns of 134 MUs (17 ± 3 MUs per subject;
range, 11–19 MUs per contraction) were automatically identified
(Table 1). In all subjects, the pool of active MUs was the same over
the five consecutive force ramp contractions. Without a reference
decomposition result, a direct assessment of the decomposition
accuracy was not possible in these recordings. Thus, MU instanta-
neous discharge rate, inter-pulse interval variability and recon-
structed MUAP shapes were examined for consistency with
known physiological ranges of values (Table 1). The identified
MUs were progressively recruited with increasing contraction
force, showing high correlation between the exerted force and
the number of identified MUs. Newly recruited MUs began dis-
charging at 9.0 ± 1.6 pps and gradually increased their discharge
rate with increasing force (up to 15.6 ± 2.1 pps). Average inter-
pulse interval variability was 8.9 ± 5.8% (calculated over 1 s inter-
vals). On the descent side of the ramp, the MU discharge rates de-
creased to 8.8 ± 1.5 pps and MUs were progressively derecruited in
the inverse order with respect to recruitment. The recruitment
thresholds of MUs were approximately uniformly distributed over
the investigated force range, but this was also significantly influ-
enced by the subject’s ability to follow the target force trace (note,
for example, the force produced by Subject G in Fig. 4). There was
an inverse correlation (R = �0.37, P < 0.0001) between recruitment
threshold and MU peak discharge rate. Reconstructed MU dis-
charge patterns for Subject G are exemplified by the instantaneous
discharge rate plot in Fig. 4. Each dot in this plot represents a MU
discharge at a given time instant.

Surface MUAP shapes as detected by the electrode grid were
estimated by spike-triggered averaging (Keenan et al., 2006)
(Fig. 5). As for the simulated signals, the estimated MUAP trains
were compared to the original sEMG. The resultant SIR was (aver-
age over all subjects) 4.7 ± 1.2 dB. Fig. 6 shows a typical compari-
son of sum of identified MUAP trains to the original sEMG.
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3.3. Experimental signals: biceps brachii, upper trapezius and vastus
lateralis muscles

The number of MUs identified from the two subjects was 9 and
17 for the biceps brachii, 7 and 11 for the upper trapezius, and 6
and 10 for the vastus lateralis, and remained constant over the con-
secutive force ramps. MUs were progressively recruited with
increasing muscle force and derecruited in inverse order with re-
spect to recruitment. Mean instantaneous discharge rate at the
time of MU recruitment was 7.1 ± 1.2 pps (biceps brachii),
7.3 ± 1.9 pps (upper trapezius), and 7.7 ± 1.5 pps (vastus lateralis).
At the force peak, MU discharge rates increased to 16.2 ± 2.4 pps
(biceps brachii), 21.5 ± 3.8 pps (upper trapezius), and
17.5 ± 2.0 pps (vastus lateralis). Examples of acquired sEMG and
identified MU discharge patterns are depicted in Fig. 7.

3.4. Experimental signals: comparison with iEMG decomposition

The discharge patterns of 13 MUs were identified from either
sEMG or iEMG of the abductor digiti minimi muscle. Out of 9
Fig. 7. sEMG recorded by the central column of electrodes (central panels), correspondin
identified MUAPs from acquired sEMG (right panels) during isometric ramp-up (0–10%
trapezius; (C) vastus lateralis muscle. Each vertical line indicates a MU discharge at a g
MUs identified from sEMG, four were also observed from the iEMG
(Fig. 8). In these four commonly identified MUs, the iEMG and
sEMG decompositions agreed on 98 ± 1% of the identified MU
discharges.

The reconstructed MUAP shapes, as detected by both the central
column of the electrode grid and the fine wires, are depicted in
Fig. 9B. Commonly identified MUs (surface and intramuscular)
contributed with large MUAPs to both the sEMG and iEMG,
whereas the MUs identified from the sEMG (iEMG) only, exhibited
very low energy in the iEMG (sEMG), as expected. Fig. 9A compares
the sum of MUAP trains of 9 MUs identified by CKC to the original
sEMG. SIR (averaged over all the sEMG channels) was 7.5 ± 2.0 dB
in this recording.
4. Discussion

There have been many attempts to decompose the sEMG (De
Luca et al., 2006; Gazzoni et al., 2004; Hogrel, 2003; Holobar and
Zazula, 2004; Kleine et al., 2007; Wood et al., 2001). Most methods
g discharge patterns of identified MUs (left panels) and residual after subtraction of
MVC) and ramp-down (10–0% MVC) contractions. (A) biceps brachii; (B) upper

iven time instant. Thick grey line represents the exerted muscle force.
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are based on segmentation and classification of MUAPs and require
an additional step when superimpositions of action potentials need
to be resolved. This approach is feasible in iEMG recordings with
limited number of active MUs and relatively high SNR (De Luca,
1993; Doherty and Stashuk, 2003; McGill and Dorfman, 1985).
However, it is less convenient for sEMG, especially when the num-
ber of concurrently active MUs is large (Merletti, 1994; Stashuk,
2001). An alternative solution is the use of blind source separation
methods (Holobar and Zazula, 2004, 2007; Hyvarinen et al., 2001).

Although it has been theoretically demonstrated that the
decomposition of the sEMG is feasible when multi-channel record-
ings are applied (Farina et al., 2008b), the validation of sEMG
decomposition algorithms has been limited to a few representative
recordings only. Systematic analysis of sEMG decomposition per-
formance is lacking from the literature and consequently there is
currently no consensus on the practical suitability of sEMG for
investigations of individual MUs. In this study, a method for auto-
matic sEMG decomposition has been tested for the first time on a
large set of simulated and experimental signals, so that a quantita-
tive performance analysis could be provided as the basis for the use
of sEMG decomposition in physiological and clinical studies.

The classification accuracy obtained in this study is comparable
to that obtained by decomposition of intramuscular recordings (De
Luca, 1993; McGill and Dorfman, 1985), as also proven by the di-
rect comparison of decomposition results from surface and intra-
muscular recordings (Fig. 8). The simulations have shown that
the CKC method accurately extracts activities of MUs from a rather
large muscle area when compared to indwelling EMG (Fig. 3). In
experimental sEMG recordings, it was not possible to directly as-
sess the decomposition accuracy. However, estimated average dis-
charge rate, inter-pulse interval variability, and MUAP shapes
(peak-to-peak amplitude, innervation zone location, propagation
Fig. 8. MU discharge patterns identified by CKC from sEMG (black lines) and by EMGL
muscle during an isometric constant force contraction at 10% MVC. Each vertical line ind
both CKC and EMGLAB decomposition tools. Their discharge patterns are depicted twice,
iEMG (grey). MU discharges, identified by EMGLAB, but not by CKC are denoted with blac
grey triangles. The thick grey line represents the exerted muscle force.
along the fiber direction) were examined for consistency with
known physiological range of values (Table 1). For the abductor
pollicis brevis muscle, discharge rate at recruitment was on aver-
age 7.9 ± 1.6 pps, in agreement with several previous studies (De
Luca et al., 1982; Fuglevand et al., 1993; Hogrel, 2003; Søgaard,
1995). The discharge rates at the force peak (10% MVC) were signif-
icantly larger than at recruitment and derecruitment and were in-
versely correlated to recruitment threshold (De Luca et al., 1982;
Fuglevand et al., 1993; Hogrel, 2003; Monster and Chan, 1977).
For the abductor digiti minimi muscle, the CKC method was di-
rectly compared to the decomposition of intramuscular recordings.
Comparison of discharge times of four MUs identified by both
methods yielded a match of 98%.

The number of MUs detected from the abductor pollicis brevis
was on average 17. Although this number was smaller in the biceps
brachii, upper trapezius and vastus lateralis muscles, to our knowl-
edge none of the previously proposed sEMG decomposition tech-
niques allows a fully automatic assessment of complete
discharge patterns of such a large number of concurrently active
MUs. In simulated conditions, the detected MUs were distributed
over a large muscle area and thus representative of a large portion
of the muscle (Fig. 3). Large superficial MUs were accurately iden-
tified, whereas contributions of the deep and/or small MUs were
treated as background noise. A limited bias of the CKC method to-
wards the high-threshold MUs was observed, as the early-recruited
MUs exhibited lower average MUAP energies than higher-thresh-
old MUs. On average, the identified MUAPs accounted for �50%
of the total signal energy. In experimental conditions, the fraction
of signal energy explained by the detected MUAPs ranged from
�40% in the upper trapezius to �80% in the abductor digiti minimi
muscle. The SIR value depends on several intrinsic factors, such as
the number of active MUs and the signal quality, which are difficult
AB from simultaneously recorded iEMG (grey lines) of the abductor digiti minimi
icates a MU discharge at a given time instant. MUs 5, 6, 7 and 8 were identified by

once as identified by CKC from sEMG (black) and once as identified by EMGLAB from
k triangles. MU discharges, identified by CKC, but not by EMGLAB are denoted with

Rettangolo



560 A. Holobar et al. / Clinical Neurophysiology 120 (2009) 551–562
to assess in experimental conditions. Nevertheless, in the cases
investigated, the residue was due to the activity of MUs with low
surface MUAP energies.

Although the number of identified MUs was large when com-
pared to other decomposition methods, the proportion of identi-
fied MUs was relatively small when compared to the number of
MUs within the detection volume. Thus, generalization of the
CKC results to the whole muscle is possible only when MUs with
different properties (size, type, etc.) are uniformly distributed
within the muscle cross-section so that any region of such cross-
section is representative of the rest.

The CKC method is not based on template matching and does
not assume predefined MUAP shapes. It only requires the MUAPs
to be of limited duration, with shapes relatively constant through-
out the contraction. Slow and/or small changes in MUAP shapes
(e.g., due to muscle fatigue or moderate muscle shortening against
the tendon compliance in isometric force-varying conditions) can
be tracked by the algorithm. However, faster changes in MUAP
shape may worsen the performance. For example, the action po-
tential propagation velocity depends on the discharge rate (the
velocity recovery function of muscle fibers) (Stålberg, 1966) and
may substantially vary during the first few discharges therefore
affecting MUAP shape. When MUAP shapes change substantially
Fig. 9. (A) Sum of identified MUAP trains compared to the sEMG (from the third row of
during an isometric contraction of the abductor digiti minimi muscle at 10% MVC. (B) M
simultaneously recorded iEMG, and reconstructed by spike-triggered averaging of sEMG
over time, the signal must be divided into shorter stationary
epochs that are decomposed independently. In this study, this pro-
cedure was not adopted.

MUs with similar MUAP shapes are difficult to discriminate.
However, the likelihood that two different MUs have the same
sEMG representation decreases with increasing number of re-
corded channels (Farina et al., 2008b). Out of �600 synthetic and
�200 experimental MUs identified in this study, only two MUs
exhibited MUAPs that could not be distinguished by a grid of
13 � 5 electrodes (with interelectrode distance of 3.5 mm and
5 mm, respectively) for contraction levels up to 10% MVC. This re-
sult is in agreement with the simulation and experimental data by
Farina et al. (2008b).

The applied decomposition approach is currently limited to rel-
atively low contraction levels. This limitation is common to all
sEMG decomposition techniques and is mainly due to the filtering
effect of the subcutaneous tissue, which reduces the morphological
differences among MUAPs. The application of the CKC method to
signals acquired at higher forces requires the use of more selective
spatial filters and larger numbers of acquisition channels (Farina
et al., 2008b).

In this study, non-invasive analysis of individual MUs from mul-
ti-channel sEMG recordings was validated, justifying the applica-
the central column of the grid). sEMG was recorded by a grid of 5 � 13 electrodes,
UAP templates of 13 MUs, identified either by CKC from sEMG, or by EMGLAB from

channels of the central grid column (top panel) and iEMG (bottom panel).
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tion of the CKC method to physiological studies. The applicability
of the CKC method in clinical routine, however, requires further
tests of the technique on signals recorded from patients. Patholo-
gies which may be investigated with decomposition of sEMG are
those affecting the size and number of MUs, their conduction
velocity and their discharge patterns. Beside statistical indepen-
dence, the CKC method does not assume any other property of
the motor unit discharge patterns and can thus be applied in con-
ditions of irregular interspike intervals. However, the condition of
independence on the motor unit discharge patterns limits its per-
formance when the degree of motor unit synchronization is high
(Holobar and Zazula, 2007).

Although the application of multi-channel detection systems
over the skin surface is more time consuming than the use of clas-
sic bipolar electrode systems, the current technological solutions
for the construction of high-density surface grids include dispos-
able and pre-gelled systems which simplify the mounting proce-
dures (Merletti et al., 2008a,b). Moreover, the CKC decomposition
is fully automatic and thus suitable for routine use by inexperi-
enced operators. The computational time depends on the duration
of the contraction and complexity of the signal, but in the current
version of the method it is acceptable for research investigations.
In this study, the CKC method was implemented in Matlab (The
Mathworks, Natick, MA) and ran on a PC with a 1.6 GHz CPU and
1 GB memory; under these conditions, the method required
� 4 min to identify 17 MUs from a 12 s long contraction of the
abductor pollicis brevis muscle.

In summary, the CKC decomposition of high-density sEMG al-
lows the identification of the complete discharge pattern of many
concurrently active MUs in variable-force contractions and at low
force levels. The method was tested in a variety of conditions,
including simulated and experimental signals. Although the cur-
rent study provides confidence in the CKC technique and supports
its further use and development, the decomposition of sEMG does
not aim at substituting for the classic intramuscular approach,
which remains the standard for MU studies; rather, the non-inva-
sive approach may be useful in cases when the use of needles is not
possible or not desirable (De Luca et al., 2006), or may be applied
together with iEMG to increase the number of identified MUs.
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