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Effects of weak anchoring on the equivalent anchoring energy in a nematic
cell with large amplitude of the grooves

G. Barbero, A. S. Gliozzi, and M. Scalerandia�

Dipartimento di Fisica del Politecnico, Corso Duca degli Abruzzi, 24-10129 Torino, Italy

�Received 20 June 2008; accepted 9 September 2008; published online 6 November 2008�

Nanostructured corrugated surfaces in liquid crystal cells have a strong influence on the alignment
of liquid crystal molecules. An equivalent energy can be attributed to the system due to
deformations resulting from the equilibrium between bulk elastic forces and surface forces due to
the anchoring of the molecules to the layer. First, we derive the equilibrium equations on the surface
and in the bulk for a cell with a corrugated surface with large amplitude A of the grooves and weak
anchoring. We also analyze numerically the solution and show that the equivalent anchoring energy
presents a nontrivial dependence on A and falls to zero for infinite amplitude grooves. © 2008
American Institute of Physics. �DOI: 10.1063/1.3005982�

I. INTRODUCTION

Inhomogeneous or nanotextured surfaces in liquid crys-
tal cells have a significant effect on the alignment of liquid
crystal molecules.1–6 A competition arises between elastic re-
storing forces and the contribution due to the surface topog-
raphy on the molecular orientation of the liquid-crystalline
phases.7–10 In the past years, this problem has become of
practical importance, since photoalignment techniques have
been developed as a convenient method to homogeneously
align liquid crystals.11–13 The drawback is that rubbing of the
substrate causes both elastic energy anisotropy, due to the
morphology of the surface,14,15 and anisotropic interaction
between the liquid crystal molecules and the alignment layer
surface.16,17 It is therefore important to correctly estimate the
total elastic energy in the sample and the equivalent anchor-
ing energy strength.18

From the theoretical point of view, the first studies on the
contribution of elastic origin to the surface energy of a nem-
atic liquid crystal in the presence of a nonflat surface were
conducted by Berreman.19 In his analysis, he assumed that,
in a first approximation, the surface can be described by a
sinusoidal structure of wave vector q=2� /� and amplitude
A, where � is the spatial periodicity of the surface. This
approximation is reasonable for common applications. On
the contrary, the further approximations, necessary to obtain
an exact solution, are often too strong.17 Among them the
small amplitude limit �qA�1�,20 the isotropy of the elastic
constants Kij of the nematic molecules �K=K11=K22=K33�,
and the strong anchoring hypotheses, i.e., the surface is such
to fix the orientation of the nematic molecules parallel to the
substrate.

Further developments have been proposed in the past
years, but always in the limit qA�1. Faetti21 investigated
how a finite polar anchoring and the reduced �or increased�
surface order may affect the azimuthal anchoring, while
Fournier and Galatola,22 by means of a coarse-grained tech-
nique, derived an effective anchoring energy of a nematic

liquid crystal in contact with a macroscopically corrugated
surface including the anisotropy of the elastic constants. Fi-
nally, Fukuda et al.23 showed that, differently from the as-
sumption made in the original approach of Berreman,19 the
azimuthal distortion of the director cannot be considered as
negligibly small.

As we have shown in Ref. 18, a meaningful solution
cannot be obtained at the leading order in A: neglecting
higher order terms leads to an overestimation of the exact
equivalent anchoring energy. At the same time, the solution
for large amplitude of the grooves can be obtained numeri-
cally, but a few nontrivial issues have to be considered to
obtain a convergent numerical solution, as will be discussed
here. In this contribution, we will also discuss the influence
of the anchoring strength �at the rubbed surface� on the dis-
tribution of elastic energy density and on the equivalent an-
choring energy strength. In our approach, the influence of the
variations in the azimuthal angle is neglected, while the cor-
rect boundary conditions are derived using a variational
analysis.

II. THEORY

A. Variational analysis

Let us consider a nematic liquid crystal limited by a
grooved profile,

z0�x� = A�1 + cos�qx�� . �1�

The direction of the grooves is assumed to be parallel to the
y-axis of a Cartesian reference frame and we assume the
system as two dimensional, when the �x ,z�-plane contains
the nematic director n�x ,z�=ux cos ��x ,z�+uz sin ��x ,z�,
where � is the tilt angle �see Fig. 1� and ux and uz are the
unit vectors along the x- and z-axes, respectively. We assume
the cell to be infinite in the x- and z-directions. The nematic
deformation is periodic with spatial period �. We limit our
investigation to 0�x��. Deformations are expected to de-
cay rapidly when moving away from the surface. As we will
show 0�z�2A+2� is sufficient to approximate correctly an
infinite medium. Let us consider the region R, limited by thea�Electronic mail: marco.scalerandi@infm.polito.it.
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profile �1� and by the two straight lines x=0 and x=�. The
border of R is indicated in the following by �R.

The finite anchoring energy per unit area which accounts
for the interaction of the nematic liquid crystal with the sub-
strate is defined as

g = − 1
2we�n · t�2 = − 1

2we cos2��s − �0� , �2�

where we is the anchoring energy strength and n and t are the
nematic director at the surface and the geometrical tangent to
the profile, respectively. �s=��x ,z0�x�� is the tilt angle on the
boundary. We have also introduced on the boundary the
angle

�0�x� = arctan�− qA sin �qx�� , �3�

which corresponds to the tilt angle forced on the boundary in
the case of strong anchoring hypotheses �orientation parallel
to the surface�.

As a consequence of the finite anchoring energy g, the
director n is no longer parallel to t and a distribution ��x ,z�
is originated inside the sample. The bulk elastic energy den-
sity f , in the one constant approximation,20 is

f�x,z� =
1

2
K��,x

2 + �,z
2 � , �4�

where �,x=�� /�x and �,z=�� /�z. The total energy of the
sample, per period and for unit length along the y-direction,
is given by

F���x,z�� =� �
R

f��,���dxdz + �
�

g���d� , �5�

where � is the line limiting R from below, and d�
=�1+ �dz0 /dx�2dx.

The actual nematic orientation is the one minimizing F.
We indicate by ��x ,z� the tilt angle minimizing F and by
��x ,z�=��x ,z�+���x ,z� a function close to ��x ,z�, in the
variational sense. Since the problem presents a periodicity
along the x-axis, with a spatial period �, we look for a solu-
tion of the problem under consideration of the form ��x ,z�
=��x+� ,z�. It follows also ��x ,z�=��x+� ,z� and conse-
quently, the arbitrary variations are such that ���x ,z�
=���x+� ,z�. The first variation of F���x ,z�� given by Eq.
�5� is

�F =� �
R
� � f

��
− �

� f

���
�

�=�

��dxdz

+ �
�R
�u ·

� f

���
�

�=�

��d� + �
�
� dg

d�s
�

�=�

��sd� ,

�6�

where u is the geometrical normal to �R, directed outward.
Using Eq. �4�, Eq. �6� can be rewritten as

�F =� �
R

− K�2���dxdz + �
�R

K�u · �����d�

+ �
�
� dg

d�
�

�=�

��d� . �7�

A simple calculation gives

�
�R

�u · �����d�

= �
0

	

	�,x��,z�����,z� − �,x�0,z����0,z�
dz

+ lim
h→	

�
0

�

�,z�x,h����x,h�dx + �
�

�u · �����d� .

�8�

From the discussion reported above on the periodicity
along the x-axis of the solution we are looking for, it follows
that

�,x��,z�����,z� − �,x�0,z����0,z� = 0. �9�

Consequently, �F given by Eq. �6� can be rewritten as

�F = �
R

− K�2���dxdz + lim
h→	

�
0

�

K�,z�x,h����x,h�dx

+ �
�
�Ku · �� + � dg

d�
�

�=�
����x,z0�x��d� . �10�

By imposing �F=0 for all �� of the class C1, i.e., continuous
with its first order partial derivatives, we obtain that � is the
solution of the differential equation �2�=0 and satisfies the
boundary conditions limh→	 �,z�x ,h�=0 and K�u ·���
+ �dg /d���=�=0 on the line �.

Since t=ux cos �0+uz sin �0, and on � the geometrical
normal �outward directed� as u=ux sin �0−uz cos �0, where
tan �0�x�=dz0�x� /dx, the bulk equilibrium equation becomes

�,xx + �,zz = 0, �11�

which has to be solved with the boundary conditions

lim
z→	

�,z�x,z� = 0, �12�

and, by taking into account Eq. �2�,

K	sin �0�,x − cos �0�,z
 + �we/2�sin�2�� − �0�� = 0, �13�

on the line �.
Equation �11� states that, in the configuration of equilib-

rium, the bulk density of mechanical torque vanishes,

FIG. 1. Schematic representation of the surface, of the nematic �n�, and
tangent to the surface �t� directors.
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whereas the boundary condition �13� implies that the elastic
torque transmitted by the bulk to the surface is balanced by
the surface torque due to the anisotropic interaction between
the substrate and the nematic liquid crystal molecules. Fi-
nally, Eq. �12� defines the transversality condition for the
functional Eq. �4�, and physically means that the mechanical
torque has to vanish at the infinity, where the system is not
distorted.24 Usually, deviations in the orientation of the nem-
atic molecules vanish within a distance of a few wavelengths
from the surface. Finally, the total energy of the sample, per
period and for unit length along the y-direction, can be re-
written as

F���x,z�� =� �
R

1
2K��,x

2 + �,z
2 �dxdz

+ �
�

− 1
2we cos2��s − �0�d� , �14�

B. Definition of the equivalent anchoring
energy

The system described in the previous Subsection is char-
acterized by molecules with a nematic director perpendicular
to the grooves. The total energy F contains two contribu-
tions: one is the bulk elastic energy and the second is the
surface energy: Eq. �14�.

A �trivial� equilibrium condition is that characterized by
molecules on the surface aligned parallel to the grooves. In
this case, �s=�=0 everywhere. Since �0=0 also, the total
energy is F0=−�we /2� d�. In fact, the elastic energy is zero.

Here, we introduce an equivalent anchoring energy w,
defined as

w = 2
F − F0

�
=

2

��� �
R

1

2
K��,x

2 + �,z
2 �dxdz

− �
�

1

2
we sin2��s − �0�d�� , �15�

where we have used Eq. �14�. In the equivalent anchoring
energy w, we can distinguish two contributions, namely, the
elastic bulk contribution GB and the surface contribution GS,

GB =� �
R

1
2K��,x

2 + �,z
2 �dxdz

GS = − �
�

1
2we sin2��s − �0�d� �16�

C. Limit for small amplitude of the grooves

In the small amplitude limit �qA�1�, Eq. �11� with the
boundary condition �13� can be solved analytically, with
some approximations. In particular, in the strong anchoring
case, corresponding to we→	, the boundary conditions on �
are reduced to �s�x ,z0�x��=�0�x�. Furthermore, we can also

approximate �0�x� �given by Eq. �3�� as �0�x��−qA sin�qx�.
In this case, the analytical solution derived by Berreman19

gives a tilt angle field

��x,z� = − qA sin�qx�exp�− qz� . �17�

It follows that the bulk elastic energy density f is

f�x,z� = 1
2K��,x

2 + �,z
2 � = 1

2K�q2A�2 exp�− 2qz� . �18�

The total elastic energy per unit length along the y-axis per
period is then

GB = �
0

� �
0

	

fdxdz = 1
4K��qA�2q . �19�

Consequently the elastic energy per unit surface is 2GB /�
and the equivalent anchoring energy is wB= �K /2�q�qA�2.

A similar solution can be given also for the weak anchor-
ing case. Assuming that we is still large enough so that �s

−�0 is a small quantity, we can approximate sin��s−�0�
��s−�0. Furthermore, �0 is of the order of qA, as in the
approximation reported above. It follows that the boundary
condition �13� can be approximated, at the first order in qA,
as

− K�,z + we��s − �0� = 0. �20�

The function ��x ,z� solution of Eq. �11�, satisfying the
boundary conditions �12� and �20�, is

��x,z� = −
qA

1 + qL
sin�qx�exp�− qz� , �21�

where L=K /we is the extrapolation length. Solution �21� re-
duces to Eq. �17� for we→	, i.e., for L→0, as expected.

The equivalent anchoring energy is derived as

w = 1
4Kq

�qA�2

1 + qL
. �22�

Note that the anchoring energy due to the direct interac-
tion of the liquid crystal with the substrate can be considered
strong when qL=qK /we�1, i.e., we
qK=2��K /��. The in-
trinsic anchoring energy of the problem is then wi=qK.

Finally, we wish to mention that a previous analysis18

has indicated that the theoretical solutions reported above
overestimate the equivalent anchoring energy, both in the
weak and strong anchoring cases. The errors in estimation
are already significant for qA=1.

D. Numerical solution

A numerical solution of the problem is always possible,
giving the equilibrium conditions by solving a dynamical
equation. Nevertheless, care has to be taken into account in
the definition of the viscous terms to be added in the bulk Eq.
�12� and in the dynamical equation of the boundary condition
�3�. Also, the convergence of the numerical solution must be
considered, before assuming the validity of the dynamical
approach to find the equilibrium solution, as will be dis-
cussed in the next paragraphs.
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1. Derivation of the dynamical equations

Let us consider an equilibrium state and perturb it by
means of external forces. A local deformation �� is pro-
duced, with a resulting work due to the external torque �ext.
Contributions are expected both in the bulk and on the sur-
face,

�W =� �
R

�ext
bulk��dxdz + �

�R
�ext

surface��d� . �23�

If the deformation is quasistatic, the net torque density in the
bulk has to be balanced by a torque resulting from the restor-
ing elastic forces, due to the elastic properties of the me-
dium. This internal torque �int is equal and opposite to �ext.
Therefore

�W = −� �
R

�int
bulk��dxdz − �

�R
�int

surface��d� . �24�

Finally we observe that �W=�F, given by Eq. �6�. Therefore
the torque due to elastic forces is

�int
bulk = −

� f

��
+ �

� f

���

�int
surface = −

dg

d�s
− u

� f

���s
, �25�

in the bulk and on the surface, respectively.
Let us now consider an out of equilibrium system, in

presence of dissipation. The latter causes a viscous torque,

�visc
bulk = − �B

��

�t
,

FIG. 2. �Color online� Evolution of the �a� bulk and �b� surface energies as a function of the number of iterations of the numerical scheme. Convergence to
an equilibrium value is ensured.

FIG. 3. �Color online� Evolution of the tilt angle in x=� /4 �a� on the surface
and �b� in the bulk as a function of the number of iterations of the numerical
scheme. Convergence to an equilibrium value is ensured.

FIG. 4. �Color online� Profile of the �a� surface and �b� distribution at
equilibrium of the tilt angles on the surface for different values of the an-
choring energy. A=0.025�. Note that the strong anchoring and we=2�
10−4 J /m2 profiles are coincident.
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�visc
surface = − �S

��s

�t
, �26�

where we have introduced the bulk and surface viscosities.25

The dynamical equations are derived by balancing the inter-
nal and viscous torques �assuming negligible the inertial
properties of the medium�,

�B
��

�t
+

� f

��
− �

� f

���
= 0,

�S
��s

�t
+

dg

d�s
+ u

� f

���s
= 0. �27�

2. Numerical approach

From Eq. �27� and using the definition of f given by Eq.
�4�, we obtain the equations describing the temporal evolu-
tion of the system,

FIG. 5. �Color online� Profile of the �a� surface and �b� distribution at
equilibrium of the tilt angles on the surface for different values of the an-
choring energy. A=0.3�. Note that the strong anchoring and we=2�
10−4 J /m2 profiles are coincident.

FIG. 6. �Color online� Profile of the �a� surface and �b� distribution at
equilibrium of the tilt angles on the surface for different values of the an-
choring energy. A=0.9�. Note that the strong anchoring and we=2�
10−4 J /m2 profiles are coincident.

FIG. 7. �Color online� Tilt angle on the surface at equilibrium as a function
of the groove amplitude for different anchoring strength and positions. Note
the presence of a maximum.

FIG. 8. �Color online� Maps of the tilt angle distribution at equilibrium for
different anchoring energies. A=0.025�.
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K��,xx + �,zz� = �B
��

�t
, �28�

in the bulk and,

K�sin �0�,x − cos �0�,z� +
we

2
sin�2�� − �0�� = − �S

��

�t
,

�29�

on the boundaries.
These equations can be solved numerically using a finite

difference approach, with a forward scheme for the time de-
rivative and a centered scheme for the space derivative.26 We
have found that a discretization with space step � /600 and
time step given by 510−7�B /K is sufficient to guarantee
convergence and stability of the numerical procedure.27 To
this purpose, we have verified the invariance of the results
for changes in the discretization adopted and the conver-
gence to the known numerical solutions in the small ampli-
tude limit.

Periodic �along x� boundary conditions are used. For the
numerical solution, the boundary condition on the surface
opposite to the grooved surface �Eq. �12�� is automatically

satisfied, provided the specimen depth �along z� is suffi-
ciently large �three wavelengths�. The initial state of the sys-
tem is arbitrarily defined. We have chosen

��x,z;t = 0� = �0�x��3� + z0�x� − z�/3� ,

where �0�x� and z0�x� are given by Eqs. �3� and �1�.
To find the actual solution corresponding to the equilib-

rium state, we let the system evolve until equilibrium, de-
fined by �� /�t=0, is reached. Using the equilibrium configu-
ration ��x ,z�=limt→	 ��x ,z ; t�, we calculate the bulk energy
density f by means of Eq. �4�, and the total energy F using
Eq. �5�. Finally, the equivalent anchoring energy strength is
evaluated.

We also remark that, as will be clear later, the deforma-
tions in the equilibrium configuration are confined to a depth
of about one wavelength from the surface. Therefore, a high
accuracy is required to numerically calculate space deriva-
tives in this region, which is responsible for the need of a
fine discretization of space.

FIG. 9. �Color online� Maps of the tilt angle distribution at equilibrium for
different anchoring energies. A=0.3�. Note the different scale with respect
to Fig. 8.

FIG. 10. �Color online� Maps of the tilt angle distribution at equilibrium for
different anchoring energies. A=0.9�. Note the distortions with respect to
Figs. 8 and 9.
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3. Convergence of the solution

We briefly discuss here the convergence of the numerical
solution toward an equilibrium state. To this purpose we con-
sider typical values of the parameters: K=10−12 J /m, we

=2�10−6 J /m2, and �=1 �m.17

In Fig. 2 the surface �GS� and bulk �GB� contributions to
the total energy per wavelength are plotted versus the num-
ber of iterations of the numerical procedure for different val-
ues of the amplitude of the grooves, as reported in the legend
�see definitions in Eq. �16��. Both quantities evolve toward
an asymptotic �equilibrium� value, indicating the conver-
gence of the numerical solution. The dynamics of the nu-
merical solution is not a single exponential decay �note the
log scale on the y-axes�.

To further confirm the validity of the numerical solution,
in Fig. 3 the tilt angle on the surface and in the bulk �at a
distance � /4 from the surface� is reported versus the number
of iterations of the numerical solution. Again, convergence to
equilibrium is ensured.

III. RESULTS

A. Distribution of the tilt angle

The presence of a weak anchoring at the surface influ-
ences the distribution of the tilt angles on the surface and in
the bulk of the cell. Such deviations from the behavior pre-
dicted by Barbero et al.18 and Berreman19 are added to those
due to the presence of finite amplitude grooves. In this sec-
tion we have considered typical values for the parameters
K=10−12 J /m and �=1 �m.17

In Figs. 4–6 we analyze the equilibrium distribution of
tilt angles on the surface for A=0.025�, A=0.3�, and A
=0.9�. The solutions in the strong anchoring case �Eq. �3��
and for we=2�10−4 J /m2 are approximately the same for
each value of the amplitude of the grooves. Note the devia-
tion from a cosinusoidal profile for large amplitude of the
grooves �Figs. 5 and 6� due to the arctan in Eq. �3�. In these
cases, Berreman’s solution is no longer valid. An accurate
discussion is reported in Ref. 18. Distortions from the strong
anchoring case are evident for both we=2�10−5 J /m2 and
we=2�10−6 J /m2. For intermediate amplitudes of the
grooves �Fig. 5�, �s assumes a nonsymmetric profile. The
distribution becomes more complex when the anchoring is
very weak and the groove amplitude is large. Here, maxima
appear close to the positions where the tilt angle is zero �x

FIG. 11. �Color online� Profiles of the tilt angle distribution in x=� /4.

FIG. 12. �Color online� Profiles of the tilt angle distribution in z=� /5.
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=0,� /2,��. In each case the tilt angles on the surface are
smaller when the anchoring is weaker, as expected.

It is interesting to observe that the maximum tilt angle
on the surface is in x=� /4, when the anchoring is strong.
Weakening the anchoring energy causes a deformation in the
distribution of the tilt angles on the surface, with resulting
shift in the position of the maximum toward x=0 and the
emergence of a maximum close to x=� /2. At the same time,
for fixed anchoring strength, the shift in the maximum posi-
tion increases with the increasing amplitude of the grooves.
On the contrary, the surface tilt angle in x=0 and x=� /2, due
to symmetry reasons, remains always zero independently
from both the groove amplitude and the anchoring energy.

As a result of the observation reported above, we expect
two competing mechanisms to take place on the surface. An
increase in the amplitude of the groove forces an increase in
the surface tilt angle, at the same time the effects due to the
weak anchoring produce a shift in the maximum �increasing
with amplitude�, hence forcing a reduction in the tilt angle on
the surface. We can expect that, as A→	, the position of the
maximum goes to x=0, hence �s

max goes to 0. This result is
confirmed by Fig. 7, where we report the tilt angle on the
surface in x=� /4 and x=� /3 as a function of the groove
amplitude for we=2�10−5 J /m2 �squares� and we=2�
10−6 J /m2 �circles�.

The distributions of the tilt angles at equilibrium in the
bulk are reported in Figs. 8–10, for A=0.025�, A=0.3�, and
A=0.9�. For small and intermediate values of the amplitude
of the grooves �Figs. 8 and 9�, the effect of weakening the

anchoring strength is limited to a reduction in the tilt angles,
without remarkable changes on the profile. For A=0.9�, on
the contrary, the spatial distribution is also affected, see bot-
tom plot of Fig. 9. In this case it is to be noted that the tilt
angles are very small compared to the other cases, as will
also be discussed in the Sec. III B.

In Figs. 11 and 12, we report the profile of the tilt angle
in the bulk along a vertical line �x=� /4� and a horizontal
line �z=� /8�, respectively. The expected exponential decay
along z and cosine profile along x are found for small ampli-
tudes of the grooves �see upper plots of Figs. 10 and 11�.
Significant deviations are present for large amplitudes of the
grooves �middle and bottom plots�, even though in all cases
the tilt angle decays to zero in approximately one wave-
length. Again the case A=0.9� and we=2�10−6 J /m2 pre-
sents an anomalous behavior: The profile along the
z-direction is no longer monotonously decreasing.

B. Evaluation of the equivalent anchoring energy

The bulk and surface contributions �GB and GS, respec-
tively� to the total energy in one period are analyzed in Fig.
13. Given the equilibrium distribution of the tilt angles, the
energies are derived according to Eq. �16�. The bulk elastic
energy �per wavelength� diminishes with the decreasing an-
choring energy we, for any amplitude of the grooves. In the
case we=2�10−6 J /m2 �violet stars�, GB increases with
increasing A, up to maximum and then starts decreasing
again �Fig. 12�a��. The presence of a maximum seems to be
also present for the other values of we, albeit the amplitudes
analyzed here are too small to reach it. As expected, GB in
the case we=2�10−4 J /m2 �blue circles� is the same as
that for the strong anchoring case �black circles�. The surface
energy GS increases for increasing A for all the cases consid-
ered. When the anchoring is weak, as expected, both GS and
GB are smaller.

Finally, in Fig. 14 we calculate the equivalent anchoring
energy

w = 2
GB + GS

�
.

w increases with the increasing amplitude of the grooves,
being always much smaller than that in the strong anchoring

FIG. 13. �Color online� Bulk and surface energy contributions as a function of the groove amplitude for different anchoring strengths. Note the maximum in
the bulk energy and the evolution toward an asymptotic value of the surface energy for the weaker anchoring strength.

FIG. 14. �Color online� �a� Equivalent anchoring energy as a function of the
groove amplitude. �b� Small amplitude limit for the strong anchoring case
and weaker anchoring strength. The comparison with theoretical expecta-
tions is very good.
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case. Also, see Fig. 13�b�, the calculated equivalent anchor-
ing energy is the same as that theoretically expected �Eq.
�22�� in the small amplitude limit.

IV. CONCLUSION

We have analyzed the effect of the anchoring at the sur-
face on the tilt angle field in a liquid crystal cell in contact
with a corrugated surface. The equilibrium distribution in the
sample has been derived using a numerical solution and the
equivalent anchoring energy of the system has been calcu-
lated. Our results indicate a nontrivial effect on the distribu-
tion of the tilt angles on the surface when diminishing the
strength of the anchoring energy. In particular, the position of
the maxima deformation does no longer correspond to those
of the maximum slope in the profile and more maxima ap-
pear in the profile of the tilt angle on the surface.

As a result of our observation, the equivalent anchoring
energy does not diverge with the increasing amplitude of the
grooves, as it could have been trivially expected. Rather, an
asymptotic value is expected, with a monotonous increase
with amplitude. The plateau is already reached for low val-
ues of the groove amplitude if the anchoring is very weak.
More intriguing is the fact that the bulk energy density in the
sample presents a maximum as a function of the surface
amplitude and then diminishes, going to zero for infinite am-
plitude of the grooves.

Our result indicates that care has to be taken when using
the Berreman approximation in the interpretation of experi-
mental data. Indeed, even at low values of amplitude, the
Berreman estimation can be largely incorrect when the treat-
ment of the surface is such to diminish the anchoring energy
strength.

Of course additional features, not considered here, are
important for a correct estimation of the behavior. Among
them the anisotropy of the elastic constants, which is ex-
pected only to modify quantitatively the results presented
here, and the effects due to azimuthal distortions. Further
studies are in progress in the latter direction.
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