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Passivity Enforcement With Relative Error Control
Stefano Grivet-Talocia, Senior Member, IEEE, and Andrea Ubolli

Abstract—This paper introduces a new error control strategy
in passivity enforcement schemes for linear lumped macromodels.
We consider the general class of a posteriori passivity enforcement
algorithms based on Hamiltonian matrix perturbation. Standard
available formulations preserve the accuracy during passivity en-
forcement using special matrix norms associated to the controlla-
bility Gramian of the macromodel. This procedure leads to abso-
lute error control. On the other hand, it is well known that rela-
tive error control in the macromodel is sometimes preferable, espe-
cially for structures that are characterized by small coupling coef-
ficients or high dynamic range in their responses. Here, we present
a frequency-weighting scheme leading to the definition of a modi-
fied Gramian that, when employed during passivity enforcement,
effectively leads to relative error control. Several examples illus-
trate the reliability of the proposed technique.

Index Terms—Hamiltonian matrices, linear macromodeling,
passivity, perturbation theory, relative error, weighted Gramian.

I. INTRODUCTION

PASSIVE macromodeling has become a common practice
in the design flow of digital, RF, and mixed-signal systems

in several application areas. Macromodeling techniques derive
broadband equivalent circuits from frequency- or time-domain
responses, typically obtained from full-wave field solvers or di-
rect measurements. Such equivalent circuits can be used within
standard circuit analysis tools such as SPICE in order to assess
the electrical performance of a design since its early stages [1],
[2]. Thus, macromodeling bridges the gap between fields and
circuits, allowing their fast and accurate co-simulation.

Macromodels usually consist of Laplace-domain rational
approximations of the transfer matrix of a given linear structure.
Several algorithms are now available for the robust computation
of these rational approximations starting from port responses.
A very effective algorithm is the well-known vector-fitting
scheme, in its various implementations [3]–[9]. This algorithm
has now become de facto an industry standard, leading to
more accurate and robust results with respect to its classical
counterparts.

One of the important features that vector fitting (as well as
many other common rational approximation schemes) is not
able to guarantee is the passivity of the macromodel. A model is
passive when it is unable to generate energy in any termination
condition [10]–[13]. It is well known that nonpassive models
may lead to unstable transient simulation depending on their ter-
mination networks [14], [15]. Thus, passivity is a fundamental
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property that should be enforced in any model for its safe use in
a computer-aided design (CAD) environment. Even when be-
ginning from initially passive data, rational macromodels may
lack passivity for two main reasons. First, the unavoidable ap-
proximation errors may lead to passivity violations at those fre-
quencies where the structure exploits a nearly lossless behavior.
Second, the band-limited nature of any characterization (fre-
quency or time domain, simulated or measured) does not allow
controlling the behavior of the approximation outside the avail-
able data bandwidth. Therefore, the most severe passivity vio-
lations are usually located outside the desired modeling band-
width.

Passivity has been a subject of intense research over the
last few years. Several techniques are now available for the
enforcement of macromodel passivity. Methods based on
convex optimization [16], using some form of the positive
real or bounded real lemma [13], do allow a priori passivity
enforcement [17]–[19]. Their use is unfortunately limited to
small-scale models both in terms of dynamic order and port
count. A posteriori passivity correction techniques are available
for larger size models. Some are based on linear or quadratic
programming [15], [20]–[23] at discrete frequency samples.
Other methods exploit the theory of Hamiltonian matrices
[14], [24], [25]. We concentrate here on the latter class of
methods, although the proposed formulation can be applied to
any passivity enforcement scheme.

The above-mentioned a posteriori passivity enforcement
schemes apply some perturbation to the model until its pas-
sivity is achieved. This perturbation is performed using special
constraints insuring that the model accuracy is preserved. These
constraints have always been formulated in terms of absolute
error in the responses, except for the very recent results in
[22], [26]–[28]. In this study, we present a method allowing
for the systematic preservation of the relative error on each
individual response during the passivity enforcement. We show
that the proposed technique, which is based on a particular
norm employing a frequency-weighted controllability Gramian
of the model, leads to superior performance with respect to
standard absolute error controlled schemes. This paper extends
and generalizes the preliminary results presented in [28], where
a simplified formulation is developed for one-port (scalar)
models and applied only to low-complexity examples. Here, we
present a complete and general formulation, including detailed
derivations. The results in this study are directly applicable to
macromodels with an arbitrary number of ports, as documented
by the rich set of numerical examples taken from various
application areas.

This paper is organized as follows. Section II motivates
this study using a simple, but illustrative example. Section III
introduces basic notation and background material. Section IV
defines the frequency-weighted norms allowing for relative

0018-9480/$25.00 © 2007 IEEE
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error control. Section V presents the new passivity enforce-
ment scheme. Finally, Section VI demonstrates the excellent
performance of proposed scheme on several examples.

II. MOTIVATIONS

We motivate the need for relative error control using a very
simple, but significant example. We consider the dc response of
two coupled interconnects for digital signal transmission. The
two signal lines have a dc resistance and are ref-
erenced to a common larger ground conductor having dc resis-
tance . The four-port scattering matrix referenced to

is computed and successively used to evaluate the
dc response of the interconnect. In this experiment, the near-end
ports are matched, with an additional unit voltage source ex-
citing only one conductor, and the two far-end ports are left
open. Nominal dc solution is 1 V at both ports of the excited
conductor, and 0 V on the victim conductor.

The nominal scattering matrix is then perturbed in two dif-
ferent ways. First, a constant perturbation is applied by adding

to all its elements, thus simulating the derivation of a
macromodel with absolute error control. Relative perturbation
is also applied by multiplying all elements by , thus sim-
ulating macromodel derivation with relative error control. The
solution of the two models leads to a maximum 4-mV crosstalk
offset in the absolute perturbation case, whereas this offset is as
low as 1 V in the relative perturbation case. This difference is
mainly due to the change in the terminations with respect to the
nominal (matched) conditions. Since any macromodel is meant
to represent the port behavior of a linear structure under any
possible termination scheme, it is clear that relative error con-
trol provides the optimal solution. Absolute error control may
produce unreliable results.

III. PRELIMINARIES AND NOTATION

The main notation that will be used throughout this paper
is introduced here. Reference material on Hamiltonian-based
passivity enforcement schemes is also briefly recalled in order to
simplify the presentation of the new developments in Section V.

A. Basic Notation

Throughout this paper, , , and denote a generic scalar,
vector (lower case and boldface), and matrix (upper case and
boldface), respectively. Superscripts , , and will stand for
the complex conjugate, transpose, and conjugate (Hermitian)
transpose, respectively.

We consider linear macromodels in state–space form, de-
scribed by the following standard shorthand notation:

(1)

where is the Laplace variable, is the transfer matrix
of the macromodel, and are the state–space ma-
trices of some realization associated to . This macromodel
is obtained via some fitting, approximation, or identification
process from tabulated responses of a given linear and time-in-
variant structure or component. As an example, if

are the frequency samples of the scattering matrix of

the linear component over a given bandwidth, the macromodel
parameters are obtained by solving

(2)

with a suitably defined norm. Several algorithms are available
for this task, including the well-known vector-fitting scheme
[3]–[9]. Note that any equivalent macromodel form in terms of
poles/residues or poles/zeros is readily converted into (1).

We will assume a state–space realization with the same struc-
ture as in [14] since macromodels are usually obtained in this
form [3], [5], [9]. More precisely, we assume the following
structure:

(3)

where stores in its diagonal the poles of the
th column of , is a array with all entries equal

to 1, and stores the residues of the th column of
. If complex pole pairs are present, the transformation in

[14] can be applied to the relevant blocks of (3) in order to re-
cover a real realization. Therefore, we will assume a real-valued
realization without loss of generality.

We will consider to be either a scattering or a hybrid
matrix of the model, the latter also including impedance and ad-
mittance as special cases. A system in the form of (1) is passive
when the following three conditions are fulfilled [12], [13].

1) Each element of is defined and analytic in
.

2) , , where
in the hybrid representation case, and

in the scattering representation case.
3) .

In the following, we will assume a slightly more stringent regu-
larity condition than 1) by requiring all eigenvalues of to be
strictly stable. No purely imaginary poles will be allowed in the
model. Conversely, we will not consider the overly restrictive
strict passivity conditions [29] instead of 2) since we want to
also include in our applications lossless structures.

Basic operations on transfer matrices can be recast as alge-
braic operations on the associated state–space realizations. In
particular, we have

(4)

whenever is nonsingular, and

(5)

for any pair of transfer matrices with compatible dimensions.
The reader is referred to [30] for further details.

The controllability Gramian associated to (1) is
defined as the solution of the following Lyapunov equation [11]:

(6)



2376 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 55, NO. 11, NOVEMBER 2007

We will postulate controllability, which follows implicitly from
the adopted structure (3). Therefore, the Gramian is strictly
positive definite and admits the following Cholesky decompo-
sition:

(7)

where is upper triangular.

B. Absolute Norms

Let us assume that the macromodel (1) is not passive. Most
passivity enforcement schemes that have been presented thus far
[20]–[25] try to find a new passive model

(8)

by preserving the system poles and perturbing the associated
residues, which are located in matrix . The numerical evalua-
tion of is performed in order to keep the induced perturba-
tion in the system response

(9)

as small as possible. The standard measure that is used to quan-
tify this amount of perturbation is the (energy) norm, defined
as

(10)

where denotes the Frobenius norm. It is clear from the
above definitions that can be regarded as a cumulative
absolute error in the responses induced by the perturbation.

The controllability Gramian turns out to be very useful for
the evaluation of (10) since it can be shown [30] that

(11)

where is the matrix trace, operator stacks the columns
of its matrix argument [31], [32], and where

(12)

represents the perturbation on the state–space matrix in a co-
ordinate system defined by .

C. Hamiltonian-Based Passivity Enforcement

We now recall the definition of the Hamiltonian matrix asso-
ciated to (1). In the hybrid case, we have

(13)

with , whereas in the scattering case,
we have

(14)

with and . Let
denote the set of (simple) purely imaginary eigenvalues

of (hybrid) or (scattering). It can be shown [24], [33]
that the model is not passive whenever . Passivity can be
recovered by perturbing these imaginary eigenvalues [14], [24],
[34] until they move off the imaginary axis.

We now recall the main result of [24], which is the starting
point for the new developments of this paper. Hamiltonian
eigenvalue displacement is achieved by solving an inverse
perturbation problem, i.e., by finding the corresponding to
a desired eigenvalue perturbation. Using standard first-order
expansions, the following linear constraint:

(15)

is obtained for each eigenvalue to be perturbed. In this expres-
sion, denotes the desired perturbation on the th imaginary
eigenvalue, is the Kronecker matrix product [31], [32], ma-
trix is defined as

(16)

and

(17)

is the right eigenvector of the Hamiltonian matrix associated to
eigenvalue . Vector is defined as

(18)

in the hybrid case and

(19)

in the scattering case. Detailed derivations can be found in [24].
To summarize, passivity is enforced by iteratively finding a

solution of the underdetermined system having (15) as its th
row. According to (11), the mean energy of the absolute per-
turbation in all responses can be minimized by performing the
basis change (12) in (15)

(20)

and finding the minimum-norm solution of this underdeter-
mined system using standard pseudoinverse methods [35].

IV. WEIGHTED GRAMIANS

Here we introduce the frequency-dependent weighting
schemes and the associated norms that will be used for the
relative error control during passivity enforcement in Section V.
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A. General Weighting Schemes

We start by defining a general weighting matrix

(21)

which is used to define a weighted model perturbation

(22)

where the state–space realization is readily obtained using (5).
We denote as

(23)

the controllability Gramian associated to (22). By now applying
(11) to (22), we can compute the weighted norm of the model
perturbation

(24)

This norm is formally identical to (11), differing only from
the choice of the Gramian, which is extracted from the upper
left block of (23). This type of weighted norm has been exten-
sively used to define frequency-weighted model-order reduction
schemes [30], [36].

As a particular case, we can set

(25)

provided that is minimum phase [30] so that its inverse
is strictly stable and the corresponding controllability Gramian
is positive definite. When these conditions hold, the frequency-
weighted norm (24) becomes the relative error. Unfortunately,
the minimization of this error does not guarantee the minimiza-
tion of the relative error on each individual element of ma-
trix , which is indeed our main goal. In Section IV-B, we
present how this goal can be achieved.

B. Single-Element Inverse Weighting

Let us apply the above inverse weighting scheme to the per-
turbation of a single matrix element of the model

(26)

We can thus introduce the cumulative relative error, in the
sense, as

(27)

where is a matrix whose entries are constructed using
(26). The remainder of this section is devoted to the algebraic
characterization of the above relative norm in a form that is com-
patible with (11) and (20).

We begin by rearranging the elements of in a single-
column vector by stacking its columns

(28)

Equivalently,

(29)

where

(30)

and

(31)

(32)

where the operator rounds its argument towards zero and
denotes the remainder after integer division. The above in-

dexing equivalence will be used throughout this section. Now
by using the global realization (1) of , we can easily ex-
tract a partial state-space realization for one of its elements

(33)

where collects the poles of ,
, is the th row of ,

and is a scalar. Similarly, we have

(34)

We now make the important assumption that is min-
imum phase so that its inverse is strictly stable. This
restriction will be removed in Section IV-C. This allows us to
derive, using (4) and (5),

(35)

Using (24), this partial state–space realization leads to

(36)

where the single-element weighted Gramian is computed as
in (22) and (23) and is positive definite by construction. We can,
therefore, perform the change of variable

(37)

where

(38)
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is the Cholesky decomposition of . Expression (36) becomes

(39)

The final step is to now compute the global relative error (27)
by adding the energy contributions from all matrix elements. We
have

(40)

where

(41)

It is clear from the above derivation that minimization of (40)
corresponds to the minimization of the global energy of the rel-
ative perturbations on the model responses.

C. Minimum Phase Enforcement

We now remove the constraint that each element of the model
should be minimum phase. Let us begin from (33). If is
not minimum phase, it can be decomposed as

(42)

where is minimum phase and is an all-pass func-
tion. This decomposition can be obtained as a particular case of
a general result on inner–outer factorizations [37]. More pre-
cisely, if is the solution of the following algebraic Riccati
equation:

(43)

where , the minimum-phase factor has the fol-
lowing state-space realization:

(44)

where

(45)

Therefore, a strictly stable and minimal realization of is
readily obtained by replacing in (35) with . Since, by con-
struction,

(46)
the cumulative relative error in (27) is not affected by this sub-
stitution. With this modification, however, the partial weighted
Gramian results strictly positive definite and can be used to
define the relative norms (36) and (40).

V. PASSIVITY ENFORCEMENT WITH

RELATIVE ERROR CONTROL

Here, we consider the linear constraints imposed by the
Hamiltonian eigenvalue perturbation (15), and we illustrate the

modifications that are needed for the implementation of (40) as
a relative perturbation error control. First, we note that

(47)

is simply a reordering of the elements in the overall perturbation
of (9). Therefore, we can find a permutation matrix such

that

(48)

Now using (37) and defining

(49)

we can write

(50)

Direct substitution into (15) leads to

(51)

According to (40), the minimum-norm solution of this underde-
termined system realizes a passivity enforcement scheme with
relative error control on each individual response of the model.

We note that the form of (51) is practically identical to its
counterpart (20) with absolute error control. A different coordi-
nate change, (37) instead of (12), leads to a slightly different
way in which the system rows are constructed, but the com-
putational cost required for solving either system is identical.
We remark that this cost is negligible with respect to the more
demanding determination of the imaginary Hamiltonian eigen-
values and eigenvectors. This issue has already been addressed
in [14] and [25]. Finally, we note that the traditional scheme with
absolute error control requires the evaluation of the controlla-
bility Gramian of the entire system (1), whereas the proposed
scheme involves the evaluation of independent and small-size
Gramians , one for each response. Given the diagonal struc-
ture of the adopted state–space realization of the model (3), this
cost is negligible [14]. This applies to the solution of the alge-
braic Riccati equation (43) as well due to the small size of (33).

VI. EXAMPLES

The advantages of the proposed passivity enforcement
scheme are illustrated here via several examples. The first
synthetic example of Section VI-A is specifically designed
to highlight the performance between different error control
schemes. The other case studies are taken from various ap-
plication areas in order to demonstrate the wide applicability
of the proposed technique. Examples range from antennas
(Section VI-B) to connectors (Section VI-C) and packages
(Section VI-D).

A. Validation Test Case

The first example we consider is a synthetic three-port
lumped structure (with 36 poles) that was specifically designed
to compare the performance of the various passivity enforce-
ment schemes. A similar test case was considered in [28],
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Fig. 1. Example VI-A (synthetic validation example). Responses of different
passive models are compared to raw frequency data.

where the same procedure was applied to construct one of the
numerical tests. The present example is a different realization of
the same random generation process, briefly described below.
First, poles of each response are defined as ,
where are random variables uniformly distributed in the
desired bandwidth and . A constant ratio
is used in this example. Placement of zeros follows the same
process, with one additional real zero placed very close to the
origin in order to force a small magnitude for some of the
responses. Finally, the resulting rational scattering matrix
is constrained via suitable scaling to have a maximum singular
value . Note that the explicit placement of zeros
guarantees that the model is minimum phase.

Three different passivity enforcement schemes were applied
to this example. In all cases, passivity is enforced by iterative
perturbation of Hamiltonian eigenvalues, as in [24], and as
recalled in Section III-C. Each different scheme implements
a different norm in order to control the accuracy during the
model perturbation. Labeling of these options will be consistent
throughout this section, namely,

abs this is the standard scheme as in [24], expressed by
the perturbation (20) associated with the absolute
error control (11);

mrel this scheme employs a matrix-based relative
weighting scheme of (25), with a corresponding
relative norm expressed by (24);

rel this is our proposed scheme with relative error
control on each individual response, expressed by
(51).

The results are shown in Figs. 1 and 2 for two different matrix
elements. A logarithmic scale is used in all plots in order to vi-
sualize clearly the relative errors on each response. As expected,
the standard passivity scheme with absolute error control is lim-
ited in its resolution and fails in retaining a good accuracy for
the small low-frequency values of each response. This means

Fig. 2. Example VI-A (synthetic validation example). Responses of different
passive models are compared to raw frequency data.

Fig. 3. Example VI-A (synthetic validation example). Absolute and relative
errors of different passive models.

that the necessary perturbation that is needed to eliminate the
passivity violation at a well-defined and limited frequency band
has dramatic impact on the accuracy of the model at all frequen-
cies. Although in absolute scale this may be acceptable for some
applications, a better solution is indeed possible.

The second scheme with matrix-based relative error control
achieves a better performance on , but fails in retaining a
good accuracy for . This is also expected since this norm
does not allow controlling individual responses. Finally, the pro-
posed scheme guarantees excellent accuracy throughout the fre-
quency bandwidth, even when the responses reach small values
at low frequency. The only visible difference is concentrated
around the largest peak, where the raw data are nonpassive. A
better overview is provided in Fig. 3, where both absolute and
relative errors are depicted for . The relative error control
clearly provides a better performance.
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Fig. 4. Example VI-B (antenna–antenna coupling). Responses of different pas-
sive models are compared to raw frequency data.

B. Glass Antenna

The second example is a two-port model representing the
mock-up of a double-feed glass antenna for automotive applica-
tions. The 2 2 scattering matrix of the structure has been mea-
sured at the antenna feed ports using a vector network analyzer
(VNA). The investigated frequency band ranges from 300 kHz
up to 500 MHz. A rational macromodel with 20 poles was gen-
erated using vector-fitting iterations with inverse weighting [4],
[9]. This allows retaining good accuracy also for the off-diag-
onal scattering elements (feed-to-feed coupling). A passivity
check on this initial macromodel shows small passivity viola-
tions (maximum singular value ) in a small band-
width centered between the two main resonances. The reason for
this initial passivity violation is due to both noise in the original
data and approximation error in the rational fitting stage.

Both passivity enforcement schemes with absolute and rel-
ative error control were applied to correct this small gain in
the initial model, leading to the results of Figs. 4 and 5. Both
schemes lead to excellent accuracy control for . However,
the performance is quite different for the coupling coefficient

. For this element, model quality is significantly deteriorated
by the standard scheme, whereas the proposed new algorithm
preserves a good accuracy at all frequencies.

C. Connector

The third example that we consider is a connector. As for
Example VI-B, the four-port scattering matrix corresponding to
the terminals of two adjacent pins was measured up to 20 GHz
using a VNA. Small crosstalk values are found at low frequen-
cies. We want to preserve such small couplings also in the pas-
sive model to be identified from the measured data. To this end,
an initial rational macromodel was generated using vector-fit-
ting iterations using inverse weighting, resulting in a state–space
realization with 480 states. After having verified its lack of pas-
sivity (maximum singular value ), this model was
then processed by the passivity enforcement schemes with both

Fig. 5. Example VI-B (antenna–antenna coupling). Responses of different pas-
sive models are compared to raw frequency data.

Fig. 6. Example VI-C (connector). Responses of different passive models are
compared to raw frequency data.

absolute and relative error control in order to compare their per-
formance.

The results are depicted in Figs. 6 and 7 for two elements of
the scattering matrix. As for Example VI-B, the scheme based
on relative error control closely matches the measured data,
whereas the scheme based on absolute error control fails in the
approximation of at low frequencies.

D. Package

The last example is a complex package with 34 ports, in-
cluding both signal and ground pins. The raw scattering re-
sponses are known from the results of an electromagnetic solver.
As a preliminary study, we considered a subset of six ports and
we generated the corresponding rational model consisting of a
state–space realization of order 206. The challenge for this ex-
ample is the very large dynamic range of some of the responses
over a very large frequency range spanning ten decades. Two
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Fig. 7. Example VI-C (connector). Responses of different passive models are
compared to raw frequency data.

Fig. 8. Example VI-D (package). Responses of different passive models are
compared to raw frequency data.

significant responses are depicted in Figs. 8 and 9. The rational
model was generated using vector fitting with inverse weighting,
as with the other cases, in order to preserve the nature of the
small couplings, especially at dc. Passivity was then enforced
using both absolute and relative error control. The results are
compared in Figs. 8 and 9. The proposed scheme offers an ex-
cellent match to the raw data, whereas absolute error control is
not able to preserve model accuracy at low frequencies.

VII. DISCUSSION AND CONCLUSIONS

In this study, we have suggested a general approach for the
relative error minimization in passivity enforcement schemes,
as opposed to standard absolute error control. We now put our
study in perspective by comparing the approach to other existing
passivity enforcement methods.

Fig. 9. Example VI-D (package). Responses of different passive models are
compared to raw frequency data.

We begin by noting that any passivity enforcement scheme is
based on two fundamental elements, i.e.: 1) the passivity con-
straints and 2) some accuracy metric. Here, we have mainly
addressed the second issue, showing that existing approaches
based on absolute error control may be inadequate for some ap-
plications. For instance, a noise analysis for structures that re-
quire very high isolation levels between some ports fails if the
absolute error is used since the absolute perturbation induced
on small responses might be orders of magnitude larger than
the desired isolation level. For such applications, a relative error
control strategy is preferred. This paper provides a solution for
all applications subject to these accuracy constraints.

The proposed technique is, in principle, applicable to any for-
mulation of the passivity constraints, including schemes based
on the passivity enforcement at discrete frequency samples [15],
[20]–[23] and schemes based on the solution of linear matrix in-
equalities (LMI) via convex optimization [17]–[19]. The latter
are the only methods leading to the strictly optimal solution,
where optimality depends, of course, on the adopted norm. Un-
fortunately, LMI-based schemes are not applicable in practical
situations due to the overwhelming computational complexity,
even for moderate model size.

The proposed method is based on iterative Hamiltonian
first-order perturbation, which is only suboptimal: each itera-
tion computes an optimal step towards the solution, but the final
result might not be strictly the nearest to the original model in
the adopted norm. However, the methodology is applicable to
large-sized models with thousands of states [14], [25]. There-
fore, one may be willing to trade a little accuracy for the ability
to solve the problem. The numerical results show, however, an
excellent performance of the Hamiltonian-based formulation
in terms of accuracy.

For the proposed technique, the precise computation of the
purely imaginary Hamiltonian eigenvalues is of paramount
importance. This calculation is the most computationally de-
manding part of the overall scheme. The techniques proposed
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in [14] provide fast algorithms for this evaluation based on mul-
tipoint restarted Arnoldi iterations. Further speedup might be
obtained if the number of these eigenvalues could be estimated,
e.g., using Gershgorin’s theory [23], [34]. Unfortunately, appli-
cation of these results to typical Hamiltonian spectra does not
lead to useful estimates due to the lack of diagonal dominance.
Therefore, estimates based on adaptive sampling [25] are
preferred.

We conclude by pointing the reader to other ongoing research
on passivity enforcement of macromodels. References [26] and
[27] also use a Hamiltonian-based approach, but formulate the
passivity enforcement as a nonlinear optimization using poles as
free variables and imposing accuracy both in the absolute and
matrix-relative sense at discrete frequency samples. Perturbing
poles has the advantage of reducing the number of variables, but
may be inapplicable in case of highly resonant structures, where
the poles have a physical correspondence to the system reso-
nances. Here, we explicitly preserve the system poles in order
to avoid this difficulty. Reference [22] enforces passivity at dis-
crete frequency samples, but using an innovative accuracy con-
trol strategy based on relative errors on residue matrix eigen-
values rather on matrix elements. This approach is best suited
to stiff applications showing high sensitivity to terminations.
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