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Short Papers
Strengthening Model Checking Techniques

With Inductive Invariants

Gianpiero Cabodi, Sergio Nocco, and Stefano Quer

Abstract—This paper describes optimized techniques to efficiently com-
pute and reap benefits from inductive invariants within satisfiability
(SAT)-based model checking. We address sequential circuit verification
and consider both equivalences and implications between pairs of nodes in
the logic networks. First, we present a very efficient dynamic procedure,
based on equivalence classes and incremental SAT, specifically oriented
to reduce the set of checked invariants. Then, we show how to effectively
integrate the computation of inductive invariants within state-of-the-art
SAT-based model-checking procedures. Experiments (on more than
600 designs) show the robustness of our approach on verification instances
on which stand-alone techniques fail.

Index Terms—Formal verification, model checking, satisfiability (SAT),
symbolic techniques.

I. INTRODUCTION

Logic dependencies and implications between signals in a cir-
cuit have long been receiving substantial attention [1]. Verification
techniques, based on satisfiability (SAT), often consider equivalences
and implications among circuit signals as typical cases of simple
invariants. The use of induction to compute invariants is also well
known in formal verification, as shown in recent literature [2]–[8].

In this paper, we analyze an efficient integrated approach to com-
pute and represent combined inductive equivalences and implications.
Given a set of mutually equivalent circuit nodes, we express all equiv-
alences by means of an equivalence class, thus avoiding a quadratic
number of relationships. Implications are kept reduced by filtering out
equivalences, representing implications between equivalence classes
only, and pruning out transitive implications. Moreover, equivalences
and implications are proven under external care set conditions, which
allow a tighter integration (and intertwining) with other verification
engines and/or strategies.

We also explore interactions between inductive invariants and
SAT-based verification approaches. In our scheme, invariants are
considered as a restriction of the state space, which we exploit in
SAT-based (noninductive) unbounded model checking. We specif-
ically address circuit-based quantification [9]–[11] and interpolant
(ITP)-based verification [12].

This paper is a revised version of [13]. The theory has been
reformulated, and experiments have been completely rerun. Data on
SAT-based property verification show the efficacy of the integrated
method in terms of performance and scalability.

II. BACKGROUND

The state transition systems we address are sequential synchronous
circuits modeled as finite-state machines. In our notation, S is the state
space, Init ⊆ S is the set of initial states, and TR is the transition
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Fig. 1. Finding inductive invariants.

relation of the system: S × S → {0, 1}. The subscripts indicate time
frames. Let s0, s1, . . . , sk be the state variables for time frames
0, 1, . . . , k. Si and TRi represent S(si) and TR(si, si+1), respectively.

An inductive invariant is a property p proven by induction [14].
Given a depth k, a k-step inductive check verifies the following:

1) a base case, i.e., starting from the initial states of the system, p
holds for k consecutive time steps;

2) an inductive step, i.e., if p holds for k consecutive time steps,
starting from an arbitrary state, then it also holds at time step
k + 1.

A model-checking approach completely based on SAT and inductive
invariants is proposed in [5] and [14]. The method is complete, due
to an additional uniqueness (or loop free) condition for state paths.
However, as we do not primarily address the completeness of inductive
model checking, we avoid explicitly representing such a condition in
the sequel.

A state-of-the-art algorithm for generating inductive invariants is
shown in Fig. 1. The top-level function INDUCTIVEINV starts from the
transition relation of the system TR, the initial state set Init, the set
of properties under check I , and a set of external constraints Care. In
the algorithm, depth is a user-selected value for limiting the induction
depth, and P is the set of proven invariants, which is finally returned.
The function first extends I with more potential invariants, which are
obtained by random simulation from the set of all possible invariant
candidates (line 2). The worst-case cardinality of this set is quadratic
in the number of circuit nodes, as the equivalences and/or implications
between all node pairs are included, if not disproven by simulation.
The potential invariant set is then further refined, first by a preliminary
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combinational check (which is able to capture all invariants held in
the whole state space, as shown in line 4) and then by iteration through
couples of base case and inductive step with increasing depth k (line 6).
Care, which is the set of external constraints (e.g., a binary decision
diagram (BDD)-based overapproximate reachable states [6]), is used
to restrict the search in the inductive step.

A unique SAT-based proof function CHECKINV is used for both the
base case and the inductive step. Following [15], we organize a set
of multiple checks as an iterative procedure, where, at each iteration,
we refine the set of potential invariants by ruling out all candidates
disproven by the same counterexample. In function CHECKINV, for
each iteration of the outer loop (line 14), we evaluate the conjunction
of all candidate invariants ̂I and compute the propositional formula f
expressing either the base case or the inductive step, depending on
the S parameter. A SAT solver then checks f (line 19). When f
is satisfiable (line 21), function VALIDINV removes from I all the
candidate invariants falsified by the current counterexample (line 27).

As noticed in previous works, a key feature for efficiency is the use
of incremental SAT. It essentially consists of reusing conflict clauses
across different SAT calls. We adopt this mechanism using the unit
assumption strategy [16]. For any clause c that we may need to remove
from the SAT solver database, we actually store the constraint e ⇒ c,
with e being a fresh new variable. The e literal is then passed to the
solver as an assumption, thus forcing c to be true. When c has to be
removed, it is enough to add the unit clause ¬e.

III. EQUIVALENCE AND IMPLICATION

The algorithm presented in Section II does not specifically ad-
dress any particular kind of invariant. In this section, we describe
our choices in order to efficiently deal with invariants expressing
equivalences and implications. To improve the previous algorithm,
we group equivalences into equivalence classes (with a linear, rather
than quadratic, representation cost) and express implications between
equivalence classes (rather than between individual circuit nodes).
Our main contribution in this direction is an integrated approach to
effectively represent and manipulate a minimal set of equivalences
and implications, rather than just computing equivalences [8], or first
computing a nonminimal set of implications and then reducing it [17].

1) Equivalence Classes: Let us partition all circuit nodes into
equivalence classes (denoted as E). Classes are nonoverlapping, and
their union is the full set of nodes, i.e., each node belongs to exactly
one class. More formally, given any two circuit nodes ni and nj , they
are (potentially) equivalent1 iff both the nodes belong to the same class
C ∈ E, i.e.,

(ni � nj) ⇔ ∃C ∈ E : (ni ∈ C) ∧ (nj ∈ C).

Given the initial set E, which was computed by simulation, we
randomly select one node ĉ for each class as the class representative
or leader. Then, we explicitly represent, in all SAT problems, just a
sufficient (linear) number of equivalences between each node and the
related class leader. All other equivalences can transitively be derived
from the aforementioned minimal set. Refinement is done by possibly
splitting every class C ∈ E into two subclasses, keeping all the nodes
in C with the same (0 or 1) value grouped in the same subclass in the
SAT counterexample.

We report a new procedure, a variant of the function VALIDINV

presented in Fig. 1, in Fig. 2. The outermost loop (line 2) iterates
through all classes. For each class C, we keep in C all nodes n with the

1Equivalences are considered modulo complementation. For the sake of
simplicity, we will not explicitly represent negations in the rest of this paper.

Fig. 2. Class splitting, given a SAT counterexample.

TABLE I
IMPLICATIONS AND CLASS SPLITTING

same value of class leader ĉ. The remaining ones (if any) are removed
from C (line 7) and collected into a new class (line 8), to be finally
added back to E (line 10).

The approach has two advantages. The complexity of function
VALIDINV is linear with the number of nodes of the network, whereas
its original version (see Fig. 1) is potentially quadratic. More impor-
tantly, it avoids choking the SAT solver with all (redundant) clauses
and variables expressing candidate invariants that can be obtained by
transitivity.

2) Implications: In general, since implications are not symmetric,
we cannot reduce a quadratic set of implications to a linear one.
Although transitive reductions can be applied, the worst-case number
of implications is still quadratic. Our contribution is to reduce them as
much as possible, by explicitly representing only implications between
class leaders.

Given two nodes p and q belonging to classes P and Q, respectively,
if p ⇒ q is an implication invariant, by transitivity, each node pi ∈ P
implies every node qj ∈ Q. All those implications actually represent
the same Boolean relation. We thus explicitly represent only one of
them, i.e., the class implication P ⇒ Q.

The inductive proof algorithm may proceed exactly as previously
described, until the SAT counterexample analysis. In this phase,
function VALIDINV refines the equivalence classes and also updates
the candidate implications. To this respect, our reduced representation
of implications causes an additional complication. Some implicit
implications, which are subsumed by potential equivalences, may need
to be explicitly represented as a consequence of class splitting. Fur-
thermore, new implications may arise as a result of the class-splitting
process.

Let us consider a candidate class implication P ⇒ Q and suppose
that the current SAT counterexample causes both P and Q to split into
{P,P ′} and {Q, Q′}, respectively. Then, Table I schematically reports
the set of newly generated, kept, or removed implications, due to the
values of class leaders p ∈ P and q ∈ Q in the counterexample.

From the implementation point of view, the set of candidate impli-
cations is modeled as a directed graph, where every node corresponds
to an equivalence class and each edge represents one implication.
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Fig. 3. Improved approximate traversal.

IV. INDUCTIVE INVARIANT AND MODEL CHECKING

In this section, we show how to exploit inductive invariants as a
source for optimizations and/or simplifications of SAT-based model-
checking tasks. We will obviously avoid discussing inductive veri-
fication [14], as already widely known and described. By viewing
invariant generation as a preprocessing step, any kind of subsequent
verification could exploit circuit simplifications due to equivalent
node collapse. We will show that other enhancements are possible in
two directions: 1) the invariants used to restrict the search space of
SAT-based model checking and 2) the intermediate results of other
model-checking techniques adopted to further tighten the invariant
sets. We will address BDD-based approximate reachability (as an or-
thogonal technique to make state space stricter), circuit-based quantifi-
cation in backward reachability (as an example of mutual tightening),
and ITP-based verification (as a case where invariants are used to
restrict the search space).

1) Approximate Reachability: Invariants have been used by
Case et al. [17] to compute an overapproximation of the reachable
states, with more modular effort than BDD-based reachability. We
obtain further benefits by intertwining the two approaches. We itera-
tively exploit inductive invariants as an external constraint to tighten
BDD-based overapproximate reachability and BDD-based approxi-
mate states as an additional constraint to find more inductive invariants.

The reachability procedure is shown in Fig. 3. The function iterates
through inductive invariant computations (line 5) and approximate tra-
versals (line 10). Both procedures accept the current overapproximated
reachable state set R+ as a “care” parameter, which is used to enforce
invariant proofs and make reachability tighter.

Function OPTIMIZE (line 7) returns an optimized transition rela-
tion by merging equivalent circuit nodes and exploiting implications
for redundancy removal. Function APPROXTRAV (line 10) performs
BDD-based approximate reachability analysis, following the frame-
by-frame or machine-by-machine approach by Cho et al. [18].

2) Circuit-Based Quantification: Fig. 4 shows how we exploit and
dynamically tighten invariants within a circuit-based quantification
backward verification algorithm.

p is the property to be proven on model TR, starting from the set
of states Init. An initial Care set is evaluated in terms of overapprox-
imated BDDs and inductive invariants.2 Then, a backward traversal
iteration is performed, where the PREIMAGE operator (line 8) is based
on circuit quantification [9]–[11]. The Care set is refined at each step
by removing newly reached states from it (line 13). A further refine-
ment of Care is done at the end of each iteration by computing new
inductive invariants (line 14), as described in Section III. Backward

2Heuristics to enable/disable BDD-based reachability, based on the number
of state elements and the circuit size, are adopted but not discussed here.

Fig. 4. Circuit-based backward verification with inductive invariants.

Fig. 5. ITP-based verification with inductive invariants.

traversal and inductive invariant computation thus have a bidirectional
interaction, as tighter care sets help in finding new invariants, whereas
tighter invariant sets help in simplifying state set representations.

Function BESTAIG returns the smallest AND inverter graph repre-
senting a set of states included between To ∧ Care and To ∨¬Care. To
avoid a too-expensive procedure, we simply apply redundancy removal
on To, which is controlled by time and size thresholds, using Care as
an external care set. After that, we make a selection among To, New,
and the optimized To, based on the circuit sizes (evaluated with linear
cost).

3) ITP-Based Verification: Fig. 5 shows an ITP-based procedure
inspired by [12]. Here, we use inductive invariants both to simplify TR
(as in the previous cases) and as an additional constraint (Care) to be
conjoined with reachable states generated by interpolation.

Given two inconsistent formulas f and g, a Craig ITP ITP (f, g) is
an overapproximation of f , which is still inconsistent with g, expressed
in terms of the common variables of f and g. Within the framework
of Fig. 5, an ITP is equivalent to an overapproximate image of R+

[12]. The outermost loop (line 4) guarantees the use of deeper and
deeper backward unrollings g until the (backward) diameter is possibly
reached. Inner iterations (line 7) represent overapproximate traversals,
using the ITP as the image operator. The procedure terminates in two
possible cases: 1) when the property is disproven (line 12) and 2) when
the inner loop reaches a fixed point (line 14). Whenever f ∧ g is satis-
fiable (with R+ �= Init, as shown in line 11), we have a false failure
and simply restart another traversal at the next outer iteration. The Care
set is computed by mixing BDD-based approximate reachability and
inductive invariants (line 3), as in the previous algorithms. It is used as
a care set for both the SAT checks and the ITP simplifications based
on redundancy removal.
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Fig. 6. Verification results with and without invariants on all (344 + 309 = 653) benchmarks.

V. EXPERIMENTAL RESULT

We implemented our algorithms on top of the PdTrav tool, a state-
of-the-art verification framework that won two of the subcategories
(i.e., the “ALL” and the “UNSAT” ranking) at the 2007 Model Check-
ing Competition [19]. The winning tool was a preliminary version
of the invariant-based strategy presented in this paper. The tool uses
Minisat [20] (version 1.14p) as the underlying SAT solver.

We present the results on two circuit suites: 344 benchmarks from
the Model Checking Competition [19] and 309 verification instances
from four other sources [i.e., the VIS distribution [21] (148 selected
properties), the IBM Formal Verification Library [22] (65 circuits),
the Sun PicoJava II examples [12] (20 instances), and the circuits
coming from the VTT group of STMicroelectronics (74 properties)].
The benchmarks have latches ranging from tens to thousands (more
than 4000) and include some very hard to prove properties.

All experiments ran on a Pentium Core Duo 2.4-GHz Workstation
with 2 GB of main memory running Debian Linux. For each experi-
ment, we set a memory limit of 1 GB and a time limit of 1000 s (which
includes 300 s for inductive invariant computation). We also adopted
a maximum induction depth of 2 for the equivalences and 1 for the
implications.

Fig. 6 shows the overall results for both backward (circuit-based
quantification [9]–[11]) and forward (ITP based [12]) verifications.
The figure includes two graphs that compare the memory and ex-
ecution time with and without invariants. We omitted cases where
all methods ran out of time or memory. The markers below the
main diagonal show gains for the methods presented in this paper.
Most occurrences of worsening, at low execution times, clearly
show that the introduced overhead dominates in “easy” instances,
whereas improvements become evident on “difficult” instances with
higher execution times. The experiments reported 205 failed properties
and 186 inductively proven properties. Overall, the advantages and
disadvantages of using inductive invariants were evenly distributed
between failed and proven instances (with overhead in easy cases
and average improvements in more difficult ones). We thus do not
explicitly profile the two subsets of experiments. We deem it is more
important to show the execution time for all the “pass” experiments
than the 186 properties inductively proven. Fig. 7 plots those cases
and clearly supports our claim that invariants can help subsequent
model-checking tasks, even in cases where they are not able (alone)
to inductively prove a property. A very interesting observation of the
aforementioned graphs is that (after excluding too-hard experiments,
which are not solved with any technique) out-of-time experiments
were reduced from 74 to 3 in backward verification and from 37 to 2 in

Fig. 7. Verification results for noninductive proofs.

Fig. 8. Invariant computation time and their compaction effect.

ITP-based verification. This shows that inductive invariants indeed
help the overall verification process.

Fig. 8 finally gives an additional insight on the invariant genera-
tion cost and consequent benefit. The two graphs show circuit size
reduction (which is measured as the percentage ratio of the circuit
size after/before invariant-based reduction) and the overall time spent
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for invariant generation (which is limited by the 300-s bound). Both
plots have been drawn, with the instances sorted by growing Y values.
We can observe a relevant size compaction in many cases (more than
30% reduction in about 300 instances), whereas the time overhead is
highly acceptable in most cases. (In about 550 of the 653 invariants,
computation required less than 150 s.)

VI. CONCLUSION

This paper has addressed two main issues. It has described opti-
mized techniques to speed up the computation of inductive invariants
by means of efficient data structures and manipulation algorithms
based on equivalence classes. It has then shown how to effectively in-
tegrate inductive invariants within state-of-the-art noninductive model-
checking procedures. Experimental data show very promising results,
improving the results obtained during the 2007 Model Checking
Competition.
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Access-Pattern-Aware On-Chip Memory
Allocation for SIMD Processors

Hoseok Chang and Wonyong Sung

Abstract—The number of cycles for each external memory access in
Single Instruction Multiple Data (SIMD) processors is heavily affected by
the access pattern, such as aligned, unaligned, or stride. We developed a
high-performance dynamic on-chip memory-allocation method for SIMD
processors by considering the memory access pattern as well as the access
frequency. The access pattern and the access count for an array of a loop
are determined by both code analysis and profiling, which are performed
on a developed compiler framework. This framework not only conducts
dynamic on-chip memory allocation but also generates optimized codes for
a target processor. The proposed allocation method has been tested with
several multimedia benchmarks including motion estimation, 2-D discrete
cosine transform, and MPEG2 encoder programs.

Index Terms—Code generation, dynamic memory allocation, inter-
leaved memory, on-chip memory allocation, Single Instruction Multiple
Data (SIMD) processor.

I. INTRODUCTION

Single Instruction Multiple Data (SIMD) processors are very ef-
ficient for arithmetic intensive applications; however, they are very
susceptible to the performance bottleneck of memory systems [1], [2].
The data access pattern of SIMD processors is usually categorized as
aligned, unaligned, and stride accesses; among them, the latter two
demand more clock cycles in each memory access [3], [4]. Because
of this, most SIMD processors equip an interleaved or a multiport
memory unit not only to access multiple data at a time but also to align
them efficiently [5], [6]. The interleaved memory unit is employed for
this study because this structure is more scalable and economic when
compared to the multiport-memory-based one.
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