
25 September 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Prime numbers in intervals starting at a fixed power of the integers / Bazzanella, Danilo. - In: JOURNAL OF THE
AUSTRALIAN MATHEMATICAL SOCIETY. - ISSN 1446-7887. - STAMPA. - 87:(2009), pp. 83-89.
[10.1017/S1446788709000020]

Original

Prime numbers in intervals starting at a fixed power of the integers

Publisher:

Published
DOI:10.1017/S1446788709000020

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1676898 since:

Cambridge University press



PRIME NUMBERS IN INTERVALS STARTING

AT A FIXED POWER OF THE INTEGERS

DANILO BAZZANELLA

Abstract. The best known results about the distribution of prime numbers in

short intervals imply that all intervals [n, n+H] ⊂ [N, 2N ] contain the expected

number of primes for all H ≥ N7/12, and almost all intervals [n, n + H] ⊂
[N, 2N ] contain the expected number of primes for all H ≥ N1/6. As a natural
generalization, this paper is concerned with the distribution of prime numbers

in intervals of type [nα, nα +H] with α > 1.

This is the authors’ post-print version of an article published on
J. Australian Math. Soc. 87 (2009) 83–99,

DOI:10.1017/S1446788709000020.1

1. Introduction

Let ψ(x) =
∑
n≤x Λ(n), where Λ(n) is the von Mangoldt function. We consider

the asymptotic formula

(1) ψ(x+H)− ψ(x) ∼ H x→∞,
which is related to the number of primes in the interval (x, x+H]. The Prime

Number Theorem implies that (1) holds with H � x. An interval (x, x+H] with
H = o(x) is called a short interval. The best known unconditional result about

the distribution of primes in short intervals is due to M. N. Huxley [8] and asserts
that (1) holds for all H ≥ x7/12+ε. This was slightly improved by

D. R. Heath-Brown in [7] to H ≥ x7/12−o(1). Under the assumption of the
Riemann Hypothesis, A. Selberg [11] proved that (1) holds for all

H ≥ x1/2f(x) log x with f(x)→∞ arbitrarily slowly. These results imply that all
intervals [n, n+H] ⊂ [N, 2N ] contain the expected number of primes for all

H ≥ N7/12 and, assuming the Riemann Hypothesis, for all H ≥ N1/2f(N) logN
with f(N)→∞ arbitrarily slowly.

We can relax our conditions and investigate if (1) holds for “almost all” x. By
this, we mean that the measure of x ∈ [X, 2X] for which (1) does not hold is
o(X). Huxley’s zero density estimate [8], in conjunction with the method of
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2 DANILO BAZZANELLA

Selberg [11], show that (1) holds for almost all x with H ≥ x1/6+ε, slightly
improved by A. Zaccagnini in [14] to H ≥ x1/6−o(1). Under the assumption of the

Riemann Hypothesis, Selberg [11] proved that (1) holds for almost all x with
H ≥ f(x) log2 x, where f(x)→∞ arbitrarily slowly. These results imply that

almost all intervals [n, n+H] ⊂ [N, 2N ] contain the expected number of primes
for all H ≥ N1/6 and, assuming the Riemann Hypothesis, for all H ≥ f(N) log2N

with f(N)→∞ arbitrarily slowly.
As a natural generalization of the above results, this paper is concerned with the

distribution of prime numbers in intervals [nα, nα +H], with fixed α > 1. Our
main unconditional result is the following.

Theorem 1 Let ε > 0 and α > 1. Then almost all intervals
[nα, nα +H] ⊂ [N, 2N ] contain the expected number of primes for all

H ≥ N c(α)+ε, where

c(α) =



1

6
if 1 < α ≤ 6

5

11α− 10

16α
if

6

5
< α ≤ 6

5
+ ∆

1− sup
(k,l)

5(1 + α− l + k)

α(5k + 12)
if α ≥ 4

with ∆ suitable positive constant and (k, l) running over the exponent pairs.

For the sake of simplicity, we will explicitly work out the value of the function
c(α) only for the extreme and more interesting values of α. However, it will be
clear from the proof that the same method enables one to obtain the explicit

values of the function c(α) in the whole range α > 1. As one might expect, we get
an increasing function c(α) such that c(1) = 1/6, c(α) < 7/12 for every α and

lim
α→+∞

c(α) =
7

12
.

To bound some sums which arise in our argument we employ the counting
functions N(σ, T ) and N∗(σ, T ). The former is defined as the number of zeros
ρ = β + iγ of Riemann zeta function which satisfy σ ≤ β ≤ 1 and |γ| ≤ T , while

N∗(σ, T ) is defined as the number of ordered sets of zeros ρj = βj + iγj
(1 ≤ j ≤ 4), each counted by N(σ, T ), for which |γ1 + γ2 − γ3 − γ4| ≤ 1. If we

make the heuristic assumption that

(2) N∗(σ, T )� N(σ, T )4

T
,

as in D. Bazzanella and A. Perelli [2], then we can simplify and improve Theorem
1 for large values of α as follows.

Theorem 2 Assume (2), let ε > 0 and α ≥ 4. Then almost all intervals
[nα, nα +H] ⊂ [N, 2N ] contain the expected number of primes for all

H ≥ N c(α)+ε and

c(α) =
7

12
− 5

12α
.
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We conclude by presenting our results under the assumption of more standard
hypotheses.

Theorem 3 Let α > 1, ε > 0 and assume the Lindelöf Hypothesis. Then
almost all intervals [nα, nα +H] ⊂ [N, 2N ] contain the expected number of primes

for all H ≥ N c(α)+ε and

c(α) =
1

2

(
1− 1

α

)
.

Theorem 4 Let α > 1 and assume the Riemann Hypothesis. Then almost all
intervals [nα, nα +H] ⊂ [N, 2N ] contain the expected number of primes for all

H ≥ N c(α)f(N) log2N with f(N)→∞ arbitrarily slowly and

c(α) =
1

2

(
1− 1

α

)
.

As one might expect, under the assumption of the Lindelöf Hypothesis or the
Riemann Hypothesis, we get an increasing function c(α) such that c(1) = 0,

c(α) < 1/2 for every α and

lim
α→+∞

c(α) =
1

2
.

The main tools of the proofs are the Kusmin–Landau estimate for an exponential
sum together with the van der Corput’s method of exponent pairs, see [4], and a
result about the structure of the exceptional set for the distribution of primes in

short intervals due to Bazzanella and Perelli, see [2] and [1].

Acknowledgments. We are particularly indebted to the referee for a very
thorough reading and some helpful suggestions.

2. Definitions and basic lemmas

Our starting point is the definition of the exceptional set for the number of primes
in short intervals. Let | | denote the modulus of a complex number or the

Lebesgue measure of an infinite set of real numbers or the cardinality of a finite
set. Let X be a large positive number, δ > 0 and define

Eδ(X,H) = {X ≤ x ≤ 2X : |ψ(x+H(x))− ψ(x)−H(x)| ≥ δH(x)}.

It is clear that (1) holds if and only if for every δ > 0 there exists X0(δ) such that
Eδ(X,H) = ∅ for all X ≥ X0(δ). Hence for small δ > 0, X tending to ∞, the set
Eδ(X,H) contains the exceptions, if any, to the expected asymptotic formula for

the number of primes in short intervals. We will consider increasing functions
H(x) of the form H(x) = xθ+ε(x), with some 0 < θ < 1 and a differentiable

function ε(x) such that |ε(x)| is decreasing, ε(x) = o(1) and

(3) ε(x+ y) = ε(x) +O

(
|y|

x log x

)
.

A function satisfying these requirements will be called of type θ. It is easy to see
that functions like xθ logc x, with c real constant, and similar functions, are of
type θ, and that for every functions H(x) of type θ we have H(2x)� H(x).
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Remark In a preceding paper, the author and Perelli [2] defined in a slightly
different way the set of functions H(x) of type θ, and set

ε(x+ y) = ε(x) +O

(
|y|
x

)
instead of (3). We remark that with this weaker condition we do not have

H(2x)� H(x) as claimed.

Our first lemma is concerned with the structure of the exceptional set above.

Lemma 1 Let 0 < θ < 1, let H(x) be of type θ, let X be sufficiently large
depending on the function H(x) and let 0 < δ′ < δ with δ − δ′ ≥ exp(−

√
logX).

If x0 ∈ Eδ(X,H) then Eδ′(X,H) contains the interval
[x0 − cH(X), x0 + cH(X)] ∩ [X, 2X], where c = (δ − δ′)θ/5.

Proof. We will always assume that x and X are sufficiently large as prescribed by
the various statements, and ε > 0 is arbitrarily small and not necessarily the same
at each occurrence.
We first observe from the definition of a function of type θ that if y = O(xα+ε)
with some 0 < α < 1, then

(4) H(x+ y) = H(x) +O(xθ+α−1+ε)

for every ε > 0.
From the Brun–Titchmarsh theorem (see H. L. Montgomery and R .C. Vaughan
[10]), we have that

(5) ψ(x+ y)− ψ(x) ≤ 21

10
y

log x

log y

for all 10 ≤ y ≤ x. From (5) we easily obtain that

(6) ψ(x+ y)− ψ(x) ≤ 9

4α
cY

for all X ≤ x ≤ 3X and 0 ≤ y ≤ cY , where 0 < α < 1, Xα−ε ≤ Y ≤ X and
α

5
exp(−

√
logX) ≤ c ≤ 1.

Let H(x) be of type θ, x0 ∈ Eδ(X,H),

x ∈ [x0 − cH(X), x0 + cH(X)] ∩ [X, 2X],

where c satisfies the above restrictions, and

∆(x,H) = ψ(x+H(x))− ψ(x)−H(x).

We have

|∆(x,H)| = |∆(x0, H) + ∆(x,H)−∆(x0, H)| ≥
|∆(x0, H)| − |ψ(x+H(x))− ψ(x0 +H(x0))| − |ψ(x)− ψ(x0)| − |H(x)−H(x0)|.

But from (4) with α = θ we get

H(x0) = H(x) +O(X2θ−1+ε),

hence from (6) with α = θ we obtain

|∆(x,H)| ≥ δH(x)− 9

2θ
cH(X) +O(X2θ−1+ε) ≥ δH(x)− 5

θ
cH(X) ≥ δ′H(x)
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by choosing c = (δ − δ′)θ/5, since H(x) is increasing. Hence x ∈ Eδ′(X,H) and
the lemma follows. �

Lemma 1 is part (i) of Theorem 1 of Bazzanella and Perelli, see [2], and
essentially says that if we have a single exception in Eδ(X,H), with a fixed δ,
then we necessarily have an interval of exceptions in Eδ′(X,H), with δ′ a little

smaller than δ.
We now present the necessary results about the conditional and unconditional

bounds for the exceptional set for the number of primes in short intervals. With
this in mind, we consider H(x) of type θ and define the functions

µδ(θ) = inf{ξ ≥ 0 : |Eδ(X,H)| �δ X
ξ}

and

(7) µ(θ) = sup
δ>0

µδ(θ).

Our results are as follows.

Lemma 2 There exists a constant η > 0 such that

µ(θ) ≤ (11− 6θ)

10
if

1

6
< θ ≤ 1

6
+ η.

Proof. In order to prove Lemma 2 we use the classical explicit formula (see H. Dav-
enport [3, chapter 17]) to write

(8) ψ(x+H(x))− ψ(x)−H(x) = −
∑
|γ|≤T

xρcρ(x) +O

(
X log2X

T

)
,

uniformly for all X ≤ x ≤ 2X, where 10 ≤ T ≤ X, ρ = β + iγ runs over the
non-trivial zeros of ζ(s),

(9) cρ(x) =
(1 +H(x)/x)ρ − 1

ρ
and cρ(x)� min

(
H(X)

X
,

1

|γ|

)
.

Let H(x) be of type θ. Choose

(10) T =
X

H(X)
log3X

and use the theorem of Montgomery (see Theorem 11.3 of A. Ivić [9]) which asserts
that

(11) N(σ, T )� T 1600(1−σ)3/2 log15 T

for every 152/155 ≤ σ ≤ 1. From (9) – (11) and Vinogradov’s zero-free region
(see E. C. Titchmarsh [12, chapter 6]) we deduce by a standard argument that there
exists a constant d > 0 such that

(12)
∑
|γ|≤T
β 6∈I

xρcρ(x)� H(X)

X
logX max

σ 6∈I
XσN(σ, T )� H(X)

logX
,

where I = [1/2, 1− d], uniformly for all X ≤ x ≤ 2X.
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Again by a standard argument, from (9), (10) and the Ingham–Huxley density es-
timates which assert that for every ε > 0 we have

(13) N(σ, T )�


T 3(1−σ)/(2−σ)+ε 1

2
≤ σ ≤ 3

4

T 3(1−σ)/(3σ−1)+ε 3

4
≤ σ ≤ 1

,

we obtain∫ 2X

X

∣∣∣ ∑
|γ|≤T
β∈I

xρcρ(x)
∣∣∣2 dx� X2θ−1+ε max

σ∈I
X2σN(σ, T )� X(11+14θ)/10+ε,

for sufficiently small η > 0 and 1/6 < θ ≤ 1/6 + η. Hence for every ε > 0 and
δ > 0 we have

|Eδ(X,H)| � X(11−6θ)/10+ε,

and so the lemma is proved. �

We observe that we can take d = 2.5 · 10−7 and then η = 3.125 · 10−7. The value
of η could be somewhat increased by using an optimized version of density

estimate (11).

Lemma 3 Assume (2). Then we have

µ(θ) ≤ 7

5
(1− θ) if

23

48
< θ <

7

12
.

Proof. Let H(x) be of type θ and

T =
X

H(X)
log3X.

Following the method of Heath-Brown [5], we can write∫ 2X

X

|ψ(x+H(x))− ψ(x)−H(x) + Σ|4 dx� X4θ−3+ε max
1/2≤σ≤1

X4σN∗(σ, T ),

with Σ = o(H(X)). Assuming (2) and using the Ingham–Huxley zero density esti-
mates, the above estimate implies that

|Eδ(X,H)| � X−3+ε max
1/2≤σ≤1

X4σN∗(σ, T )� X−3+ε max
1/2≤σ≤1

X4σN(σ, T )4

T

� Xθ−4+ε
(

max
1/2≤σ≤3/4

X4σT 12(1−σ)/(2−σ) + max
3/4≤σ≤1

X4σT 12(1−σ)/(3σ−1)
)
,

for every δ > 0 and ε > 0. With 23/48 < θ < 7/12 the maximum is attained at
σ = 3/4, so we have

|Eδ(X,H)| � X
7
5 (1−θ)+ε,

for every δ > 0 and ε > 0. This completes the proof of the lemma. �
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Lemma 4 Assume the Lindelöf Hypothesis, let ε > 0 and δ > 0. For every
H ≥ 1 we have

|Eδ(X,H)| � X1+ε

H(X)
.

Lemma 4 may be proved along the same lines as G. Yu [13, Lemma B].

To deal with the problem of estimating the exceptional set for the distribution of
primes in intervals [nα, nα +H] ⊂ [N, 2N ], suppose that H(x) is of type θ, let

∆(n,H, α) = ψ(nα +H(nα))− ψ(nα)−H(nα),

and define the set

Aδ(N,H,α) = {N1/α ≤ n ≤ (2N)1/α : |∆(n,H, α)| ≥ δH(nα)},

that contains the exceptions, if any, to the expected asymptotic formula for the
number of primes in intervals of type [nα, nα +H(nα)] ⊂ [N, 2N ]. Our last

lemmas allow us to link |Aδ(N,H,α)| to the exceptional set for the distribution of
primes in short intervals.

Lemma 5 Let H(x) be of type θ, with 1/6 < θ < 7/12. Then for every δ > 0
we have

(i) |Aδ(N,H,α)| = o(N1/α) if 1 < α ≤ 6
5

and

(ii) |Aδ(N,H,α)| �
|Eδ/2(N,H)|f(N) log2N

H(N)
+ o(N1/α) if α > 6

5 ,

with f(N)→∞ arbitrarily slowly.

Proof. Recalling the explicit formula for ψ(x) and putting

T =
N

H(N)
f(N) log2N,

where f(N)→∞ arbitrarily slowly, we have

ψ(nα +H(nα))− ψ(nα)−H(nα) = −
∑
|γ|<T

nαρ cρ(n) + o(H(N))

= −
∑
|γ|<T
β∈I

nαρ cρ(n) + o(H(N)),

where d and I = [1/2, 1− d] are defined as in the proof of Lemma 2,

cρ(n) =
1− (1 +H(nα)n−α)ρ

ρ
and cρ(n)� min

(
H(N)

N
,

1

|γ|

)
.

Further we divide the interval I into O(logN) subintervals Ij of the form

Ij =

[
j − 1

logN
,

j

logN

]
∩ I.
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On applying Cauchy’s inequality we find

|
∑
|γ|<T
β∈I

nαρ cρ(n)|2 � logN
∑
j

|
∑
|γ|<T
β∈Ij

nαρ cρ(n)|2,

and so we get

H(N)2|Aδ(N,H,α)| �
∑

n∈Aδ(N,H,α)

|ψ(nα +H(nα))−ψ(nα)−H(nα) + o(H(N))|2

≤
∑

N1/α≤n≤(2N)1/α

|
∑
|γ|<T
β∈I

nαρ cρ(n)|2

� logN
∑

N1/α≤n≤(2N)1/α

∑
j

|
∑
|γ|<T
β∈Ij

nαρ cρ(n)|2.

Squaring and using partial summation we have then

|Aδ(N,H,α)| � logN

H(N)2

∑
N1/α≤n≤(2N)1/α

∑
j

∑
|γ|<T
β∈Ij

∑
|γ′|<T
β′∈Ij

nα(ρ+ρ
′) cρ(n) cρ′(n)

� logN

N2

∑
j

N2j/ logN
∑
|γ|<T
β∈Ij

∑
|γ′|<T
β′∈Ij

|S|

where
S =

∑
N1/α≤n≤(N1)1/α

nαi(γ−γ
′) =

∑
N1/α≤n≤(N1)1/α

e(g(n)),

e(x) = e2πix, g(x) =
α(γ − γ′)

2π
log x

and N ≤ N1 ≤ 2N .
Let

(14) H(N) ≥ 2α

π
N1−1/αf(N) log2N,

with f(N) → ∞ arbitrarily slowly. Using the theorem of Kusmin–Landau (see
S. W. Graham and G. Kolesnik [4, theorem 2.1]) and the trivial bound, one finds
that

|S| � N1/α

|γ − γ′|
and |S| � N1/α,

and hence

|Aδ(N,H,α)| � logN

N2

∑
j

N2j/ logN
∑
|γ|<T
β∈Ij

∑
|γ′|<T

β′∈Ij, |γ−γ′|≤1

N1/α

+
logN

N2

∑
j

N2j/ logN
∑
|γ|<T
β∈Ij

∑
|γ′|<T

β′∈Ij, |γ−γ′|>1

N1/α

|γ − γ′|
,

which implies

(15) |Aδ(N,H,α)| � N1/α

N2
log3N

∑
j

∑
|γ|<T
β∈Ij

N2j/ logN

 .
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For every 1 < α ≤ 6/5 and H(x) of type θ with 1/6 < θ < 7/12, and for every
α > 6/5 and H(x) satisfying (14), it follows by a standard argument and the
Ingham–Huxley zero density estimates that

(16)
∑
j

∑
|γ|<T
β∈Ij

N2j/ logN � max
σ∈I

N2σN(σ, T )� N2

logAN
,

for every A > 0. From (15) and (16), it follows that

|Aδ(N,H,α)| = o(N1/α)

for every 1 < α ≤ 6/5 and for every α > 6/5 with

H(N) ≥ 2α

π
N1−1/αf(N) log2N.

Finally, let α > 6/5 and

H(N) <
2α

π
N1−1/αf(N) log2N.

To deal with this small H we observe that if n ∈ Aδ(N,H,α) then N ≤ nα ≤ 2N
and

|ψ(nα +H(nα))− ψ(nα)−H(nα)| ≥ δH(nα).

Thus nα ∈ Eδ(N,H). By Lemma 1 we find a constant c > 0 such that

[nα − cH(N), nα + cH(N)] ∩ [N, 2N ] ⊂ Eδ/2(N,H).

We now consider m ∈ Aδ(N,H,α), with |m− n| ≥ 2
πf(N) log2N and similarly we

get mα ∈ Eδ(N,H) and then

[mα − cH(N),mα + cH(N)] ∩ [N, 2N ] ⊂ Eδ/2(N,H),

again by Lemma 1. Since

|mα − nα| ≥ |m− n|αN1−1/α ≥ 2α

π
N1−1/αf(N) log2N > H(N)

we may deduce that

[mα − cH(N),mα + cH(N)] ∩ [nα − cH(N), nα + cH(N)] = ∅,

for c suitable small. This leads to the bound

|Aδ(N,H,α)| �
|Eδ/2(N,H)|f(N) log2N

H(N)
,

for every δ > 0, which proves the lemma. �

Lemma 6 Assume the Lindelöf Hypothesis. Let H(x) be of type θ, with
0 < θ < 1/2. Then for every δ > 0 and α > 1 we have

|Aδ(N,H,α)| �
|Eδ/2(N,H)|f(N) log2N

H(N)
+ o(N1/α)

with f(N)→∞ arbitrarily slowly.
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Proof. We follow the proof of the Lemma 5 until the equation (15). Under the
assumption of the Lindelöf Hypothesis, which states that the Riemann zeta-function
satisfies

ζ(σ + it)� tη (σ ≥ 1

2
, t ≥ 2),

for any η > 0, we have

(17) N(σ, T )�


T (2+4η)(1−σ)(log T )M 0 ≤ σ ≤ 1

T 3η(1−σ)/(σ−3/4)(log T )M
3

4
< σ ≤ 1

,

with T ≥ 2 and M suitable absolute constant (see Lemma 3 of Yu [13]). From (17)
it follows that the bound (16) hold for every

H(N) ≥ 2α

π
N1−1/αf(N) log2N

and α > 1. We can conclude the proof by dealing with smaller values of H in the
same way as in the proof of Lemma 5. �

3. Proof of the Theorem 1

By the case (i) of the Lemma 5, we can take

c(α) =
1

6
if 1 < α ≤ 6

5
.

For all α > 6/5, by (ii) of the Lemma 5, we have

|Aδ(N,H,α)| �
|Eδ/2(N,H)|f(N) log2N

H(N)
+ o(N1/α),

for every H(x) of type θ, with 1/6 < θ < 7/12. Futhermore, by Lemma 2 there
exists η > 0 such that we have here

|Eδ/2(N,H)| � N (11−6θ)/10+ε,

for every

1

6
< θ ≤ 1

6
+ η,

and every H(x) of type θ. These estimates together yield

|Aδ(N,H,α)| � N (11−16θ)/10+ε + o(N1/α),

and

|Aδ(N,H,α)| = o(N1/α),

for every

θ >
11α− 10

16α

and sufficiently small α > 6/5. It follows that

c(α) =
11α− 10

16α
if

6

5
< α ≤ 6

5
+ ∆,

for suitable positive constant ∆. From the explicit value for η available from the
Lemma 2, we can state that an admissible value is ∆ = 7.2 · 10−7.
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To estimate c(α) for large values of α we need to follow a quite different method.
In a similar way as in the proof of Lemma 5, we let

T =
N

H(N)
log3N

and write

ψ(nα +H(nα))− ψ(nα)−H(nα) = −
∑
|γ|<T
β∈I

nαρ cρ(n) + o(H(N)),

where I = [1/2, 1− d], for a suitable positive constant d. Next we divide the
interval I into O(logN) subintervals Ij of the form

Ij =

[
j − 1

logN
,

j

logN

]
∩ I.

Using Hölder’s inequality, we get∣∣∣∣∣∣∣
∑
|γ|<T
β∈I

nαρ cρ(n)

∣∣∣∣∣∣∣
4

� log3N
∑
j

∣∣∣∣∣∣∣
∑
|γ|<T
β∈Ij

nαρ cρ(n)

∣∣∣∣∣∣∣
4

and then we can deduce

|Aδ(N,H,α)| � log3N

H(N)4

∑
N1/α≤n≤(2N)1/α

∑
j

∣∣∣∣∣∣∣
∑
|γ|<T
β∈Ij

nαρ cρ(n)

∣∣∣∣∣∣∣
4

�

log3N

H(N)4

∑
N1/α≤n≤(2N)1/α

∑
j

∑
|γ|<T
β∈Ij

∑
|γ′|<T
β′∈Ij

∑
|γ′′|<T
β′′∈Ij

∑
|γ′′′|<T
β′′′∈Ij

nα(ρ+ρ
′+ρ′′+ρ′′′) Cn

� log3N

N4

∑
j

N4j/ logN
∑
|γ|<T
β∈Ij

∑
|γ′|<T
β′∈Ij

∑
|γ′′|<T
β′′∈Ij

∑
|γ′′′|<T
β′′′∈Ij

|S| = V1 + V2,

where

Cn = cρ(n) cρ′(n) cρ′′(n) cρ′′′(n)

S =
∑

N1/α≤n≤(N1)1/α

e(g(n)), g(x) =
α(γ + γ′ − γ′′ − γ′′′)

2π
log x,

V1 =
log3N

N4

∑
j

N4j/ logN
∑
|γ|<T
β∈Ij

∑
|γ′|<T
β′∈Ij

∑
|γ′′|<T
β′′∈Ij

∑
|γ′′′|<T
β′′′∈Ij

|γ+γ′−γ′′−γ′′′|≤(π/α)N1/α

|S|

and

V2 =
log3N

N4

∑
j

N4j/ logN
∑
|γ|<T
β∈Ij

∑
|γ′|<T
β′∈Ij

∑
|γ′′|<T
β′′∈Ij

∑
|γ′′′|<T
β′′′∈Ij

|γ+γ′−γ′′−γ′′′|>(π/α)N1/α

|S|

We first proceed to estimate V1. For the terms in the inner sum with

|γ + γ′ − γ′′ − γ′′′| < 1
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we can estimate |S| using the trivial bound. For the terms with

1 ≤ |γ + γ′ − γ′′ − γ′′′| ≤ π

α
N1/α

we can use the Kusmin–Landau theorem. Hence we obtain the estimate

S � N1/α

1 + |γ + γ′ − γ′′ − γ′′′|
,

which, by Heath-Brown’s method [5], implies

V1 �
N1/α log5N

N4
max
σ∈I

N4σN∗(σ, T ).

For H(x) of type θ, with 0.342 < θ < 7/12, Heath-Brown’s zero-density estimates

(18) N∗(σ, T )�



T (10−11σ)/(2−σ)+ε 1

2
≤ σ ≤ 2

3

T (18−19σ)/(4−2σ)+ε 2

3
≤ σ ≤ 3

4

T 12(1−σ)/(4σ−1)+ε 3

4
≤ σ ≤ 1,

,

(Theorem 2 of [6]) give upper bounds for N4σN∗(σ, T ) that attain their maximum
at σ = 1− d. A short calculation then shows that

max
σ∈I

N4σN∗(σ, T )� N4

(logN)A
,

for every A > 0. Hence we conclude

V1 = o(N1/α),

for every 0.342 < θ < 7/12.
Now we turn to estimating V2. Let (k, l) an exponent pair then

S �
(
|γ + γ′ − γ′′ − γ′′′|

N1/α

)k (
N1/α

)l
�
(

T

N1/α

)k
N l/α � N (kα(1−θ)−k+l)/α+ε,

for every ε > 0 and H(x) of type θ. This yields

V2 � N (kα(1−θ)−k+l)/α−4+ε
∑
j

 ∑
|γ|<T
β∈Ij

N j/ logN


4

� N (kα(1−θ)−k+l)/α−4+ε
(

max
σ

NσN(σ, T )
)4

For H of type θ, with

(19)
23

48
< θ <

7

12
,

the density estimates of Ingham–Huxley give upper bounds for NσN(σ, T ) that
attain their maximum at σ = 3/4. So we may deduce

V2 � N (kα(1−θ)−k+l)/α−4+ε N3+12(1−θ)/5.
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The above bound is o(N1/α) for every

(20) θ > 1− 5(1 + α− l + k)

α(5k + 12)
,

if (k, l) is an exponent pair, H of type θ and α sufficiently large. Thus we can
select

c(α) = 1− sup
(k,l)

5(1 + α− l + k)

α(5k + 12)
,

where (k, l) runs over the exponent pairs. Since all exponent pairs (k, l) have
0 ≤ k ≤ 1/2 ≤ l, we obtain

1− 5

12

1 + α

α
< 1− sup

(k,l)

5(1 + α− l + k)

α(5k + 12)
= c(α),

which implies (19) if α ≥ 4. On the other hand from the exponent pairs

Ai−1B(0, 1) =

(
1

2(2i − 1)
, 1− i

2(2i − 1)

)
,

where

i =

[
5α

12

]
,

we get

1− sup
(k,l)

5(1 + α− l + k)

α(5k + 12)
= c(α) <

7

12
.

and then, as one might expect, we conclude

lim
α→+∞

c(α) =
7

12
.

This completes the proof of Theorem 1.

Note We are able to obtain the function c(α), in a suitable interval of α, from
every estimate of the counting function N(σ, T ) in a fixed interval of σ. As an

example, if we recall that

(21) N(σ, T )� T 9(1−σ)/(7σ−1) logC T,

with 41/53 ≤ σ ≤ 1 and C suitable constant (see Theorem 11.4 of Ivić [9]), we can
choose H of type θ, d = (9θ − 3)/7− ξ with ξ > 0, in (12) of Lemma 2, using the

Ingham–Huxley density estimates and (21) we can obtain an estimate of
|Eδ(X,H)|. Hence, from Lemma 5, we can obtain

c(α) =


5

8
− 7

16α
if

3

2
< α ≤ 3339

1138

1969

2809
− 35

53α
if

3339

1138
≤ α ≤ 3.447

,

that cover a great part of the gap between 6/5 + ∆ and 4. Along the same lines
we can obtain a large number of possible function c(α), for every α > 1.
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4. Proof of the Theorem 2, 3 and 4

In order to prove Theorem 2 we assume (2) and use Lemma 5 to see that

|Aδ(N,H,α)| �
|Eδ/2(N,H)|f(N) log2N

H(N)
+ o(N1/α),

for every H(x) of type θ, with 1/6 < θ < 7/12. So by Lemma 3 we have

|Eδ/2(N,H)| � N
7
5 (1−θ)+ε,

with H(x) of type θ and 23/48 < θ < 7/12. The last two estimates together yield

|Aδ(N,H,α)| � N
7
5−

12
5 θ+ε + o(N1/α),

so that

|Aδ(N,H,α)| = o(N1/α),

for every

θ >
7

12
− 5

12α
and

23

48
< θ <

7

12
.

Then we can define

c(α) =
7

12
− 5

12α
if α ≥ 4.

Similarly we can prove Theorem 3, using Lemma 6 and Lemma 4 instead of
Lemma 5 and Lemma 3, so obtaining

|Aδ(N,H,α)| � N1−2θ+ε + o(N1/α),

so that

|Aδ(N,H,α)| = o(N1/α),

for every

θ >
1

2

(
1− 1

α

)
.

Then we can choose

c(α) =
1

2

(
1− 1

α

)
if α > 1.

To prove Theorem 4 we recall that Selberg [11] proved, under the assumption of
the Riemann Hypothesis, that∫ 2X

X

|ψ(x+H)− ψ(x)−H|2 dx� HX log2X,

for all H ≥ 10, which implies

|Eδ(N,H)| � N

H(N)
log2N,

for every δ > 0. In conjunction with Lemma 6, this gives

|Aδ(N,H,α)| � N log4N

H(N)2
f(N) + o(N1/α),

with f(N)→∞ arbitrarily slowly, so that

|Aδ(N,H,α)| = o(N1/α),
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with

H(N) > N
1
2 (1− 1

α )f(N) log2N,

for every α > 1 and δ > 0. This completes the proof of Theorem 4.
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