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Abstract 

This paper aims to explain in a clear, plain and detailed way a modal parameter estimation method 

in the frequency domain, or similarly in the Z-domain, valid for multi degrees of freedom systems. 

The technique is based on the Rational Fraction Polynomials (RFP) representation of the Frequency 

Response Function (FRF) of a Single Input Single Output (SISO) system but is simply extended to 

Multi Input Multi Output (MIMO) and output only problems. A least squares approach is adopted 

to take into account the information of all the FRFs but, when large data sets are used, the solution 

of the resulting system of algebraic linear equations can be a long and difficult task. A procedure to 

drastically reduce the problem dimensions is then adopted and fully explained; some practical hints 

are also given in order to achieve well conditioned matrices. The method is validated through 

numerical and experimental examples. 

 

1. Introduction 

In the past decades a number of papers dealing with the problem of modal parameters estimation of 

vibrating structures has been presented [1]. Even limiting the attention to linear systems, it is a 

matter of fact that both the complexity of the methods and the expectations of the analysts have 

increased and it is now compulsory to be able to cope with multi input multi output MIMO (and 

even output only) systems and large data sets. In the time domain, the Ibrahim time domain [2], the 

ARMAV [3] and the canonical variate analysis [4] methods have gained a certain popularity and 

proven their capabilities in a number of practical applications, see for example [5], but the 
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frequency domain techniques have always been more popular, mainly for the simplicity of a visual 

interpretation of the FRFs and the availability of effective commercial software. The common 

characteristic of many frequency domain methods is the description of the FRFs in terms of rational 

fraction polynomials(RFP) models [1], also known as common denominator models. Many efforts 

have been spent to pass from SIMO models [6] to MIMO (or even output only) models [7, 8] and 

indeed modifications and improvements are regularly proposed [9, 10]. Also this work takes start 

from the RFP representation and, with the aim of defining a small and well conditioned set of linear 

equations, describes a total least squares method in the Z-domain. 

 

 2. Outline of the RFP method in the Z-domain 

For a linear and time invariant system with n degrees of freedom (dofs), the impulse response 

function can be expressed in the form [1] 
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which gives the (continuous) Fourier transform 
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The poles rs , linked to the natural angular frequencies rω and damping ratios rζ  by the expression 

21 rrrrr is ζωωζ −+−= , and the modal constants rA  are real or occur in pairs of complex 

conjugate numbers. 

The Z transform of Eq. (1), whose left-hand side can numerically be computed by a discrete Fourier 

transform, taking into account a sampling frequency sf  and then a sampling period sft 1=Δ , is 

[1] 
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where 

( )kk iHH Ω= , ( ) ( ) ( ) ( )11211 −−=Δ−=ΔΩ−=Ω Nkffkk sk ππ , 

fΔ  is the frequency resolution, N is the number of spectral lines and k = 1,…, N. 

The terms related to the Z transform are defined as 
ts

r
rez Δ=  
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It is worth to note that eq. (4) maps the frequency band under examination into a unit circle in the 



Argand-Gauss plane. 

The sum of eq. (3) can conveniently be converted in the following RFP expression 
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where the 4n unknown coefficients 120 ,, −naa …  and nbb 21 ,,…  are real valued [1]. 

Expanding eq. (5) for N spectral lines it is simple to get 
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or, in a more compact form 

wBbAa =−          (7) 
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By taking nN 4≥  the previous system of linear equations can be solved in a least square sense, for 

example by a singular value decomposition, to give a and b. 

It would also possible to properly weight with kW  each FRF value kH  [10] in order to increase the 

importance of some spectral lines, typically in proximity of the system resonances. This would lead 

to different A and w but leave B unchanged, which is important for the forthcoming discussion. 

When another FRF is considered, matrix B and vector a of eq. (7) remain unchanged so that, with 

NFRF frequency response functions, a system of equations can be assembled in the form 
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It may be observed that this equation holds true also for MIMO systems, being the coefficients a 

(related to the poles rs ) independent from both the excitation and measurement points. 

The system of eq. (8) has )1(2 +NFRFn  unknowns, i.e. the elements of the vectors a and bm, 

m=1,…,NFRF, and again can be solved in a least square sense by taking in each FRF enough 

spectral lines N: in particular )/11(2 NFRFnN +≥ . The above procedure is indeed correct but 

can lead to a very time consuming implementation, especially when large data sets are analysed 

(NFRF>>1) and n has to vary (e.g. to define a stabilization chart). 

It is then necessary and interesting to develop an alternative process, still based on a least square 

procedure but numerically much more efficient. 

For the mth generic FRF, eq. (7) can also be written in the form 



mmmm ewBbaA =−−  

where vector me  takes into account the errors between the measured FRF and the assumed model. 

In order to compute the unknown vectors a and bm the least squares procedure requires to minimise 

the real valued (positive) function m
H
mmE ee= : therefore mE  is the sum of the errors occurring on 

all the N spectral lines of the mth FRF. With NFRF frequency response functions, one for each 

combination of the input and output measurement points, it is then natural to define the global error 

E as 
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According this definition E is real valued, and so are a and the mb , so that its explicit expression is 
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E is minimum, as a function of a and the mb , when 0=∂∂ aE  and 0=∂∂ mE b , m = 1,…, 

NFRF. 

Remember now that, for any generic x, z and Y, the derivation rules state that 
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so that the condition for minimising E is expressed by 
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In eq. (11) the sum is not present because each vector mb  is independent from all the others pb  

( mpNFRFp ≠= ,,,1… ) so that one can obtain 
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where [ ] nnH 22Re ×ℜ∈BB . 

A back substitution in eq. (10) gives 
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or in brief 

raR =           (14) 

with nn 22 ×ℜ∈R  and 12 ×ℜ∈ nr . 

A very important result is thus achieved: a system of only 2n real linear equations has to be solved 

for a, but based on all the N spectral lines of NFRF frequency response functions. Both R and r are 

defined as simple sums whose terms only contain the product of matrices, which is a numerically 

simple task. Moreover, because of the formulation in the Z domain, matrix R is well conditioned 

and eq. (14) achieve a reliable evaluation of vector a. 

Some difficulties could arise in the computation of [ ]( ) 1Re
−

BBH  but a closer look to the structure of 

the matrix shows that this inversion is straightforward. Taking into account –eq. (4)- that 
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The last sum gives 
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By remembering the symmetry properties of the harmonic function, the conclusion is 

( ) NBB jl
H =Re  if jl = ; 

( ) 1Re =jl
HBB  if jl −  is even 

( ) 0Re =jl
HBB  if jl −  is odd 

On this basis we get 
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which allows to calculate 
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with 2−+= nNnum  and ( ) 122 +−−+= nNnNden  

Therefore the definition of all the terms of eq. (13), which is the core of the procedure, does not 

present any numerical difficulty and provides a well conditioned matrix R in eq. (14). 

Eq. (14) gives a so that the poles tzs rr Δ= ln  of the system can be obtained by computing the 

solutions rz , r=1,…,2n, of the following equation: 
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i.e. by determining the zeros rz  of a polynomial. 

Given a, any vector mb , and consequently the related modal constants rA , could be obtained with 

the products of eq. (12). But for the modal constants, as well as for the poles, it is more convenient 

to implemented a least square procedure, again on the basis of eq. (3). By considering a single FRF, 

for any k (frequency) and r (pole), it is now simple to compute the ratio ( )rkkkr zzzN −=  and a 

system of equations can be written as 
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or, in brief 

NAH =           (18) 

With nN 2≥  the previous system of complex linear equations could be solved in a least square 

sense to give complex coefficients A ( rA , r=1,…,2n) but it is again possible to limit the number of 



simultaneous equations by separately searching for the real and imaginary parts of A, respectively 

AR  and AI . Eq. (18) is then written in the form 

ε=−+ HINRN AA i  

where ε  is the error vector. 

According to eq (9), by minimising the error εε= Ηe  with respect to AR  and AI , the following 

system of linear equations is found 
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or, briefly 
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The second equation gives 
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and then, from the first equation 

( ) 22112121 bGGbIGGGG 11 −− −=+ A       (21) 

This simple system of 2n real equations yields AI  so that by with a direct substitution in eq. (20) 

also AR  is determined. 

In a nutshell the whole process, which will be named RFPZ method, just requires these few steps: 

• build up matrices mA  and B  and vectors mw  according to eqs. (6) and (8); 

• compute vector a with eq. (14) , with the help of eqs. (13) and (15); 

• compute the zeros rz  of eq. (16) and then the poles rs  with eq. (4); 

• compute the imaginary and real parts of the modal constants A, and then the mode shapes, 

with eqs. (21) and (20). 

 

3.Numerical examples 

To demonstrate the effectiveness of the RFPZ technique, a seven degrees of freedom system with 

non proportional viscous damping has been numerically simulated. Table 1 reports its natural 

frequencies and damping ratios; the eigenvectors are not listed for brevity and because they will be 

compared with the extracted mode shapes only by means of the Modal Assurance Criterion (MAC). 

The input was a white noise applied on mass 2 and the outputs were computed in the form of 

displacements of the seven dofs, for a duration of 200 s and with a sampling frequency of 256 Hz . 

The fourth order Runge-Kutta integration technique implemented in Matlab® (ODE4) has been 



chosen for all the computations. 

The FRFs have been computed with the Welsh’s periodogram method, 4096 spectral lines (giving a 

frequency resolution Δf=0.0625 Hz), a sine window and an overlap of 66% [11]. Figure 1 shows an 

example of seven frequency response functions. 

With regard to the extracted modal parameters, the results herewith presented have been obtained 

on the basis of a Montecarlo simulation consisting of 100 repetitions of the whole process of input 

generation, time domain integration, FRFs computation and modal parameters evaluation. 

Some words need to be spent on the rationale that allows to separate physical and numerical modes. 

First of all it is worth remembering that the number of modes of a system is in general not know a 

priori so that it is necessary to presume which model order n allows the best fitting of the measured 

data. The typical procedure starts from a low n (possibly n=1) and increases its value up to an 

arbitrary limit that depends on various factors among which the user’s experience is not to be 

neglected. The result of this practice is a number of modes, with the physical (true) to be split from 

the computational ones. One possible, and certainly practical and diffused, approach consists in the 

generation and observation of the so called stabilisation chart or diagram [7]. 
 
Table 1 
Natural frequencies and damping ratios of the numerical example 
Mode number k 1 2 3 4 5 6 7 

fk (Hz) 3.398 10.45 18.54 22.59 24.66 28.63 38.48 

ζk (%) 0.361 0.875 1.49 1.88 1.82 1.68 2.35 

 

Fig. 1. Example of FRFs (receptance) with no added noise, e ¼ 0. 



To accomplish this task the method implemented in this paper is slightly different. The stabilisation 

chart is in fact substituted by an histogram (Fig. 2); the number of repetitions of a pole, computed 

with different model orders n, is plotted as a function of frequency (it is of great help to exclude 

from this graph the non physical poles, estimated with negative damping ratios). Stable, and 

hopefully physical, modes give well defined and high bars in the histogram (Fig. 2, left). In 

presence of a high valued bar, the choice of the mode (frequency, damping ratio, shape) is then 

performed by evaluating the MAC among all the mode shapes, one for each pole within the 

frequency limits of the bar. The mode shape which, in the MAC sense, is most similar to all the 

others is considered the most representative and its pole is then the “best” pole. This approach can 

be more cumbersome than simply picking a stable mode in a stabilisation chart but is convenient to 

keep the whole procedure less sensitive to personal opinions. And, in general, the time dedicated to 

the preparation and execution of the experimental tests, and their subsequent interpretation, is much 

larger than the computational effort required by any fitting procedure. 

The tables of results in this paper list the modal parameters (and their standard deviations) produced 

by processing, according to the above procedure, the already mentioned 100 simulations. 

 

 
Fig. 2. Examples of the histogram plot. Left: SIMO system with no added noise. Right: SIMO system with 10% added 

noise. 

 
Table 2 
Modal parameters and their standard deviations: no added noise (receptance) 
Mode number k 1 2 3 4 5 6 7 

fk (Hz) 3.399 10.45 18.54 22.57 24.64 28.58 38.31 

σf (Hz) 0.002 0.01 0.00 0.01 0.04 0.00 0.06 

ζk (%) 1.073 1.037 1.605 2.021 2.009 1.854 2.893 

σζ (%) 0.056 0.10 0.01 0.02 0.30 0.00 0.08 

MAC 1.000 1.000 0.999 0.998 0.990 0.981 0.067 

σMAC 0.000 0.000 0.001 0.002 0.013 0.033 0.090 

Frequency band: 1–45 Hz; maximum model order: 15. 



 

The presence of noise corrupting the signals has been simulated by adding, after the numerical 

integration, on both the input and the outputs different sequences of white noise, with Gaussian 

distribution, null mean value and unitary standard deviation. In practice the noisy signal noisytx )(  is 

given by )()()( tnetxtx xnoisy σ+=  where )(tx  and xσ  are the original signal and its standard 

deviation, )(tn  is the white noise and e  is a parameter controlling the signal to noise ratio. 

The values in Table 2 have been obtained without adding any noise on the input and the outputs, 

and by analysing the FRFs in the frequency band 1-45 Hz with a maximum model order n=15. The 

results for the first six modes are quite satisfactory, with some significant errors occurring only on 

the damping ratios of modes one and two. These errors are caused by the combination of the small 

values of damping ratios, which generate sharp peaks in the FRFs, and the frequency resolution, 

which is not small enough to correctly define these peaks. The large error on mode shape seven can 

be justified by observing in Figure 1 the FRFs in the frequency band corresponding to this mode 

(35-40 Hz); they are a couple of orders of magnitude lower than in the remaining frequency region 

and mode seven is then masked by the other modes. In fact, by repeating the identification 

procedure on inertances instead of receptances, the MAC on mode seven increases to 0.996 with 

standard deviation 0.006. 

When noise (10% on both the input and the outputs)  is added on the time histories also the 

resulting FRFs get noisy, as shown for example in Figure 3. Table 3 lists the modal parameters 

extracted by processing these receptances in the band 15-35 Hz with a maximum model order n=25. 

The MAC is calculated between the extracted and the theoretical mode shapes. 

The frequency band is smaller than before to consider the realistic situation of unmeasured but 

present modes (one and two in this case) and also because mode seven has already been judged too 

small to be properly detected. The noise effects are clearly visible on the histogram of Figure 2 

(right) where it is no more simple to separate physical and computational modes. It is also evident 

that the damping ratio is largely influenced by the noise even if both frequency and mode shape are 

correctly defined. 

 



 
Fig. 3. Example of FRF (receptance) with noise on both input and outputs, e ¼ 1/10. 

 

 

 

Table 3 
Modal parameters and their standard deviations with 10% noise on both input and outputs (receptance) 
Mode number k 1 2 3 4 5 6 7 

fk (Hz) - - 18.55 22.59 24.66 28.57 - 

σf (Hz) - - 0.01 0.02 0.05 0.11 - 

ζk (%) - - 8.17 5.77 5.22 4.55 - 

σζ (%) - - 0.26 0.18 0.38 0.75 - 

MAC - - 0.998 0.997 0.984 0.951 - 

σMAC - - 0.001 0.002 0.011 0.032 - 

Frequency band: 15–35 Hz; maximum model order: 25. 

 

Figure 4 and Table 4 show the results of an output only analysis. In principle, analysing cross 

spectra instead of FRFs is not different, apart from a scale factor given by the input force [12]. In 

practice it is reasonable to expect worse results on the basis of the simple observation that less 

information is elaborated. This is confirmed by Table 4 whose values are not as good as those of the 

input output analysis. 

Of course the identification process achieves better results (not reported for brevity) when the added 

noise is not so large. Not surprisingly the damping ratios always show the largest discrepancies 

from the ideal values. 



 

 
Fig. 4. Example of cross-spectrum (receptance) with 10% noise on outputs, e ¼ 1/10. 

 
Table 4 
Modal parameters and their standard deviations with 10% noise on outputs (output-only) 
Mode number k 1 2 3 4 5 6 7 

fk (Hz) - - 18.57 22.55 24.75 28.61 - 

σf (Hz) - - 0.04 0.06 0.11 0.17 - 

ζk (%) - - 8.20 5.17 3.79 2.29 - 

σζ (%) - - 2.35 1.22 3.22 2.57 - 

MAC - - 0.993 0.995 0.895 0.293 - 

σMAC - - 0.004 0.003 0.088 0.253 - 

Frequency band: 15–35 Hz; maximum model order: 25. 

 

4. Experimental test 

The proposed technique has also been tested on experimental data. The explanation of the 

laboratory apparatus is very short because all the information are still confidential; suffice is to say 

that the test rig consists of a metallic structure with an almost cylindrical shape in a free-free 

condition. The excitation (white noise) is imposed by a single electrodynamic shaker and the 

measured outputs are the triaxial accelerations of 40 points on eight cross sections of the cylinder, 

for a total of 960 time histories (and then NFRF=960). The essential information on the first four 

modes are reported in Table 5 where they are compared with the parameters extracted by the 



canonical variate analysis. This technique is used as reference because its robustness and precision 

in elaborating real data has already been validated in many occasions – see for example [13]. 

The structure under test is nearly axisymmetric so that it is possible to excite modes with almost the 

same shape at almost the same frequency [14, 15]. In fact this is what happens for all the four 

modes herewith presented which show four companion modes (all within 1 Hz) with very similar, 

albeit rotated, mode shapes. Again the damping ratios estimated by the RFPZ method are larger 

than the expected. 

 
Table 5 
Modal parameters of the experimental rig 

CVA RFPZ  

Frequency (Hz) Damping ratio (%) Frequency (Hz) Damping ratio (%) MACCVA/RFPZ 

19.03 0.60 18.98 2.21 0.96 

23.71 0.37 23.69 1.54 0.99 

57.71 0.58 57.65 1.16 0.82 

73.58 0.39 73.62 0.50 0.97 

 

 

 

5. Conclusion 

This paper pretends to have plainly but exhaustively presented a modal parameter evaluation 

method written in the Z domain. Starting from SISO system, a total least squares procedure valid 

for MIMO (and output only) systems has been described together with some advices on how to 

achieve consistent modal parameters (frequency, damping ratios and modal constants) in a 

numerically efficient way. Among the stable poles appearing in a certain (limited) frequency band 

and computed by consecutively increasing the model order, a strategy to choose the most reliable 

mode is also suggested: the “best” pole is the one associated with the mode shape which, in the 

MAC sense, is most similar to all the others. The method has been validated through numerical and 

experimental examples which reveal very good performances but also some difficulties in the 

definition of the damping ratios. 
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