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Abstract This paper analyses the influence of internal damping on the dynamic behaviour of
rotating shafts. The problem is faced considering the presence of nonlinearities introduced in the
restoring elastic forces by the alternate compression and extension of the shaft fibres; these forces
show a component that can oppose or drive the shaft whirl motion.

The analytical solutions obtained allow to describe the transient motion of the shaft and to
evaluate the stability limit, whose value slightly differs from the classical one determined with
linear approaches.
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1 Introduction

The term “internal damping” is commonly adopted regarding both the elastic hysteresis of mate-
rials and the shaft fibre shear inside the hub (Yamamoto and Ishida, 2001; Tondl, 1965). When
a rotating shaft undergoes a perturbation, consisting in displacement and velocity variations of a
point belonging to the shaft axis with respect to dynamic equilibrium conditions, the fibres are
alternatively compressed and stretched. This phenomenon occurs every time that the rotor angular
speed ω with respect to its deflected axis line differs from the whirl speed, i.e. the angular velocity
ϑ̇ of the deflection line itself.

The problem has been faced by many influential researchers; it is worth remembering, among
others, Timoshenko (1947) and Den Hartog (1956) who proved the presence of a force normal to
the plane of the deformed shaft, due to the fact that the neutral axis of strain does not coincide
with the neutral line of stress.

The same result was obtained by Kimball (1924, 1925), who gave an explanation different from
the previous ones, thus being able to analyse also the structural damping. Kimball’s experiments
demonstrated the existence of an elastic restoring force that does not lie in the plane of the
deflection curve, but is inclined of an angle 2µ with respect to the plane of bending; however,
the most important result of his researches is the demonstration that the phase of the force is
practically independent from the angular speed.

Hence, the analytical model commonly adopted to represent internal damping (i.e. Kelvin–
Voigt model, see, e.g., Vatta and Vigliani (2003)), gives results that can be considered only partly
adequate; in fact, this model predicts a force normal to the plane of the deflection line and propor-
tional to the velocity of the shaft deflection in a system rotating with angular speed ω, in contrast
to the experimental evidence.

Recently, Dimentberg (2005) analysed the dynamic behaviour of a simple Jeffcott rotor in
presence of a randomly varying rotating damping that may occasionally bring the rotor into the
domain of dynamic instability.

In conclusion, if internal damping is modeled assuming that the restoring force is proportional to
the deflected shaft velocity in the rotating system, then the equations describing the shaft perturbed
motion are linear; moreover it is also well known that it is easy to compute the analytical solution.

However it is interesting to look for a solution of the problem more consistent with the experi-
mental results. To this aim, it is necessary to drop the linear approach and to consider a deformed
shaft rotating with angular speed ω and whirling at velocity ϑ̇: it results that the elastic force is
inclined of an angle 2µ that does not depend on the speed but only on the material.

When ω > ϑ̇ this restoring force shows a component tending to drive the shaft around in
its path of whirl, whereas if ω < ϑ̇ an opposite situation occurs. Since for a given constant
value of the angular velocity ω the angular speed ϑ̇ varies in time, both the previously described
conditions can alternatively take place. Hence, even if the equations of motion are linear in the two
different cases, the system itself is nonlinear, its response being not proportional to the excitation.
This circumstance leads to a hereditary problem, whose solution determines the elastic deflections
depending on the shaft angular speed and on the perturbed motion initial conditions; only under
particular initial conditions the problem is linear.

In the present paper the authors study the dynamic behaviour of a rotating shaft through
a nonlinear approach. The results are similar to those already known, obtained with a linear
approach. However, it is worth underlining that the approach used in the present work allows
to highlight the shaft behaviour just during the transitory that leads, depending on the initial
conditions, to stability or instability; such behaviour is completely ignored when an asymptotic
stability methodology is applied.

2 Analysis

Consider an elastic shaft with a disk having mass m, statically and dynamically balanced, driven
by a motor rotating at constant angular speed. In the deflected configuration the elastic force is
directed as in Fig. 1 if ω > ϑ̇, whereas it is symmetric to OG if ω < ϑ̇.

The equilibrium equations for the rotor are:

mẍ+ k
[
x cos(2µ) + y sin(2µ)

]
= 0 (1)

mÿ − k
[
x sin(2µ)− y cos(2µ)

]
= 0, (2)
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Figure 1: Section of the shaft

where k is the shaft stiffness and x and y are the coordinates of the centre of mass G.
Let z = x+ ıy; then it holds

mz̈ + kz [cos(2µ)− ı sin(2µ)] = 0. (3)

Since for regular steel µ is small (µ ≈ 10−3 rad), then Eq. (3) can be split into

mz̈ + kz (1− ı2µ) = 0 if ω > ϑ̇ (4)

mz̈ + kz (1 + ı2µ) = 0 if ω < ϑ̇, (5)

whose solution is given by:

z = A0 e ıpt +B0 e −ıpt, (6)

where

p =

√
k

m

√
1 + 4µ2 e ∓ 1

2 ı tan−1(2µ). (7)

Let

ω0 =

√
k

m

√
1 + 4µ2; (8)

then, since

1

2
ı tan−1(2µ) ≈ ı µ and e ± ı µ ≈ 1± ıµ, (9)

Eq. (6) becomes:

z = A(t) e ı ω0t +B(t) e −ı ω0t (10)

with

A(t) = A0 e µω0t and B(t) = B0 e −µω0t for ω > ϑ̇ (11)

A(t) = A0 e −µω0t and B(t) = B0 e µω0t for ω < ϑ̇. (12)

Hence the elastic deflection can be expressed as the sum of two counter–rotating vectors with
angular speed ω0; at a given time t, the amplitudes A(t) and B(t) show opposite behaviour, i.e.
one grows while the other one decreases. The constants A0 and B0 depend on the initial position
and velocity of the centre of mass G; if time is measured starting from the instant at which the two
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counter–rotating vectors superimpose on the x axis, such constants are real and positive. Since
the sum of the two counter–rotating vectors can be expressed as a single vector, it holds:

A(t) e ı ω0t +B(t) e −ı ω0t = C(t) e ı ϑ(t), (13)

where

tanϑ =
A(t)−B(t)

A(t) +B(t)
tan (ω0t) . (14)

The angular speed ϑ̇ of vector ~C, i.e. the whirl velocity, can be obtained from Eq. (14):

ϑ̇ =
λ2 − 1

λ2 + 2λ cos (2ω0t) + 1
ω0, (15)

where λ = A(t)/B(t); this result is drawn under the hypothesis of λ varying very slowly in time,
i.e. considering λ constant in the period T = 2π/ω0.

Equation (15) highlights the fact that the whirl speed ϑ̇ fluctuates between a minimum and a
maximum; it yields:

λ− 1

λ+ 1
≤ ϑ̇

ω0
≤ λ+ 1

λ− 1
if λ > 1 (16)

λ+ 1

λ− 1
≤ ϑ̇

ω0
≤ λ− 1

λ+ 1
if λ < 1. (17)

Figure 2: Whirl speed fluctuations with respect to time (λ = 2)

Figure 2 shows the whirl velocity versus ω0t for a given value of λ greater than 1, while Fig. 3
shows the diagrams of (ϑ̇/ω0)min and (ϑ̇/ω0)max versus λ. In this figure, four regions can be
identified:

region I: 0 ≤ λ ≤ 1 ω/ω0 ≥ 0

region II: λ > 1 ω/ω0 > (ϑ̇/ω0)max

region III: λ > 1 0 ≤ ω/ω0 < (ϑ̇/ω0)min

region IV: λ > 1 (ϑ̇/ω0)min ≤ ω/ω0 ≤ (ϑ̇/ω0)max

It is possible to consider only the values of ω > 0 without loss of generality; hence, in the
following analysis, the authors will study the behaviour of the shaft for given initial conditions of
the perturbed motion (represented by a point P0(ω, λ0) in the plane of Fig. 3). If P0 lies in region
II, then ω > ϑ̇ and hence Eq.(11) holds, so that A(t) grows with time, whereas B(t) decreases;
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Figure 3: Maximum and minimum values of whirl speed ϑ̇/ω0

consequently λ increases unlimitedly. The system status is characterized by a point P (t) moving
along a line through P0 parallel to the x axis: hence the solution diverges and consequently the
shaft is unstable. Such case corresponds to the linear behaviour.

If point P0 belongs to region I, where ω > ϑ̇, again λ grows with time and hence P (t) moves
along a parallel to the x axis entering region IV; if P0 lies in region III, where ω < ϑ̇, it holds
Eq. (12) and then A(t) decreases while B(t) grows, with a consequent decrease of λ that leads
point P into region IV. Hence, it is necessary to investigate the shaft behaviour inside region IV,
where angular speed ω is alternatively greater or smaller than ϑ̇. In the time T correspondent
to the angle 2π (T = 2π/ω0), with the assumption of negligible variations of λ, there occur four
changes of sign of the difference ω − ϑ̇ in correspondence of angles ϕ1, ϕ2, ϕ3 and ϕ4 (see Fig. 2).
Equations (11) and (12) hold in turn for successive time intervals; obviously the constants must
be computed imposing the continuity of position and velocity at each interval limits and hence the
problem has hereditary characteristics. The motion is a continuous sequence of cycles analogous
to those represented in Fig. 2; hence the set of sign variations is given by:

0÷ 2π → ϕ1, ϕ2 ϕ3, ϕ4

π ÷ π + 2π → ϕ3, ϕ4 ϕ5, ϕ6

2π ÷ 2π + 2π → ϕ5, ϕ6 ϕ7, ϕ8

and, in general, it yields:

nπ ÷ nπ + 2π → ϕ2n+1, ϕ2n+2 ϕ2n+3, ϕ2n+4 (18)

with n = 0, 1, 2, . . .
Moreover it holds:

ϕ2n+1 + ϕ2n+2 = (2n+ 1)π

ϕ2n+3 − ϕ2n+1 = π

ϕ2n+4 − ϕ2n+2 = π;

furthermore, in the intervals ϕ2n < ϕ < ϕ2n+1 and ϕ2n+2 < ϕ < ϕ2n+3, Eq. (11) holds, while in
the intervals ϕ2n+1 < ϕ < ϕ2n+2 and ϕ2n+3 < ϕ < ϕ2n+4, Eq. (12) holds [ϕ0 = 0].

The expression of deflection z after the nth sign variation of ω− ϑ̇ can be obtained equating the
final conditions at the limits of each time interval where the form of the equation doesn’t change,
with the initial conditions of the following interval. Thus, if ϕ1 = ω0t1 is the angle correspondent
to the first sign variation of ω − ϑ̇, it yields:

A0 e µϕ1+ıϕ1 +B0 e −µϕ1−ıϕ1 = A1 +B1

(ı+ µ) (A0 e µϕ1+ıϕ1 −B0 e −µϕ1−ıϕ1) = (ı− µ) (A1 −B1)
(19)
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that leads to

2A1 = e µϕ1 e ıϕ1

[
A0 +B0 e −2µϕ1 e −2ıϕ1 +

+
ı+ µ

ı− µ
(
A0 −B0 e −2µϕ1 e −2ıϕ1

)]
2B1 = e µϕ1 e ıϕ1

[
A0 +B0 e −2µϕ1 e −2ıϕ1 +

− ı+ µ

ı− µ
(
A0 −B0 e −2µϕ1 e −2ıϕ1

)]
.

(20)

Since µA0 � A0 and µB0 � B0, then, neglecting the terms of order µ2, it holds:

A1 = e ıϕ1

[
A0 (1 + µϕ1) + ıµB0 e −2ıϕ1

]
(21)

B1 = e −ıϕ1

[
B0 (1− µϕ1) + ıµA0 e 2ıϕ1

]
. (22)

Similarly it yields:

A2 = e ıϕ2

{
A0

[
1 + µϕ1 − µ (ϕ2 − ϕ1)

]
+

+ ıµB0

[
e −2ıϕ1 − e −2ıϕ2

]}
B2 = e −ıϕ2

{
B0

[
1− µϕ1 + µ (ϕ2 − ϕ1)

]
+

+ ıµA0

[
e 2ıϕ1 − e 2ıϕ2

]}
,

(23)

and, in general,

An = e ıϕn {A0 [1 + µϕ1 − µ(ϕ2 − ϕ1) + µ(ϕ3 − ϕ2)− µ(ϕ4 − ϕ3) + . . .] +
+ ıµB0

[
e −2ıϕ1 − e −2ıϕ2 + e −2ıϕ3 − e −2ıϕ4 + . . .

]}
Bn = e −ıϕn {B0 [1− µϕ1 + µ(ϕ2 − ϕ1)− µ(ϕ3 − ϕ2) + µ(ϕ4 − ϕ3) + . . .] +

+ ıµA0

[
e 2ıϕ1 − e 2ıϕ2 + e 2ıϕ3 − e 2ıϕ4 + . . .

]}
.

(24)

Therefore, deflection z after the nth sign variation is given by

zn = Ãn e ıϕn + B̃n e −ıϕn , (25)

where Ã and B̃ are given by the expressions between braces in Eq. (24).
Consider now the time interval defined by ϕ1 and ϕ3, corresponding to a complete oscillation

of the whirl speed; it holds

Ã1 = A0 + µA0ϕ1 + ıµB0 e −2ıϕ1

Ã3 = A0 + µA0ϕ1 − µA0 (ϕ2 − ϕ1) + µA0 (ϕ3 − ϕ2) +

+ ıµB0

(
e −2ıϕ1 − e −2ıϕ2 + e −2ıϕ3

)
,

(26)

and hence:

Ã3 = Ã1 + µA0

[
(ϕ1 − ϕ2)− (ϕ2 − ϕ3)

]
+

+ ıµB0

(
− e −2ıϕ2 + e −2ıϕ3

)
.

(27)

Similarly:

B̃3 = B̃1 − µB0

[
(ϕ1 − ϕ2)− (ϕ2 − ϕ3)

]
+

+ ıµA0

(
− e 2ıϕ2 + e 2ıϕ3

)
.

(28)
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These expressions hold for the general time interval correspondent to a complete oscillation of the
whirl speed, hence also for the interval ϕ2n+1 ÷ ϕ2n+3, n 6= 0. It results:

Ã2n+3 = Ã2n+1 + µA0

[
(ϕ2n+1 − ϕ2n+2)− (ϕ2n+2 − ϕ2n+3)

]
+ ıµB0

(
− e −2ıϕ2n+2 + e −2ıϕ2n+3

)
B̃2n+3 = B̃2n+1 − µB0

[
(ϕ2n+1 − ϕ2n+2)− (ϕ2n+2 − ϕ2n+3)

]
+ ıµA0

(
− e 2ıϕ2n+2 + e 2ıϕ2n+3

)
.

(29)

Moreover it holds:

ϕ2n+1 − ϕ2n+2 = 2ϕ2n+1 − (2n+ 1)π (30)

ϕ2n+2 − ϕ2n+3 = −2ϕ2n+1 + 2nπ (31)

and

cos (2ϕ2n+2) = cos (2ϕ2n+3) (32)

sin (2ϕ2n+2) = − sin (2ϕ2n+3) ; (33)

hence:

Ã2n+3 = Ã2n+1 + µA0 [4 (ϕ2n+1 − nπ)− π] +

+ 2µB0 sin (2ϕ2n+1)

B̃2n+3 = B̃2n+1 − µB0 [4 (ϕ2n+1 − nπ)− π] +

− 2µA0 sin (2ϕ2n+1) .

(34)

Let Φ = ϕ2n+1 − nπ, then Eq. (34) becomes:

Ã2n+3 = Ã2n+1 + µA0 (4Φ− π) + 2µB0 sin(2Φ) =

= Ã2n+1 + µ (A0F1 +B0F2)

B̃2n+3 = B̃2n+1 − µB0 (4Φ− π)− 2µA0 sin(2Φ)

= B̃2n+1 − µ (B0F1 +A0F2)

(35)

where, obviously, F1 = 4Φ− π and F2 = 2 sin(2Φ).

3 Stability

Equations (35) give the values of amplitudes A and B after a complete oscillation and represent
the starting conditions of the following cycle. Therefore it is possible to analyse the shaft stability
highlighting the time history of amplitudes A and B. The first step is to evaluate the value λ̄, real
and positive, given by the ratio A/B at the time correspondent to ϕ2n+1: it can be obtained form
Eq. (15) by substituting ϑ̇ and ω0t respectively by ω and Φ. Let ν = ω0/ω; then it yields:

λ̄ =
− cos (2Φ)±

√
cos2 (2Φ)− (1− ν2)

1− ν
. (36)

It is worth noting that in the case ν > 1, since λ̄ must be real and positive, it holds:

λ̄ =
cos (2Φ) +

√
ν2 − sin2 (2Φ)

ν − 1
(37)
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with 0 ≤ Φ ≤ π/2, as shown in Fig. 2. If ν < 1, there are two solutions λ̄ for any value of Φ
belonging to the interval [π/4, π/2]:

λ̄ =
cos (2Φ)±

√
ν2 − sin2 (2Φ)

ν − 1
. (38)

It is now possible to examine the behaviour of the shaft inside region IV of Fig. 3. The cases
of ω greater or smaller than ω0 will be analysed separately.

3.1 Case ω < ω0 (ν > 1)

Figure 4 plots λ̄ versus Φ for different values of ν, showing that λ̄ decreases with Φ.

Figure 4: Solution λ̄ versus Φ when ν > 1

Figure 5: Functions F1 and F2 versus Φ

Since the initial conditions is characterized by λ̄ ≥ 1, then A0 > B0. Figure 5 is a qualitative
plot of functions A0F1, B0F1, A0F2 and B0F2, while functions A0F1 +B0F2 and A0F2 +B0F1 are
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shown in Fig. 6. The last functions cross the Φ axis in H and K; hence it is possible to identify
three intervals:

(a) 0 < Φ < ΦH , where A decreases while B grows: hence λ̄ decreases;

(b) ΦH < Φ < ΦK , where both A and B decrease;

(c) ΦK < Φ < π/2, where A grows while B decreases and hence λ̄ grows.

Therefore, if the initial conditions are such that Φ lies in the first (a) or in the third (c) interval,
Φ grows or decreases respectively (see Fig. 4), up to the second (b) interval limits, where A and B
decrease at the same time until vanishing; hence the case under analysis is stable. In fact, if Φ is
initially in the first or second interval, then the amplitudes are always reducing, while if it belongs
to the third interval (c), amplitudes initially grow and then decrease until they vanish.

Figure 6: Functions A0F1 +B0F2 and A0F2 +B0F1 versus Φ

Figure 7: Solutions λ̄ versus Φ with ν < 1
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3.2 Case ω > ω0 (ν < 1)

Figure 7 plots λ̄ versus Φ for different values of ν; as previously observed, for π/4 < Φ < π/2 the
solution λ̄ are real and positive. From Fig. 6 it results that A grows while B decreases, so that
λ̄ increases with time; hence curves in Fig. 7 are covered clockwise. Therefore the solutions reach
value π/2 and then enter region II (see Fig. 3), where λ̄ continuously grows, causing the shaft
instability.

4 Conclusions

The influence of internal (hysteretic or structural) damping on rotating shafts stability represents
a problem that has been studied since 1924. The most important result of the researches lies in
the fact that the shaft appears to be unstable for angular speeds greater than the critical velocity,
whereas its motion is stable for smaller speeds. However this result is usually obtained through a
linear model of the internal damping that, on the contrary, has nonlinear characteristics.

In this paper the authors’ approach to the problem considers a model that is more adequate
to represent experimental evidence (Yamamoto and Ishida, 2001): as a matter of fact, the elastic
force is assumed to be inclined with respect to the deflection plane of an angle that does depend
on the angular speed. It is shown that only for particular initial conditions the problem can be
regarded to as linear, as it happens in region II of Fig. 3; in general the problem is hereditary. The
stability analysis is faced by studying how elastic deflection varies with time. The fluctuations of
the whirl speed provoke alternate changes of the elastic force angle that correspond to a change
of the motion differential equations, whose validity is limited to a certain time interval, i.e. until
a successive phase variation occurs. It is worth noting that the analysis here presented allows to
describe the shaft transient motion in case of both supercritical and subcritical speeds.

Finally, the nonlinear approach followed in the present study permits to highlight the following
result: the value ω0 of the angular speed that represent the stability threshold (i.e. the critical
speed) differs from the value that can be computed adopting a linear model. This difference
represent an interesting result from a qualitative point of view, even if it can be quantitatively
negligible. In fact, the stability limit obtained with a linear approach (see, e.g., (Tondl, 1965)) is

ω2
0 =

k

m
−
(
h

2m

)2

, (39)

where k, m and h are respectively the shaft stiffness, the disk mass and the internal friction
coefficient. Conversely, as stated in Eq. (8), the nonlinear model leads to the value:

ω2
0 =

k

m

√
1 + 4µ2, (40)

where 2µ is the phase angle of the elastic force. Consequently, the different effect of internal
damping on the critical speed as demonstrated above is made evident by using the methodology
developed in the present contribution.
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