
25 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Enabling Flexible Packet Filtering Through Dynamic Code Generation / Morandi, Olivier; Risso, FULVIO GIOVANNI
OTTAVIO; Baldi, Mario; Baldini, A.. - (2008), pp. 5849-5856. (Intervento presentato al convegno IEEE International
Conference on Communications, 2008. ICC '08. tenutosi a Beijing (China) nel 19-23 May 2008)
[10.1109/ICC.2008.1094].

Original

Enabling Flexible Packet Filtering Through Dynamic Code Generation

Publisher:

Published
DOI:10.1109/ICC.2008.1094

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1667111 since:

Enabling Flexible Packet Filtering Through Dynamic
Code Generation

O. Morandi, F. Risso, M. Baldi
Dipartimento di Automatica e Informatica

Politecnico di Torino
Torino, Italy

A. Baldini
Cisco Systems

San Jose, CA, USA

Abstract— Despite its efficiency, the general approach of
hardcoding protocol format descriptions in packet processing
applications suffers from many limitations. Among the others,
the lack of flexibility when needing to extend the software for
supporting new protocols, and the proliferation of modules with
similar functionality between different applications, resulting in
decreased maintainability. The NetPDL language was defined for
overcoming such limitations, allowing decoupling applications
from the knowledge of the format of protocol headers. The main
criticism to NetPDL relates to its supposed performance
penalties; this paper demonstrates that this language can be
effectively used for the dynamic generation of optimized, i.e.
efficient and fast, packet-processing code, and presents the
architecture of a compiler implemented for such purpose.

I. INTRODUCTION
Packet processing applications such as routers, firewalls

and IDSs heavily rely on some routines that locate or get the
content of some specific fields in network packets,
Traditionally, these modules follow the traditional approach of
hardcoding the format of protocol headers in the software,
which is no longer a viable solution because of non-negligible
limitations in terms of flexibility and maintainability.
Developers must have a deep knowledge of protocol header
formats and adding support for new protocols implies
modifying the application, debugging and testing it again.
Besides, different applications that rely on similar protocol
decoding functionalities are usually based on custom code,
which results in a multiplication of the amount of software to
be written and maintained, with a corresponding increase in the
incidence of bugs and security flaws.

The Network Protocol Description Language (NetPDL) has
been defined for overcoming such limitations and aims at
describing the format of network protocol headers and
encapsulation rules between different protocols. Using
NetPDL, a packet processing application does not need any
direct knowledge on how to locate header fields inside a packet
buffer, since such information is provided by an external
protocol description database. In [2] the authors show how
NetPDL can be profitably used for implementing a packet-
decoder, i.e. an engine for parsing the content of network
packets and for extracting the actual values of each field,
through a step-by-step interpretation of an external protocol
description database. Such module is now part of the NetBee
library [3] and it is used for visualizing packet-data in the
Analyzer [4] network sniffer.

Although these first experiments prove the feasibility and
the potential of NetPDL-based applications, the measured
performances are not compatible with the requirements of high
speed data-plane applications, so the main criticisms to
NetPDL are still focused on its supposed performance penalties
with respect to solutions based on hardcoded protocol
descriptions. We object that performances are not related to the
language itself, but to the tools using it. In fact, in order to take
full advantage of a solution based on NetPDL, protocol
descriptions should be translated to a native language through a
compiler, thus eliminating the overheads caused by
interpretation and enabling the deployment of any suitable
optimization on the generated code.

This paper presents the architecture of a compiler for the
translation of NetPDL-based packet filtering rules into binary
code for the Network Virtual Machine (NetVM) [5] [6]
demonstrating that NetPDL protocol descriptions can be
effectively used for driving the dynamic generation of
specialized packet processing programs. In our solution, the
code generation process is decoupled from the knowledge of
the format of protocol headers, which resides in an external
NetPDL database. In particular, NetPDL protocol descriptions
are translated into programs that implement high level filtering
rules expressed in the Network Packet Filtering Language
(NetPFL).

 This work focuses on the implementation of a compiler for
packet filters; hence it does not intend to propose a new packet
filtering model in competition with other well known solutions
such as the BPF [7], or the more recent FFPF [8]. Indeed, we
argue that packet filtering functionalities provide the basic
blocks for building complete protocol-agnostic applications
because they can be easily extended in order to support more
complex operations, like field extraction and more.

This paper is structured as follows. Section II provides an
overview on the basic building blocks that represents the
foundation of this work. An algorithm for the dynamic
generation of packet filtering programs from NetPDL protocol
descriptions is presented in Section III, while Section IV
discusses its implementation in a compiler. The performances
of the generated code are assessed in Section V, and
conclusions are drawn in Section VI.

II. RELATED TECHNOLOGIES: NETPDL, NETPFL AND
NETVM

The compiler presented in this paper fits into a more
complex architecture (shown in Figure 1), in which the most
important pieces are the NetPFL filtering language, the
NetPDL language, and the NetVM virtual machine. The
NetPFL represents the language used to define packet filters,
while the NetPDL database contains the descriptions of the
supported protocols. Our compiler takes the packet filter and,
according to the protocol format and encapsulation rules
generates a piece of assembly code that is executed by the
NetVM virtual machine, which resides on the “data path”. For
the sake of precision, in performance-sensitive environments
the NetVM assembly is further translated into a native
assembly in order to create a program targeted to the real
hardware platform (e.g., a network processor). However, this is
outside the scope of this paper. In the rest of this section we
give an overview on these building blocks, while the following
sections will focus on the compiler architecture, and on the
deployed code generation techniques.

NetPDL

Protocol definitions
database

NetPFL filtering language:

“ethernet.type == 0x0800”

NetVM

Packet Processing
Virtual Machine

High-level
Compiler

Packets

Network

User app

NetVM
Assembly

Application-level API: NetBee

Figure 1. Complete view of the proposed packet processing architecture.

A. NetPDL
The NetPDL language (the complete specification is

available in [1]) enables the description of how protocol
headers are laid out and chained together inside network
packets. Since it is based on XML, the elements of the
language are identified by specific tags, each one characterized
by several attributes and organized in hierarchical structures.

Describing a protocol in NetPDL means enclosing in a
section identified by the <protocol> tag the list and the
binary format of the fields that build up a header, as well as the
encapsulation relationships that can be present between
different protocols. Figure 2 shows a sample NetPDL
specification for the Ethernet protocol header. In the
<format> section we find the description of the binary layout
of the header as a list of <field> elements. The
<encapsulation> section, on its side, identifies the
conditions that need to be met for other protocols to be
encapsulated into the one being described. For instance, the
<nextproto> element, acts as a pointer to the next protocol
header.

NetPDL allows the description of complex headers through
the definition of several kinds of header fields (e.g., fixed and
variable size fields, bitfields, padding and more) and through

the use of structured control flow constructs, such as if-then-
else, switch-case, and loop. Conditional elements can appear
also in the <encapsulation> section for describing
complex encapsulation rules.

<protocol name="ethernet" longname="Ethernet 802.3">
<format>

<fields>
<field type="fixed" name="dst" size="6"/>
<field type="fixed" name="src" size="6"/>
<field type="fixed" name="type" size="2"/>

</fields>
</format>
<encapsulation>

<switch expr="buf2int(type)">
<case value="0x800"> <nextproto proto="#ip"/> </case>
<case value="0x86DD"><nextproto proto="#ipv6"/></case>
</switch>

</encapsulation>
</protocol>

Figure 2. NetPDL description of the Ethernet protocol header.

The language specification also includes the definition of
two fictitious protocols that are named startproto and
defaultproto with the purpose to provide respectively the
entry and the exit points to the protocol encapsulation.

B. Packet Filtering and Fields Extraction: NetPFL
Even though the NetPDL provides features that go beyond

those of a completely declarative language, its only purpose is
the description of the format of network protocol headers and it
provides no means for defining actions to be executed when
specific conditions are satisfied. A simple classification
language called Network Packet Filtering Language (NetPFL)
has been defined to provide such features.

NetPFL is based on a filter-action model to express packet
filtering conditions and packet handling statements, such as
accepting a packet or extracting the actual values of a set of
fields. Filters can be based on (i) protocols (i.e. a filter is
satisfied if the packet contains the specified protocol header),
and (ii) field values (i.e. a filter can be specified as an
expression involving the value of one or more header fields).
Basic predicates can be composed with the Boolean operators
AND, OR, and NOT in order to express complex filters. Figure
3 shows two sample NetPFL rules: the first represents a
filtering condition on the ip.src field, while the second is a
field extraction statement for returning the values of the
ip.src and ip.dst fields contained in each ip packet.

ip.src == 10.0.0.1 returnpacket
ip extractfields(ip.src, ip.dst)

Figure 3. NetPFL expression examples.

NetPFL is built on top of NetPDL as its main tokens (i.e.
protocol names and header fields) are not specified explicitly,
but are defined in a NetPDL database. In other words, the filter
expressed in Figure 3 makes sense only if the NetPDL
description contains the definition of a protocol named “ip”
whose header contains a field named “src”. This
characteristic makes our compiler definitively more complex
because it must be able to work with changing tokens without
being recompiled.

C. NetVM
Our target for dynamic code generation is represented by

the Network Virtual machine (NetVM) [6], an abstract packet-
handling engine that allows the portability of network
processing applications across heterogeneous architectures.

In NetVM a packet-processing program is expressed as a
set of modules called Network Processing Elements (NetPEs),
which represent virtual processors that execute a mid-level
assembly language called Networking Intermediate Language
(NetIL). The interconnections between different modules
determine the behavior of the entire application. The
elementary execution engine, the NetPE, is a stack-based
processor (hence the NetIL is a stack-based language) that is
made up of a set of private registers (e.g. stack pointer, etc.)
and a hierarchy of memories, such as a local memory for
storing state information that is local to a processing engine,
and an exchange memory for storing the packet buffer and
additional metadata.

As for Java applications, the execution of a NetVM
program on real hardware relies on the existence of an
implementation of the virtual machine, which can be an
interpreter or a compiler for the translation of NetIL code to
native machine code. Figure 4 shows an example on how a
simple packet-forwarding element can be implemented as a
NetVM application.

NetPE 1
(field extraction)

NetPE 2
(forwarding)

Forwarding
Table

Extract ip.dst field
Perform longest prefix
match lookup into the

routing table

NetVM

Incoming
packets

Processed
Packets

Figure 4. NetVM Based Forwarding Element.

III. GENERATING PACKET PROCESSING CODE FROM
NETPDL

In our compiler, we consider a packet filter as a program
composed by two main sections: (i) a packet demultiplexing
section, where the sequence of the headers carried by each
packet is analyzed looking for a specific protocol, and (ii) a
section where some conditions on one or more fields are
evaluated and the corresponding action is triggered. In other
words, the packet filter looks for the first occurrence of the
specified header inside the packet and then checks some
conditions on one or more of its fields, as shown in Figure 5.
In our discussion we will focus mainly on packet filtering,
because field extraction programs follow a scheme that is very
similar to the one described, except that field values are loaded
from the packet buffer and used by other modules instead of
being evaluated by filtering conditions.

eth ip tcp ...eth ip tcp ...

eth

arp ip

tcp
udp

icmp

(a) Packet Demultiplexing (b) Check on protocol fields

tcp.dport == 80 returnpacket

Packet contains TCP

no yes

return packetdrop packet

dport == 80?

Incoming packet

NetPFL Rule

Figure 5. Filtering program are the composition of (a) a packet demultiplexing

section and (b) a section for checking conditions on protocol fields.

A. The Protocol Encapsulation Graph
Considering a NetPDL database, encapsulation

relationships that exist between protocols can be used to
identify a directed graph G(V,A), where each node V represents
a protocol in the database, and an edge e(x, y) is directed from
the node x to the node y, if the protocol y can be encapsulated
into the protocol x. We call such a graph a Protocol
Encapsulation Graph, or encapsulation graph.

Figure 6. Protocol Encapsulation Graph.

The encapsulation graph exposes the layered nature of
network protocols and has some similarities with the concept
of Protocol Graph, i.e. a directed acyclic graph employed for
describing the use relations existing between the different
components of a multi-protocol communications system [7].
However the encapsulation graph allows paths between nodes
to be cyclic, making evident the cases of protocols that can be
tunneled, like IPv4 encapsulated in IPv4, IPv6 in IPv4 and
vice-versa, or cases like an ICMP message encapsulated in
IPv4, which carries a further IPv4 header (belonging to the
packet that generated the message), and more.

Figure 6 shows how complex an encapsulation graph can
be. In particular, it shows the encapsulation graph

corresponding to a subset of the current NetPDL database,
containing only some protocols up to the transport layer.

B. Packet Demultiplexing
In our model, the first section of a generic packet filter

needs to parse the sequence of headers, while looking for a
specific protocol. Since the encapsulation graph represents the
union of all the demultiplexing paths that lead to every protocol
defined in a NetPDL database, we can leverage such
information by considering only the set of paths that lead to the
protocol we are looking for, i.e. a sub-graph of the
encapsulation graph. Since the characteristics of the
encapsulation graph ensure that a single source node always
exists (i.e. the node corresponding to the startproto
protocol), a reverse postorder1 visit starting from a generic
node N will identify a subgraph that is the union of all the paths
leaving from the startproto node, leading to N itself.

Procedure GenFilterCode(Node n, Expr e)

Begin
TargetProtocolNode = n
For each p in EncapsulationGraph
p.visited = false

RPO_Visit(n)
If (e)
GenCodeForSection(TargetProtocolNode.Format)
GenCodeForExpr(e)
If (!TargetProtocolNode.successors.empty())

GenCodeForSection(TargetProtocolNode.Encapsulation)
End

Procedure RPO_Visit(Node n)
Begin
If (n.visited)
Return

n.visited = true
For each p in n.predecessors
RPO_Visit(p)

GenCode(n)
End

Procedure GenCode(Node n)
Begin
If (n ≠ TargetProtocolNode)
GenCodeForSection(n.Format)
GenCodeForSection(n.Encapsulation)

End
Figure 7. Code Generation Algorithm.

Given such considerations, our strategy for generating a
packet filtering program through NetPDL is presented in the
algorithm of Figure 7. The code generation process is driven by
the GenFilterCode() procedure that accepts as arguments
the node corresponding to the protocol on which the source
filter is set (e.g. “ip”), and an optional expression evaluating
some of its fields (e.g. “dst == 10.0.0.1”). Briefly, the
algorithm performs a reverse postorder visit on the
encapsulation graph starting from the target node (i.e. the node
relative to the protocol to be searched). Then, it generates the
code related to the format (which is required in order to be able
to locate every field of the selected protocol) and the
encapsulation (which is required to be able to link the current

1 A reverse postorder traversal of a directed graph is a dept-first search

visit, in which every node is visited after all its predecessors. For instance, if
the selected protocol is “llc” the reverse postorder visit of the graph in Figure
6 will be: startproto, ethernet, vlan, llc.

protocol to its successor nodes) sections, for all the protocols
encountered during the visit. In particular, the encapsulation
section can be modelled as a multi-target branch instruction,
i.e. a generic switch-case construct, which evaluates the content
of some header fields, and where each branch leads to the code
generated for the protocols corresponding to the successor
nodes of the one being visited, while a special branch is
directed to a “filter-false” exit label for indicating the absence
of a match. Some exceptions arise for the target protocol (i.e.,
the protocol we want to locate), in which the code has to be
generated in a slightly different manner. For example, if the
source filtering expression evaluates some fields of the target
protocol header, the GenCodeForSection() procedure is
invoked in order to generate a portion of code for locating
them, while the GenCodeForExpr() generates the final
check. Furthermore, if the target protocol node has any
successors (the encapsulation graph can contain loop) the
GenCodeForSection() procedure translates its
encapsulation section, giving the opportunity to find a match
in subsequent tunneled instances of the same protocol header,
even if the current header does not match the filter. For
instance, in case of an IPv4 in IPv4 tunneling the external IP
header may not match the filter, while the internal one can.

(b)(a)

Figure 8. (a) Demultiplexing Paths and (b) Control Flow Graph for the filter
“ip.dst == 10.0.0.1 returnpacket”

Figure 8 shows the results of the two phases of the code
generation process for the NetPFL rule defined in the example:
(a) shows the portion of the encapsulation graph representing
all the demultiplexing paths that lead to IP, while (b) shows the
representation of the generated code as a control flow graph.

The sample filter is matched when the first IP header
containing a destination address field equal to the 10.0.0.1 is
found. If the first IP header does not match the filtering
condition, the program continues to parse the packet by
following the demultiplexing paths of the subgraph until it

finds a match, or it reaches a terminal node (e.g., the end of the
packet).

C. Locating header fields
In NetPDL, every field declaration not only identifies a

specific sequence of bytes into the packet buffer, but implicitly
tells where the next field will start. In particular, the offset of a
header field defined in a NetPDL database is not specified
explicitly, but it can be implicitly derived by adding the offset
and the size of its preceding field, as in (1).

Offs(Fieldi) = Offs(Fieldi-1) + Size(Fieldi-1) (1)

This rule can be used to map the protocol format into a

sequence of instructions for identifying the actual offset and
size of every field. Unfortunately, most protocols include fields
whose size is known only at run-time, which prevents this
computation to be performed at compile-time. Besides, since
different packets can take different demultiplexing paths, even
the starting offset of a specific header cannot be known in
advance. Given such considerations, the cleanest way for
generating a portion of code for locating header fields inside
packets is to translate the entire <format> section of a
NetPDL description to a sequence of instructions that
implement the scheme described in (1), and to delegate the task
of removing useless and redundant code to a series of
optimization steps. Such choice is based on the fact that the
evaluation of the content of some fields performed in
encapsulation and filtering conditions can be treated like uses
of particular variables (i.e. the fields). Using simple data-flow
analyses, the instructions defining variables that will never be
used can be detected and safely removed. Moreover, the
definitions of fields of fixed size can be subject to the
application of constant propagation techniques. Section IV.B
will provide more details on such topic.

IV. THE COMPILATION PROCESS
We implemented the techniques described in the previous

section in a compiler for the translation of NetPFL rules into
executable code for the NetVM virtual machine, through the
exploitation of the information on the format of network
protocols resident in an external NetPDL database. The
compiler adopts a traditional architecture that includes a front-
end component that translates the source program in a more
manageable intermediate representation (IR), an optimizer, and
a back-end for the generation of the target executable code.

A. Code Generation
In a first phase the compiler parses the NetPDL protocol

database by gathering the names of protocols and fields. At the
same time the encapsulation graph is created for modelling the
encapsulation information defined in the NetPDL description.
Then the source NetPFL rule is parsed, while ensuring that the
filtering expression refers to available protocols and fields. If
the filtering expression is made up of terms related to different
protocols, the parser also tries to group together sub-
expressions that include terms referring to the same protocol.
This ensures that each one of such sub-expressions can be

implemented by (i) a demultiplexing program for searching the
specified protocol and (ii) a portion of code for checking the
values of fields of the header. In such way, a compound filter
(i.e., which refers to different protocols) can be generated
through the algorithm reported in Figure 7 for each sub-
expression referring to the same protocol, and by linking
together all such portions of the program, as shown in Figure 9.
The optimization of composed filters is left to future work.

ip.src == 10.0.0.1 and ip.dst == 192.168.0.1
and

tcp.dport == 80

Portion of the filter searching
for IP and evaluating the

conditions:
src == 10.0.0.1

and
dst == 192.168.0.1

Portion of the filter searching
for IP and evaluating the

conditions:
src == 10.0.0.1

and
dst == 192.168.0.1

Subfilter 1

Subfilter 2

Filter FalseFilter False Filter TrueFilter True

T

T

F
F

Portion of the filter searching
for TCP and evaluating the

condition:
dport == 80

Portion of the filter searching
for TCP and evaluating the

condition:
dport == 80

Figure 9. Composed filter.

During the IR generation phase, all the encapsulation and
filtering conditions referring to fields are translated into checks
on integer values loaded from the packet memory (if the size of
the field is less than or equal to 4 bytes), or into string
comparison operations (for fields greater than 4 bytes).
References to bit-fields are translated into masking operations
on values loaded from the packet buffer. Finally, structured
control flow constructs such as if-then-else, and loops are
lowered to explicit branch operations.

The generated intermediate representation of the resulting
filtering program can then be optimized and finally translated
to the target NetVM executable code.

B. Optimizations
The translation of NetPDL descriptions into sequences of

instructions for locating header fields produces a large amount
of redundant code, which is reduced through a set of
optimization steps. In particular, the definitions of variables
that are never used are identified and safely removed by a dead
store elimination phase, while a constant propagation phase
recognizes the variables that hold a constant value and
substitutes their use with the direct use of the constant. Since
constant propagation can transform expressions evaluating
variables in expressions evaluating only constant values, it is
supported by a constant folding phase for substituting such
sub-expressions with their result computed at compile-time.
Besides, the lowering to explicit branch instructions of
structured control flow constructs produces several sequences
of jump to jump instructions that can be easily individuated and
coalesced by inspecting the control flow graph.

The quality of the generated code could be further
improved by applying more specialized optimizations like
those proposed by Begel et. al. in [11] for eliminating
redundant checks on the same fields and for reducing the
overall depth of the control flow graph of composed filters;

however the implementation of such algorithms was outside
the scope of our current work.

C. Considerations on Safety
Filtering programs produced by our compiler are supposed

to be executed in a safe virtual machine environment, where
unbounded memory accesses are disallowed and backward
pointing branch instructions are strongly limited to the cases
where branching conditions can be evaluated to be constant or
bounded at bytecode-load time, for ensuring that the program
terminates in a finite time. The former point implies that packet
memory bounds checks can be delegated to the NetVM
runtime environment, where accesses outside the limits of the
packet will raise an exception and will make the filter to fail.
The latter point indeed has important implications on the
translation of complex protocol descriptions like the one of
IPv6, which contains an uncontrolled while-do loop for
decoding the extension headers. In our compiler, this problem
is addressed by defining an upper bound to the number of
cycles, which can be specified at compile time. In this way the
IPv6 protocol is supported, although with a limit on the
consecutive extension headers allowed in IPv6 packets.

Similar considerations arise when considering the loops
generated by tunnelled encapsulations (e.g. IP – GRE – IP),
although in this case the solution is more complex because a
preventive analysis of the encapsulation graph should be
performed for determining the protocols involved in cyclic
paths, and a mechanism for limiting the number of such loops
should be put in place into the generated code.

A detailed analysis on safety issues and loop bounding is
reserved to a future work.

V. EVALUATION AND RESULTS
This section assesses the ability of our compiler to generate

NetIL filtering programs from simple NetPFL rules and
compares the results with equivalent filters generated for the
BPF virtual machine by the well-known libpcap/tcpdump
tools and with native filters written in C and compiled with a
general-purpose C compiler. As an example, translating the
NetPFL rule

ip.dst == 10.0.0.1 returnpacket

into executable code for the NetVM virtual machine results
in the optimized filtering program shown in Figure 102. The
corresponding BPF filter generated through the tcpdump tool
is shown in Figure 11. Besides the intrinsic differences
between BPF and NetVM architectures (i.e. the NetVM is
stack-based while the BPF virtual machine is register based),
we can see that two programs are functionally equivalent. Both
check the Ethernet type field against value 0x800, then check
if the IP destination field contains address 10.0.0.1; the packet
is accepted only if both conditions are true. The primary
difference between the two approaches is not immediately
visible, because it relates to the simplicity in adding support for
new protocols (e.g. a new data-link layer protocol). In the case

2 This example uses a limited NetPDL database including only Ethernet

and IP for the sake of clarity.

of the presented compiler it is sufficient to update the XML file
containing NetPDL protocol descriptions, while in the other
case some of the libpcap source files must be modified and
the library must be recompiled.

push 12 ;offset of the ethertype field
upload.16 ;load the ethertype field
push 2048 ;0x800
jcmp.neq DISCARD ;compare and jump to DISCARD if not equal
push 30 ;offset of the ipdst field
upload.32 ;load the ipdst field
push 167772161 ;10.0.0.1
jcmp.neq DISCARD ;compare and jump to DISCARD if not equal

ACCEPT:
pkt.send out1 ;filter true

DISCARD:
ret ;filter false
Figure 10. NetIL code generated from the NetPFL rule “ip.dst ==10.0.0.1

returnpacket”.

(0) ldh [12] ;load the ethertype field
(1) jeq #0x800 jt 2 jf 5 ;if ==0x800 goto 2, else goto 3
(2) ld [30] ;load the ipdst field
(3) jeq #0xa000001 jt 4 jf 5 ;if ==10.0.0.1 goto 4,else goto 5
(4) ret #1514 ;return the frame length
(5) ret #0 ;return false

Figure 11. BPF code for the libpcap filter “ip dst 10.0.0.1”.

In order to evaluate the performances of the filtering
programs produced by our compiler we profiled the execution
of five simple (and common) filters3 generated using both a
reduced NetPDL database and a complete one. While the first
number is used to compare the NetPDL-based technology with
equivalent BPF and natively programmed filters (which
support a limited number of encapsulations), the second set of
test is used to show the flexibility of our approach, and to
demonstrate that the completeness of the NetPDL database
does not affect performance on common network traffic. The
NetPDL database used was the one available online at the time
of writing (February 2008), which includes 122 protocols and
whose size is 993KB; since the generated code depends on the
database, results obtained with a different version may vary.

All the tests were performed on a 3 GHz Intel Pentium 4
machine with Hyper-threading and 4GB of memory. NetVM
and BPF programs were compiled Just in Time into x86
assembly and executed in user space4 . Native filters were
programmed in C language and compiled through the
Microsoft Visual C++ 2005 compiler. Each test was executed
by applying the filtering on a packet created on purpose, in a
way that all the conditions of the filter had to be checked
before returning the result. Measurements were done through
the RDTSC instruction available on Intel CPUs, and special
care has been done in order to prevent problems due to variable
clock speed, hyperthreading and instruction reordering. Results

3 Filter, according to the NetPFL syntax are “ip” (filter1), “ip.src ==

10.1.1.1” (filter2), “tcp” (filter3), “ip.src == 10.1.1.1 and ip.dst == 10.2.2.2
and tcp.sport==20 and tcp.dport == 30” (filter4) and “ip.src == 10.4.4.4 or
ip.src ==10.3.3.3 or ip.src==10.2.2.2 or ip.src == 10.1.1.1” (filter5). WinPcap
syntax is equivalent, although is not reported here for the sake of brevity.

4 BPF programs have been compiled to native code using the Just in Time
compiler provided by the WinPcap library, which is an implementation of the
libpcap library for Microsoft Windows.

are related to average execution time of each filtering program,
excluding all other overheads (e.g. function call, RDTSC cost).

Figure 12 shows the time required to execute the
abovementioned filters by interpreting BPF and NetVM
assembly programs, generated by using both a reduced and a
full NetPDL database. Although this first set of results does not
appear so encouraging (BPF filters outperform NetPDL-based
ones several times) the reason is mainly due to the differences
between the architectures of the BPF and the NetVM. Indeed,
the necessity of emulating the NetVM operand stack implies a
major overhead over the BPF, which is register based.

Filter execution time (interpreted)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Filter 1 Filter 2 Filter 3 Filter 4 Filter 5

Cl
oc

k
tic

ks

NetPDL (reduced database)

NetPDL (complete database)

BPF

Figure 12. Average processing times for five different filters, interpreted.

A more appropriate set of results is shown in Figure 13,
which compares the same filters translated into native assembly.
A first result is that our compiler infrastructure performs better
than the JIT compiler available in WinPcap. The reason is that
our compiler includes several optimization steps, while the JIT
implemented in WinPcap is basically a translator of BPF
instructions into x86 assembly, without optimizations. This
result demonstrates our claim that the NetPDL does not insert
performance penalties and that the results depend only on the
quality of the tools using it NetPDL-based tools.

The second result shown in Figure 13 is that filtering
programs generated from a reduced NetPDL database and
compiled into native x86 code by our framework have
performances that are better than the ones of native filters
programmed in C language compiled using a full-featured
commercial compiler, which provides no flexibility at all.
Notably, this result has been obtained with our NetVM JIT
compiler that implements only a basic set of optimizations,
compared to the more aggressive optimization techniques
implemented in a commercial C compiler. One of the reasons
is that on little-endian architectures, such as the Intel IA32
processors, data larger than one byte that is read from the
packet buffer must be converted from big-endian (the network
byte order) to little-endian (the host byte order of x86
processors). In native filters such operation is performed
through the library functions of the ntoh() family, while the
code generated by the NetVM JIT compiler directly uses the
BSWAP (byte order swap) x86 instruction that is far more
efficient. Our results are usually still better even in case ntoh()

functions are replaced with an ad-hoc macro in native filters
(second column in Figure 13), because the NetVM model
facilitates the implementation of more network-oriented
optimizations in the code, even if the quality of our compiler is
far from reaching the one of other tools such as Microsoft
Visual Studio or GNU GCC.

Filter execution time (x86 assembly)

0

20

40

60

80

100

120

Filter 1 Filter 2 Filter 3 Filter 4 Filter 5

C
lo

ck
 ti

ck
s

Native (with ntoh())
Native (with macro)
NetPDL (reduced database)
NetPDL (complete database)
BPF

Figure 13. Average processing times for five different filters in case of native

assembly.

An unexpected (but very important) result is that, according
to our tests, the pure C language may not be the perfect choice
for writing efficient packet processing code. Although our
example does not have general validity, the C language does
not have the notion of packets, hence any data is a plain buffer.
This requires for example the use of functions that take into
account byte ordering issues (e.g., ntoh()) when accessing to
protocol data; however a general-purpose compiler finds a hard
way to optimize these functions. A special purpose language,
coupled with a dedicated set of tools for code generation, can
solve the same issue much more efficiently, ranging from using
dedicated assembly instructions (e.g. the bswap opcode), to
the use of pre-processed data. Particularly, this technique offers
valuable speed-ups because it is based on the semantic of data;
for example, it is able to translate immediately a user input
(e.g. an IP address) into the “native format” (i.e., network byte
order), and use the new value when checking the content of a
field in the packet without any performance penalties.
However, a more in-depth investigation of these issues is left
for future work.

Since NetPDL supports a wide variety of protocols and
cyclic encapsulations, as Figure 6 shows, the programs
produced by our compiler are way larger than the
corresponding BPF filters. For instance a non-optimized IP
filter generated using the standard NetPDL database counts 292
statements, versus 4 statements of the corresponding BPF
program, as show in Table 1. However, while BPF and native
programs only identify IP packets directly encapsulated within
a lower layer packet, the abovementioned NetPDL-derived
program identifies IP packets encapsulated in several possible
ways (e.g., an IPv4 packet tunnelled within another IPv6
packet). It should be noted that the higher number of
instructions generated by the compiler does not correspond to

the number of instructions effectively executed in the “fast
path” of the code (i.e. the typical number of instructions
executed at runtime on common packet traces), however as
Figure 13 shows, the capability of recognizing complex
encapsulations comes at a cost in terms of performances,
because all the possible cases must be taken into account.

TABLE 1. NUMBER OF STATEMENTS GENERATED BY DIFFERENT COMPILERS.

 Filter1 Filter2 Filter3 Filter4 Filter5
BPF interpreted 4 6 6 17 9

NetIL interpreted
(reduced database) 10 14 23 76 26
NetIL interpreted

(complete db) 292 491 487 1544 497
C-hardcoded
filters, x86 14 29 23 78 41
BPF x86 43 61 59 170 70

NetIL x86
(reduced db) 14 20 25 77 33
NetIL x86

(complete db) 494 834 1348 3557 844

Currently, the NetPFL compiler is not optimized for speed
in code generation. For instance, the libpcap compiler needs
about 120µs to compile the “tcp.dport == 80” filter,
against 87ms of the NetPFL. Although this value is still
reasonable, this result is mostly due to the very different
number of statements generated by the two compilers before
optimizations, which differs of about two orders of magnitude,
as shown in Table 1 (first and third lines). It is worth recalling
that the compilation time usually grows non-linearly with
program size. For completeness, the number of instructions
generated by the several compilers involved in our tests (BPF
interpreted and JIT compiled, native filters with the ntoh()-
equivalent macro, ad NetIL interpreted and JIT compiled with
both the reduced and complete NetPDL database) are reported
in Table 1.

VI. CONCLUSIONS
This paper demonstrates that the NetPDL language does

not insert performance penalties when developing packet-
processing applications. This result enables a novel approach to
the development of such these applications, based on
decoupling the application logic from the knowledge about the
format of network protocols, which resides in an external
NetPDL protocol description database. A compiler for packet
filters has been developed following such approach, which
demonstrates that the dynamic generation of efficient filtering

programs from NetPDL is feasible and can lead to performance
comparable to the one of equivalent C language programs, with
the advantage of adding support for new protocols or new
encapsulation paths without changing the application code.

 The presented solution, although powerful, has the
limitation of supporting protocols only up to the transport
layer. However, NetPDL has recently been extended with
features for application layer protocol classification and
recognition. Hence, future efforts will be directed towards the
integration of such features in the presented compiler and
NetPFL. Besides, the structure of the Protocol Encapsulation
Graph should be investigated in more detail, since we believe
that it can be exploited to optimize the generation of code for
composed filters by merging the sub-graphs relative to each
Boolean predicate of the filtering expression.

REFERENCES
[1] F. Risso, “NetPDL language specification,” February 2007. Available at

http//www.nbee.org/netpdl/.
[2] F. Risso, and M. Baldi, “NetPDL: an extensible XML-based language

for packet header description,” In Elsevier Computer Networks Volume
50, Issue 5 (April 2006), pp. 688-706.

[3] Computer Networks Group (NetGroup) at Politecnico di Torino, “The
NetBee Library,” August 2004. Available at http://www.nbee.org/.

[4] Computer Networks Group (NetGroup) at Politecnico di Torino,
“Analyzer 3.0,” March 2003. Available at http://analyzer.polito.it/.

[5] F. Risso, and M. Baldi, “A framework for rapid development and
portable execution of packet-handling applications,” In Proceedings of
the 5th IEEE International Symposium on Signal Processing and
Information Technology, December 2005, pp. 233-238.

[6] M. Baldi, F. Risso, “Towards Effective Portability of Packet Handling
Applications Across Heterogeneous Hardware Platforms”, In
Proceedings of the 7th Annual International Working Conference on
Active and Programmable Networks, Sophia Antipolis, France,
November 2005.

[7] S. McCanne, and V. Jacobson, “The BSD packet filter: A new
architecture for userlevel packet capture,” In Proceedings of the Winter
1993 USENIX Conference, January 1993, pp. 259-269.

[8] H. Bos, W. de Bruijn, M. Cristea, T. Nguyen, and G. Portokalidis,
“FFPF: Fairly Fast Packet Filters,” In Proceedings of 6th Symposium on
Operating Systems Design and Implementation. OSDI'2004, December
2004, pp. 347-363.

[9] A. Begel, “Applying General Compiler Optimizations to a Packet Filter
Generator”. 1996. Available online at
http://www.microolap.com/downloads/pssdk/literature/begel96applying.
pdf

[10] R. J. Clark, M. H. Ammar, and K. L. Calvert. “Multi-protocol
architectures as a paradigm for achieving inter-operability,” In
Proceedings of IEEE INFOCOM, April 1993, pp. 136-143.

[11] A. Begel, S. McCanne, and S. L. Graham, “BPF+: exploiting global
data-flow optimization in a generalized packet filter architecture,” In
Proceedings of the Conference on Applications, Technologies,
Architectures, and Protocols For Computer Communication,
SIGCOMM '99, September 1999, pp. 123-134.

