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Abstract

Purpose – The aim of this paper is to compare the most common time- and frequency-domain
numerical techniques for the determination of the steady-state solution in the physics-based
simulation of a semiconductor device driven by a time-periodic generator.

Design/methodology/approach – The shooting and harmonic balance (HB) techniques are applied
to the solution of the discretized drift-diffusion device model coupled to the external circuit embedding
the semiconductor device, thus providing a fully nonlinear mixed mode simulation.

Findings – The comparison highlights the strong and weak points of the two approaches, basically
showing that the time-domain solution is more robust with respect to the initial condition, while the HB
solution provides a more rapid convergence once the initial datum is close enough to the solution itself.

Originality/value – The contribution compares two numerical techniques for the determination of
the steady-state solution of nonlinear dynamical systems, popular in the area of RF circuit analysis but
rarely applied to device simulation. In particular, this is the first application of the shooting method to
forced devices.
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Paper type Research paper

1. Introduction
The development of high performance integrated circuits for RF and microwave
systems in both conventional and innovative technologies and the optimization of their
analog figures of merit (such as the noise figure in the receiver stage and the linearity
and intermodulation distortion in the transmitter stage) requires, as a preliminary step,
the physics-based simulation of semiconductor devices operated in linear (as in
low-noise amplifiers), and nonlinear (as in power amplifiers, mixers, oscillators and
frequency multipliers) conditions (Maas, 2005; Gonzalez, 1984). Nonlinear analog
operation in narrowband systems is usually denoted as (quasi)-periodic large-signal
(LS), meaning that the device working point varies with time according to a strictly
periodic or quasi-periodic law.

Within this framework, physics-based modeling in nonlinear operation plays a
fundamental role not only in technology device CAD and optimization, but also in the
development of meaningful and physically sound compact models (Bonani et al., 2003),
mandatory for the design and optimization of complex circuits. Irrespective of the
specific model aim (i.e. power saturation estimate, distortion prediction,
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cyclostationary noise analysis, etc.), the first and basic step to be carried out is the
computation of the steady-state solution, which, in nonlinear operation, has to include
the device model(s) together with the embedding circuit. This is a critical and
time-consuming step, in particular for very large circuits and for a discretized
physics-based model in 2D or 3D, owing to the very large number of equations
involved. Even more difficult is the determination of the working point for oscillators
(autonomous case), where the oscillation period is unknown: specific algorithms have
been developed for this case, like the homotopy methods (Duan and Mayaram, 2006).

The numerical techniques for the determination of the LS working point can be
classified into two main categories: time- and frequency-domain techniques (see
Kundert, 1999 for a recent review). In the first case, besides standard time-integration
which is particularly inefficient whenever time-periodic solutions are sought for,
specialized techniques have been devised; among them, the most widely exploited
probably is the shooting method (Aprille and Trick, 1972; Kundert et al., 1990).
Frequency-domain solutions are usually based on the harmonic balance (HB)
technique, wherein the problem unknowns are the (in general, complex) amplitudes of
the Fourier series representing the time-periodic functions (Kundert et al., 1990). Notice
that the presence of distributed elements in the embedding circuit (e.g. transmission
lines) favours HB with respect to time-domain solutions, since such components are
much more efficiently described in the frequency domain (Kundert et al., 1990).

In this paper, we focus on a comparison between the HB and shooting methods for
the LS (quasi)-periodic solution under forced (non-autonomous) operation of a partial
differential equation (PDE) based physical model. We exploit as the transport model
the well-known drift-diffusion approach, but extension to higher-order models derived
from the Boltzmann transport equation is straightforward. In the area of physics-based
device modeling, LS steady-state analog simulation is comparatively recent, since a
few simulators only, either academic or commercial, include it as a standard option.
Concerning the solution technique, this generally is the HB approach, originally
exploited in Troyanovsky et al. (2000) and then used also in Bonani et al. (2001) as a
basis for the physics-based cyclostationary noise analysis in LS operation. To our best
knowledge, the shooting method has been implemented for physics-based modeling in
Hong et al. (2006) only, with reference to the study of phase noise in oscillators.

2. The physical model
The semiconductor device is described by a physical model linking free carrier
dynamics to the terminal applied voltages (or currents). As already recalled, we use the
drift-diffusion approximation (Bonani et al., 2003), which, for the bipolar case
(including Nt trap levels to model low-frequency dispersion effects and noise), reads:

72f ¼ 2
q

1
p2 n2

XN t

k¼1

nt;k

 !
ð1Þ

›n

›t
¼ 27 · ðnmn7f2 Dn7nÞ2 Un ð2Þ

›p

›t
¼ 7 · ð pmp7fþ Dp7pÞ2 Up ð3Þ
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›nt;k

›t
¼ 2Uk k ¼ 1; . . . ;N t ð4Þ

where f is the electrostatic potential, n and p are the free carrier densities (electrons
and holes, respectively), nt,k is the concentration of electrons filling k-th trap-level, q is
the (positive) electron charge, 72 is the material dielectric permittivity, e is the carrier
mobility and D the carrier diffusivity. U ¼ R 2 G is the net recombination rate of the
energy level considered, R and G are the recombination and generation rates,
respectively.

For LS device simulation, the physical model equations must be solved
self-consistently with the equations of the embedding circuit, thus requiring a fully
mixed-mode simulation (Bonani et al., 2001). After discretization, the spatially
discretized PDE system and the circuit equations can be cast in the form of a
differential algebraic equation system (Bonani et al., 2007):

dqðxÞ

dt
þ fðx; tÞ ¼ 0 ð5Þ

where q and f are nonlinear functions of their arguments, x(t) is the set of unknowns,
and the explicit time dependence in f indicates the external, time-periodic generators
present in the circuit. The size of the system is at least Neq ¼ (3 þ Nt)Nmesh þ 2Nc,
where Nmesh is the number of mesh points for the spatial discretization of the physical
model, and Nc is the number of device external contacts. Of course, if the embedding
circuit is complex the number of circuit equations may grow with respect to the
minimum (i.e. 2Nc), but in most cases they are negligible with respect to (3 þ Nt)Nmesh,
in particular for a 2D or 3D simulation.

A general formulation for the numerical solution of equation (5), both with HB and
with the shooting method can be found in Bonani et al. (2007). For the case of HB, if NH

harmonics are included in the simulation (excluding DC), the system size becomes
(2NH þ 1)Neq (real equations). On the other hand, for the shooting method a
discretization of the fundamental period [0; T ] into Ntime time intervals results into
2(Ntime þ 1) successive solutions of a system of size Neq (Bonani et al., 2007). Of course,
NH and Ntime are not independent, since the sampling theorem requires that to
accurately represent a signal having NH harmonics, the time samples should be at least
2NH þ 1.

3. Case studies
To compare the time- and frequency-domain approaches, we have considered two case
studies, referring to two typical RF or microwave circuits. The first is an almost ideal
downconversion mixer, whose scheme is shown in Figure 1. To keep the embedding
circuit simple, no input matching network was considered, while at the output a simple
LC filter is included. The local oscillator (LO) frequency is 1 GHz, while the input RF is a
tone at 1 GHz plus 1 MHz. The active device is a standard, epitaxial GaAs MESFET with
0.1mm gate length and 100mm gate perifery, simulated with a monopolar model
(including electron velocity saturation effects) and no traps (Nt ¼ 0), and discretized with
a mesh of Nmesh ¼ 1,300 points. A comparison of the time dependence of the device drain
current in the working point set by a LO input tone of 0.4 V (no RF input, VDD ¼ 5V
and VGS ¼ 20.3 V) is shown in Figure 2, comparing the HB and shooting solutions.
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In the first case, NH ¼ 10, while in time domain Ntime ¼ 50. Of course, the two solutions
are in very good agreement, but the simulation time is 25 per cent lower for the shooting
method.

The second example is the class A power amplifier shown in Figure 3, based on a
0.5mm epitaxial GaAs MESFET with 100mm gate periphery. In this case, input and
output matching networks at 18 GHz were included in the mixed mode simulation, to
optimize the circuit efficiency. The device is again described by a monopolar model
without traps, and Nmesh ¼ 900. The bias point is set by VDD ¼ 7 V and
VGG ¼ 21.1 V, while the input tone is 6 V. In frequency domain NH ¼ 10, while in
time domain Ntime ¼ 80: the resulting drain current in the period is shown in Figure 4,
and the simulation time is practically the same in the two cases.

In both examples, to attain a good accuracy in the comparison with HB Ntime had to
be chosen significantly larger than 2NH þ 1, thus suggesting that frequency-domain

Figure 1.
Circuit of the MESFET
mixer case study
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approaches are, at least in these cases, more accurate than the standard shooting
method here implemented. For weakly nonlinear cases, such as the example of the class
A power amplifier, the HB approach is efficient enough, and the simulation times are
comparable to the time-domain approach. This is consistent with the behaviour
observed in circuit simulations, where the trade-off between the two methodologies can
be assessed as follows: the shooting method is in general less demanding in terms of
the sensitivity of the convergence to the initial condition with respect to HB, meaning
that even a poorer initial datum is sufficient to attain a reasonable approximation of the
actual solution. On the other hand, the HB method is more precise in the sense that an
accurate description of the solution itself requires a comparatively reduced number of
harmonics. This seems to suggest that a credible strategy might be to use the
time-domain approach to get a loose approximation of the solution, to be then fed to the
HB as the initial condition to ultimately attain the required accuracy.

Figure 3.
Circuit of the MESFET
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4. Conclusions
In this paper, we have compared the HB and shooting methods for the determination of
the LS working point in the physics-based simulation of semiconductor devices.
The problem is particularly demanding from a computational standpoint, also because
a full mixed mode simulation including the embedding circuit of the device has to be
carried out.

We have implemented for the first time the shooting method for the physical
simulation of devices forced by LS generators, and applied this and the HB technique
to the simulation of two case studies from microwave applications: a down-conversion
mixer and a class A power amplifier driven in strong nonlinearity. The comparison
highlights that the shooting method appears more robust from a numerical standpoint,
at least for strongly nonlinear conditions, while the HB approach yields better accuracy
but is significantly more sensitive to the initial condition. In conclusion, a promising
strategy appears to be as follows: the shooting method with a limited number of time
points is first used to attain a good initial condition for the HB method, which is then
used to get an accurate determination of the working point.
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