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Improving the efficiency of passivity compensation schemes
via adaptive sampling

S. Grivet-Talocia

Dip. Elettronica, Politecnico di Torino, C. Duca degli Abruzzi 24, 10129 Torino, Italy
Ph. +39 011 5644104, Fax +39 011 5644099 (e-mail grivet@polito. it)

Abstract: A new algorithm for the enforcement of passivity for large lumped macromodels is presented. An accuracy-controlled
adaptive frequency sampling combined with an iterative multishift Amoldi scheme leads to a fast computation of the imaginary
Hamiltonian eigenvalues, which are perturbed until passivity is reached. Up to two orders of magnitude speedup factors are achieved
with respect to previous formulations.

1 Preliminaries and motivations
Macromodeling of interconnect structures is a common practice for the assessment of Signal Integrity (SI) issues in early stages

of the design of high-speed communication and information systems. Macromodels are often derived from tabulated responses
coming from direct measurement or full-wave simulations. Excellent fitting algorithms [1] are available for this task. However,
when passivity is not explicitly enforced during this process, possible difficulties may arise, since non-passive models may lead to
unstable transient simulations due to their ability to generate more energy than they are fed with. This is indeed a serious drawback
that in some cases makes the macromodels practically useless. Consequently, there is a strong motivation underlying several research
efforts towards efficient schemes for the enforcement of the macromodel passivity (see, e.g., [2, 3, 4]).

Here we concentrate on a class of methods based on the iterative perturbation of Hamiltonian eigenvalues. In fact, there is still
significant potential for improving the efficiency of these schemes when the number of intemal states, or equivalently, the number
of poles of the macromodel is large. In such cases, all schemes suffer from an excessive computational cost that significantly
reduces their applicability. In this work, we show that an accuracy-controlled adaptive frequency sampling process, combined with a
customized scheme for the determination of few Hamiltonian eigenvalues restricted to small frequency intervals, may result in very
significant speedup factors with respect to standard implementations. In some cases speedup factors up to two orders of magnitude
have been observed without affecting the quality of the results.

We consider linear macromodels having N poles and P ports, defined by a real, minimal, and strictly stable state-space realiza-
tion

H(s)=D+C(sI-A)-'B. (1)
Only the scattering representation will be considered for H(s), but all the results in this work will be applicable with obvious
modifications to other representations, e.g. impedance or admittance [4]. In the scattering case, H(s) is passive when all singular
values of H(jw) are uniformly bounded by one at any frequency

cri 1, Vktcoi (H(jw)), Vw. (2)

We will assume passivity at s = oo (i.e., the singular values of D are strictly less than one), since this condition can be easily
enforced during the fitting stage. We target our analysis to macromodels characterized by sparse state-space matrices, as discussed
in [5, 6]. The basic condition underlying all developments requires that (jwI- A) can be inverted at a small computational cost.
Therefore, we will assume A to be block-diagonal, with blocks of size 1 for the synthesis of real poles and of size 2 for complex pole
pairs. Note that this choice is always possible in the construction of the state-space realization and leads to a O(N) computational
cost for the evaluation of the transfer matrix (1) at a given frequency.

The well-known theory of Hamiltonian matrices identifies the frequencies Wk at which one of the singular values vi reaches the
threshold -y 1 with the purely imaginary eigenvalues pk = jwk of the Hamiltonian matrix

M A - B(DTD - I)-DTC -B(DTD - I)-BT
M=g CT(DDT _ I)-1C -AT + CTD(DTD - I)-1BT)

If some imaginary eigenvalues are found, the macromodel is not passive and compensation must be performed. To this end, an
iterative perturbation scheme can be used to displace these eigenvalues from the imaginary axis and to achieve passivity. No details
about the main perturbation algorithm will be provided here, since they are available in [4]. We recall that the main numerical tools
required by this scheme are eigenvalue determinations ofM and least squares solutions of small linear systems. Unfortunately, the
need of an eigensolution for the Hamiltonian matrix becomes a weak point when the dynamic order N is large, since the associated
cost scales as o(N3). As a consequence, when a standard full eigensolver is employed, the standard Hamiltonian-based scheme
of [4] can only be applied to moderate-size macromodels with a reasonable computational cost. We remark that the same scaling law
applies to the computational cost per iteration of state-of-the art convex optimization approaches [3]. Here we are trying to reduce
this cost.
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Figure 1: Use of multiple shifts along the imaginary axis for the determination of few eigenvalues of the Hamiltonian matrix close
to the imaginary axis (crosses), neglecting the other part of the eigenspectrum (squares). Circles indicate the convergence regions
for the restarted Amoldi process at each shift. The entire bandwidth is processed in left panel, thus requiring a possibly large number
of shifts. Right panel shows that a significant reduction in the number of shifts may be achieved by skipping some carefully selected
frequency intervals (thick lines).

Some progress in speeding up the algorithm has been documented in [5, 6], where a dedicated eigensolver for the selective de-
termination of the imaginary eigenvalues of Hamiltonian matrices admitting sparse decompositions was presented. This eigensolver
is based on a multishift restarted Arnoldi process [7], similar to the Complex Frequency Hopping (CFH) scheme [8]. A bisection
process is performed on the full bandwidth encompassing all imaginary eigenvalues (if present), and multiple shifts are placed along
the imaginary axis. A dedicated Amoldi process aimed at the determination of few closest eigenvalues to each shift is run, and
the results are collected to gather the full set of imaginary eigenvalues. A schematic illustration is provided in the left panel of
Fig. 1. The advantage of this scheme in terms of required operations is significant, since the computational cost scales with the
number of states only linearly, as O(cN). Unfortunately, the constant c may be very large, since it is roughly proportional to the
number of shifts and to the squared size of the Krylov subspace being used at each shift, the main bottleneck being the unavoidable
orthogonalization of the Krylov vectors.

In this work, we show that an adaptive sampling process can be applied to identify some strictly passive frequency bands, where
no imaginary eigenvalues can be located, by checking (2). Although it is widely recognized that this procedure may be cumbersome
and computationally expensive, this is not the case when a fast inversion of (jwI - A) is possible and when N > P. It is obvious
that this identification is only approximate, since only a finite number of frequency samples are tested. Indeed, we will use this
frequency sweep test only as a preliminary step, aimed at the exclusion of a set of certainly passive frequency bands from the more
accurate but expensive check based on the imaginary Hamiltonian eigenvalues. The multishift eigensolver, applied to these reduced-
size frequency bands, will only need a reduced number of shifts with respect to its full-bandwidth application, as depicted in the
right panel of Fig. 1. Consequently, the computational cost will be significantly reduced, since no effort will be devoted to search
for eigenvalues where they cannot be located.

2 Adaptive sampling and imaginary Hamiltonian eigenvalues determination
We highlight here the procedure aimed at the exclusion of certainly passive frequency bands from the imaginary eigenvalue

search. As a first step, we estimate a frequency Wmax providing an upper bound for all imaginary eigenvalues jwk of the Hamiltonian
matrix. The existence of this upper frequency is guaranteed by the asymptotic passivity of the macromodel. This upper frequency is
quite easy to estimate, being provided by the eigenvalue of maximum magnitude of the Hamiltonian matrix M,

Wk . Wmax - IIImaxl - argmaxIkI. (4)

The evaluation of Ij ma,c is a standard problem in numerical analysis, since the sequence {X, Mx, M2,X.... } with proper normal-
ization converges to the associated eigenvector [7].

Next step is the generation of a set of frequency samples providing a rough representation of the transfer matrix. This set can
be determined by the distribution of the macromodel poles pn, = a, + joBnX since each pole contributes to the frequency variations
mostly in a bandwidth centered at /3,n with size approximately Ij,,1. Here we consider a total number of 2R + 1 frequency samples
for each pole (only the poles with nonnegative imaginary part are considered), providing uniform phase sampling

r7r
Wn,r = 13n + lntan2(R+) r= -R, ..,R. (5)

We used R = 3 in all numerical tests of this work, which proved to be sufficient. The samples generated for each pole are
accumulated and sorted. Then, only the frequencies enclosed in [0, Wmax] are retained, including the boundary samples. A last scan
is performed to remove those samples that are closer than a prescribed threshold tAw, which is the initial frequency resolution. In
this work we used Aw = wm./ION.
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The above procedure leads to a set of frequency samples {Wm m 0, ... M} with wo = 0 and wM Wmax. At each of these
samples we compute the Hermitian matrix Em- HH (Jim)H(jwm) and the associated eigenvalues Am = diag{Ai,m)} and
(orthonormal) eigenvectors Vm. The eigenvectors at sample m + 1 will be some perturbation of those at sample m,

Vm+i -VmqIfmm+lPm,m+l + 5Vm,m+l , (6)

where "'m,m+l = diag{ei'i } takes into account arbitrary phase terms (depending on the eigensolver) and Pm,m+l is a permuta-
tion matrix. An estimate of this permrutation matrix is provided by

Pm,m+l IZ(IPm,m+l |)X with Pm,m+l VmVm+± =I'm,m±iPm,m±i + Vm 6Vm,m+i, (7)

where the operator I(.) rounds towards the nearest integer its matrix argument and the absolute value is taken componentwise to get
rid of the phase terms. We attempt reordering of the eigenvectors via inverse permutation by computing

Jm,m+l = Pm,m+lPm,m+l - Pm,m+l±mm+lPm,m+l + (VmPm,m+l)HVmm±i. (8)

If the estimate Pm,m+l is correct, matrix Jm,m+l is a small perturbation of a phase-shifted identity matrix. This condition is
verified by checking whether

miax {|(|Jm,m+1 J-I)Jij }< 6 (9)

holds for a sufficiently small threshold E (the absolute values always being taken componentwise). We use in this work E = 0.2. If
this is not the case, either the estimated Pm,m+l is wrong, or the eigenvectors Vm+1 differ significantly from Vm. The interval
(Wim, Wm+i) is therefore flagged as inaccurate due to excessively coarse sampling and it will be refined at the next iteration. Iterative
refinement is achieved by inserting an additional frequency sample at the midpoint of each flagged interval, and by repeating the
above checks only on the newly generated intervals. The above procedure is very simple and straightforward, yet it allows to track
the frequency dependence of individual eigenvectors and eigenvalues \i, even if they cross each other between any pair of frequency
samples.

Once eigenvector (hence eigenvalue) tracking between any two adjacent samples is achieved, we compute for each eigenvalue
and for each sample a worst-case prediction error

Am+, = max{ (A'±i) i-(Am+,)ii)} i with A'+1 VH Em+±Vm. (10)

The interval (wm, wm+±) is flagged as passive, with all eigenvalues Ai less than the threshold ty 1, when

-max{Ai(jWM+)} > O/3m+l, (11)

where : is a suitable safety factor (we used /3 5). It is important to note that condition (11) parameterizes how close can an
eigenvalue \i (jwnm+±) is to the threshold in terms of its maximum prediction error /m+,. When condition (11) is not satisfied, i.e.,
when some eigenvalue is too close or larger than the threshold, no conclusions can be drawn on the actual passivity or non-passivity
within the corresponding interval. Collecting all these intervals we get the following decomposition

Q Q

[0, Wmax] Qpassive U Qsuspect QPassive _J [Wq,°,Wq,i] QsusP Li [w',o,w,i1 (12)
q=1 q=1

where Qpassive cannot include any imaginary eigenvalues .jwk of M, which (if present) are necessarily located in QsusPect. The
same multishift bisection process already presented in [5, 6] is therefore applied to each of the Q' subintervals [w',O, W,1] (see
Fig. 1) to identify the complete set of imaginary Hamiltonian eigenvalues. As a result, due to the reduced span of each investigated
interval, the number of shifts is very small compared to a full scan of [0, wax], and the computational cost for the determination of
all imaginary eigenvalues is drastically reduced. Once these are known, the same perturbation scheme of [4] is applied to displace
them from the imaginary axis and to enforce passivity.

3 Numerical results
Table 1 shows numerical results for six different macromodels of various size. All models were obtained by various implementa-

tions of the well-known Vector Fitting algorithm [1], applied to frequency-dependent scattering matrices. In particular, cases I and II
are high-speed packaging structures (courtesy of Sigrity, Inc.). These two cases were already thoroughly analyzed in [5]. Case III is
also a model of a 6-port interconnected system including two power/ground conductors and two signal conductors. Cases IV and V
are two macromodels of a 20-port via field under an LGA connector (courtesy of IBM). These two models differ only for the number
of poles that were used in the rational approximation. Case VI represents a 3 x 3 section of a high-speed card-board connector over
a bandwidth of 20 GHz (courtesy of IBM).

Results from the computation of the imaginary Hamiltonian eigenvalues are reported in columns 3-6 of Table 1. The column
labeled with "Full" reports the CPU time required by the multishift process sweep over the full bandwidth. This is the algorithm that
was documented in [5, 6]. The column labeled with "Adaptive" reports the CPU time required by the new proposed algorithm. The
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Table 1: CPU time required by the computation of the imaginary Hamiltonian eigenvalues (columns 3-6) and for the passivity
compensation (columns 7-11) for various test cases. See text for details. All computations were performed with a Pentium IV-based
PC.

Case VI, magnitude Case VI, phase (rad)
0.25 4

~~~~~~~~~nonpassive s
4,1 ---passive 2
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0.1

0.05- S3,1N
C,~~~~~~~~~~~~~~~3
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Figure 2: Comparison of Case VI macromodels before and after passivity compensation. Some significant scattering responses
before and after passivity compensation are reported in both magnitude and phase.

speedup factor is also reported. We remark that, due to the stringent and conservative conditions on the adaptive sampling process,
the same imaginary eigenvalues were detected by the two algorithms for all cases with a maximum relative deviation of 2.2 x 10-14.

Results from the application of the complete passivity enforcement scheme are presented in the last block of columns. Three
implementations are compared: the standard scheme based on a full eigensolver, first documented in [4], in column (a); the scheme
based on the multishift iterations applied to the entire bandwidth, first documented in [5, 6], in column labeled (b); and the new
scheme based on mixed adaptive sampling/multishift application, in column labeled (c). The speedup factors of the new algorithm
with respect to the other two implementations are also reported in the last two columns. These results confirm that the proposed
scheme leads to a quite efficient passivity compensation. The compensation is achieved in few minutes for all cases, thus showing
significant potential for its automated application to complex multiport interconnect models characterized by a large dynamic order.
Figure 2 reports a few representative scattering responses of the passive model to the corresponding ones of the non-passive model
before applying the compensation scheme for case VI. The deviation between passive and non-passive models is hardly visible. This
confirms that the passivity compensation is performed without compromising the accuracy, and that no overtreatment occurs.
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Model specification Eigenvalue computation Passivity compensation
Model Poles N Ports P Full Adaptive Speedup (a) (b) (c) (c) vs (a) (c) vs (b)
Case I 820 10 48 sec 3.7 sec 13X 119 min 9.1 min 67 sec 106X 8.1X
Case II 1488 12 26 sec 17 sec 1.5X 21 hrs 15 min 6.5 min 194X 2.3X
Case III 450 6 30 sec 8.1 sec 3.7X 16 min 6.6 min 1.4 min liX 4.7X
Case IV 600 20 46 sec 18 sec 2.5X 36 min 14 min 4.6 min 7.8X 3.OX
Case V 1000 20 160 sec 26 sec 6X 77 min 35 min 5.3 min 15X 6.6X
Case VI 1368 18 420 sec 41 sec lox 96 min 58 min 4.5 min 21X 13X




